MTX221. Session 36 ENTROPY (CONTROL MASS) Sessie 36 ENTROPIE (KONTROLE MASSA) Dr. Jaco Dirker. These slides also appear on Click-UP

Size: px
Start display at page:

Download "MTX221. Session 36 ENTROPY (CONTROL MASS) Sessie 36 ENTROPIE (KONTROLE MASSA) Dr. Jaco Dirker. These slides also appear on Click-UP"

Transcription

1 Ses.36- MX Sessie 36 ENROIE (KONROLE MASSA) Session 36 ENROY (CONROL MASS) Dr. Jaco Dirker hese slides also appear on Click-U Hierdie skyfies verskyn ook op Click-U 8 th edition / 8e uitgawe

2 Ses.36- Entropieverandering van n Ideale Gas 6.7 Entropy Change of an Ideal Gas Isentropiese proses Isentropic rocess of an IDEAL gas. Consider an ideal Gas undergoing an isentropic process. (thus entropy is constant): s s 0 Ideale gas C C po po d d R ln R ln isentropies DO EX6.6 (Ed 8) YOURSELF DOEN VB6.6 (Uitg.8) SELF

3 Ses.36-3 Entropieverandering van n Ideale Gas 6.7 Entropy Change of an Ideal Gas Isentropiese proses Isentropic rocess of an IDEAL gas. konstante Spesifieke Hitte As a special case consider a constant Specific Heat: Resulting in: his is written as: However: Or as: R C 0 C p C po ln ln 0 C C 0 R C R ln 0 v0 ln R C 0 k k 0 C p0 (where k also listed in A5) C v0

4 Ses.36-4 Entropieverandering van n Ideale Gas 6.7 Entropy Change of an Ideal Gas Isentropiese proses Isentropic rocess of an IDEAL gas. herefore k k v R Combining this with the following can also be written: v v v v k k ** ** ** k k v v ** hese equations do appear on our formulae sheet. his last expression results in: v k const Since we are dealing with control mass (constant mass) this is thus a special case of a olytropic process. Only for constant spec. heat olitropiese proses

5 Ses.36-5 Omkeerbare olitropiese roses vir n Ideale Gas 6.8 Reversible olytropic rocess for an Ideal Gas olitropiese proses Let s Re-look politropic processes, but now only focus on ideal gasses olitropic processes appear as straight lines on a Log -Log V diagram Ideale gas his means: d ln d lnv n Rewritten as: d ln nd lnv 0 For a straight line n = const, for which after integration the following known expression is obtained: n n n V const V V Ses. 53-5

6 Ses Reversible olytropic rocess for an Ideal Gas Omkeerbare olitropiese roses vir n Ideale Gas As we saw before, for an ideal gas the following can be written: n v v n n n v v Refer to earlier slide

7 Ses.36-7 Omkeerbare olitropiese roses vir n Ideale Gas 6.8 Reversible olytropic rocess for an Ideal Gas Let s consider some types of processes: (plotted on v and s diagrams) V n const Isobaric ( = const.) n =0 Isothermal ( = const)* n = Isentropic (s = const)* + n = k Isochoric (v = const) n = * ONLY FOR IDEAL GAS + ONLY FOR CONS C p Boundary moving work given by: W V V n (if n ) For an ideal gas becomes: W mr n Ses. 53-7

8 Ses.36-8 Omkeerbare olitropiese roses vir n Ideale Gas 6.8 Reversible olytropic rocess for an Ideal Gas Reversible Isothermal rocess For an isothermal process, (n = ), boundary moving work is given by : W V ln V ln V For an ideal gas this becomes: V V W mr ln mr ln V Because is const, there is no change in the internal Energy (Ideal Gas) herefore heat transfer is equal to work: hus From st Law: From nd Law: Dus, hitte-oordrag en arbeid is gelyk q u w ds v q w dv v ln v q Omkeerbare Isotermiese roses du dv Ses. 53-8

9 Ses.36-9 Alegemene Herindering General Reminder Remember: For a (internally) Reversible rocess, the following may be said: Onthou, Vir n (interne) Omkeerbare roses, kan die volgende gesê word:

10 Ses.36-0 Entropie verandering vir n KM tydens n Onomkeerbare roses 6.9 Entropy Change of a CM during an Irreversible rocess We know what happens in Reversible Cycles and rocesses What about Irreversible Cycles and rocesses? Consider cycles: AB is omkeerbaar Cycle AB is reversible (both A and B are reversible processes) Cycle CB is irreversible (C is an irreversible process) CB is onomkeerbaar What happens to the entropy in an irreversible process?

11 Ses.36- Entropie verandering vir n KM tydens n Onomkeerbare roses 6.9 Entropy Change of a CM during an Irreversible rocess We found that: S S Q his is a very important equation - it forms the basis of many further concepts. What does this mean? Vir enige onomkeerbare proses, is die verdandering van entropie altyd meer positief as vir n omkeerbare proses. Intern omkeerbare proses hus for an INERNALLY reversible process: onomkeerbaar For an irreversible process: S his is true for Q >0, Q = 0, and Q<0 For any irreversible process, the change in entropy is always more positive than for a reversible process. S Q * S S Q * * lease note: this is the entropy of the system, and not yet that Ses. of 53- the surroundings

12 Ses.36- Entropie verwekking en die entropie vgl. 6.0 Entropy Generation and the Entropy Eq. Q We now know that: ds he following can thus be written: Where the entropy generation must be greater than zero: Entropie verwekking Q ds S gen S gen 0 he entropy generation is caused by factors such as friction, unconstrained expansion etc External irreversibilities such as heat transfer over a finite temp. difference also causes entropy generation. Entropie verwekking is weens faktore soos wrywing, onheheerde uitsetting ens Eksterne onomkeerbaarhede soos hitte-oordrag oor n eindige temp. verskil veroorsaak ook entropie verwekking. Important Note (not in textbook) Q Entropy transfer only occurs with Heat transfer ds S gen Work is thus entropy-free However, the processes involved with work may cause entropy generation. Entropie oordrag geskied net met hitte-oordrag nie met arbeid nie, maar entropie mag verwek word tydens die prosesse verwant aan arbeid.. Ses. 53-

13 Ses Entropy Generation and the Entropy Eq. For reversible processes: 0 S gen omkeerbaar Q ds W dv Entropie verwekking en die entropie vgl. onomkeerbaar Q ds For irreversible processes: 0 S gen Q W ds irr S gen dv irr S gen * S gen * his is from the st Law: Q du irr W irr and the Gibbs equation: ds du dv We thus see that the heat transfer and work in a irreversible process is less than in a reversible process. he missing work can be seen as a lost opportunity to extract work. hus in general: Q S S S gen Hitte-oordrag arbeid

14 Ses Entropy Generation and the Entropy Eq. Entropie-balans From this an entropy balance can be obtained: Entropie verwekking en die entropie vgl. Q ds S gen Entropy = +in out +gen Entropie kan geskep word, maar nie vernietig word nie Entropy can thus be created but not destroyed his is in contrast with energy which can not be created

15 Ses.36-5 Entropie verwekking en die entropie vgl. 6.0 Entropy Generation and the Entropy Eq. Important Conclusions: oename / Afname in Entropie. Increase / Decrease of Entropy: Entropy increases by: heat flow in and irreversible processes Entropy of a system decreases by: heat flow out. Adiabatiese roses. Adiabatic rocesses: For irreversible adiabatic processes the increase in S is due to irreversibilites

16 Ses.36-6 Entropie verwekking en die entropie vgl. 6.0 Entropy Generation and the Entropy Eq. Important Conclusions: Arbeid 3. Work: Irreversibilities result in less work Stelsel teenoor omgewing 4. System vs Environment Consider heat transfer from Environment to System System experiences a increase in entropy due to heat flow in Environment experiences a decrease in entropy due to loss of heat he entropy that the system gains is not equal to the entropy the environment looses But the overall entropy will thus change due to irreversibilities.

17 Ses.36-7 Arbeid en Hitte vir omkeerbare en onomkeerbare prosesse Entropie verwekking en die entropie vgl. 6.0 Entropy Generation and the Entropy Eq. Work and Heat for reversible and irreversible processes. Reversible processes drawn with solid line Irreversible processes drawn with dashed line. Irreversible Onomkeerbaar Reversible Omkeerbaar

MTX221. Session 33 ENTROPY (CONTROL MASS) Sessie 33 ENTROPIE (KONTROLE MASSA) Dr. Jaco Dirker. These slides also appear on Click-UP

MTX221. Session 33 ENTROPY (CONTROL MASS) Sessie 33 ENTROPIE (KONTROLE MASSA) Dr. Jaco Dirker. These slides also appear on Click-UP Ses. 33- MTX Sessie 33 ENTROPIE (KONTROLE MASSA) Session 33 ENTROPY (CONTROL MASS) Dr. Jaco Dirker These slides also appear on Click-UP Hierdie skyfies verskyn ook op Click-UP 8 th edition / 8e uitgawe

More information

MTX221. Sessie 30 DIE KLASSIEKE TWEEDE WET VAN TERMODINAMIKA. Session 30 THE CLASSICAL SECOND LAW OF THERMODYNAMICS. Dr.

MTX221. Sessie 30 DIE KLASSIEKE TWEEDE WET VAN TERMODINAMIKA. Session 30 THE CLASSICAL SECOND LAW OF THERMODYNAMICS. Dr. Ses. 30-1 Sessie 30 DIE KLASSIEKE TWEEDE WET VAN TERMODINAMIKA MTX221 Hierdie skyfies verskyn ook op Click-UP 8 th edition / 8e uitgawe 5.5 5.7 Session 30 THE CLASSICAL SECOND LAW OF THERMODYNAMICS Dr.

More information

Previous lecture. Today lecture

Previous lecture. Today lecture Previous lecture ds relations (derive from steady energy balance) Gibb s equations Entropy change in liquid and solid Equations of & v, & P, and P & for steady isentropic process of ideal gas Isentropic

More information

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL UNIVERSITY OF PRETORIA / UNIVERSITEIT VAN PRETORIA FACULTY OF NATURAL AND AGRICULTURAL SCIENCES / FAKULTEIT NATUUR- EN LANDBOUWETENSKAPPE DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS / DEPARTEMENT

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE 1 PHYSICAL SCIENCES: PHYSICS (P1) FISIESE WETENSKAPPE: FISIKA (Vr1) SEPTEMBER 015 MEMORANDUM MARKS: 150 TIME: 3 hours This memorandum consists of 10 pages. Physical Sciences/P1

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. However, the first law cannot explain certain facts about thermal

More information

Chapter 19 The First Law of Thermodynamics

Chapter 19 The First Law of Thermodynamics Chapter 19 The First Law of Thermodynamics The first law of thermodynamics is an extension of the principle of conservation of energy. It includes the transfer of both mechanical and thermal energy. First

More information

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes.

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes. ecture 2.7 Entropy and the Second law of hermodynamics During last several lectures we have been talking about different thermodynamic processes. In particular, we have discussed heat transfer between

More information

Voorletters en Van Initials and Surname Studente nommer Student number Datum / Date

Voorletters en Van Initials and Surname Studente nommer Student number Datum / Date Voorletters en Van Initials and Surname Studente nommer Student number Datum / Date MTX221 2011 KLASTOETS 3E / CLASSTES 3E 25 min. (14 punte/marks) *Sal herwerk tot 10 punte vir klaslys doeleindes * Will

More information

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property

Chapter-6: Entropy. 1 Clausius Inequality. 2 Entropy - A Property hater-6: Entroy When the first law of thermodynamics was stated, the existence of roerty, the internal energy, was found. imilarly, econd law also leads to definition of another roerty, known as entroy.

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. he second law deals with direction of thermodynamic processes

More information

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1 CHAPTER 7 ENTROPY S. I. Abdel-Khalik (2014) 1 ENTROPY The Clausius Inequality The Clausius inequality states that for for all cycles, reversible or irreversible, engines or refrigerators: For internally-reversible

More information

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction

Engineering Thermodynamics. Chapter 6. Entropy: a measure of Disorder 6.1 Introduction Engineering hermodynamics AAi Chapter 6 Entropy: a measure of Disorder 6. Introduction he second law of thermodynamics leads to the definition of a new property called entropy, a quantitative measure of

More information

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY

= T. (kj/k) (kj/k) 0 (kj/k) int rev. Chapter 6 SUMMARY Capter 6 SUMMARY e second la of termodynamics leads to te definition of a ne property called entropy ic is a quantitative measure of microscopic disorder for a system. e definition of entropy is based

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0)

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Key Point: ΔS universe allows us to distinguish between reversible and irreversible

More information

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00 UNIVERSITY OF PRETORIA / UNIVERSITEIT VAN PRETORIA FACULTY OF NATURAL AND AGRICULTURAL SCIENCES / FAKULTEIT NATUUR- EN LANDBOUWETENSKAPPE DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS / DEPARTEMENT

More information

Minimizing and maximizing compressor and turbine work respectively

Minimizing and maximizing compressor and turbine work respectively Minimizing and maximizing compressor and turbine ork respectively Reversible steady-flo ork In Chapter 3, Work Done during a rocess as found to be W b dv Work Done during a rocess It depends on the path

More information

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr.

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr. VAN / SURNAME: UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA FAKULTEIT NATUUR- EN LANDBOUWETENSKAPPE / FACULTY OF NATURAL AND AGRICULTURAL SCIENCES DEPARTEMENT WISKUNDE EN TOEGEPASTE WISKUNDE / DEPARTMENT

More information

ATMOS 5130 Lecture 9. Enthalpy Conservation Property The Second Law and Its Consequences Entropy

ATMOS 5130 Lecture 9. Enthalpy Conservation Property The Second Law and Its Consequences Entropy ATMOS 5130 Lecture 9 Enthalpy Conservation Property The Second Law and Its Consequences Entropy CLASS Presentation Form group of 2 students Present ~20 minute presentation (~ 10 minute each person) Focus

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of hermodynamics Reading Problems 6-, 6-2, 6-7, 6-8, 6-6-8, 6-87, 7-7-0, 7-2, 7-3 7-39, 7-46, 7-6, 7-89, 7-, 7-22, 7-24, 7-30, 7-55, 7-58 Why do we need another law in thermodynamics?

More information

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD:

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD: UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS WTW 220 - ANALISE / ANALYSIS EKSAMEN / EXAM 12 November 2012 TYD/TIME:

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics he Second Law of hermodynamics So far We have studied the second law by looking at its results We don t have a thermodynamic property that can describe it In this chapter we will develop a mathematical

More information

Reversibility. Processes in nature are always irreversible: far from equilibrium

Reversibility. Processes in nature are always irreversible: far from equilibrium Reversibility Processes in nature are always irreversible: far from equilibrium Reversible process: idealized process infinitely close to thermodynamic equilibrium (quasi-equilibrium) Necessary conditions

More information

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER:

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS WTW 63 - NUMERIESE METHODE / NUMERICAL METHODS EKSAMEN / EXAMINATION

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

y =3x2 y 2 x 5 siny x y =6xy2 5x 4 siny

y =3x2 y 2 x 5 siny x y =6xy2 5x 4 siny Skeibare PDVs/ Separable PDEs SLIDE 1/9 Parsiële afgeleides f ( x, y) Partial derivatives y f y x f x Voorbeeld/Example:f(x,y)=x 2 y 3 +x 5 cosy f x =2xy3 +5x 4 cosy; f y =3x2 y 2 x 5 siny 2 f x 2=2y3

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK)

CHAPTER 2 ENERGY INTERACTION (HEAT AND WORK) CHATER ENERGY INTERACTION (HEAT AND WORK) Energy can cross the boundary of a closed system in two ways: Heat and Work. WORK The work is done by a force as it acts upon a body moving in direction of force.

More information

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C.

U = 4.18 J if we heat 1.0 g of water through 1 C. U = 4.18 J if we cool 1.0 g of water through 1 C. CHAPER LECURE NOES he First Law of hermodynamics: he simplest statement of the First Law is as follows: U = q + w. Here U is the internal energy of the system, q is the heat and w is the work. CONVENIONS

More information

Review of First and Second Law of Thermodynamics

Review of First and Second Law of Thermodynamics Review of First and Second Law of Thermodynamics Reading Problems 4-1 4-4 4-32, 4-36, 4-87, 4-246 5-2 5-4, 5.7 6-1 6-13 6-122, 6-127, 6-130 Definitions SYSTEM: any specified collection of matter under

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

Thermodynamics II. Week 9

Thermodynamics II. Week 9 hermodynamics II Week 9 Example Oxygen gas in a piston cylinder at 300K, 00 kpa with volume o. m 3 is compressed in a reversible adiabatic process to a final temperature of 700K. Find the final pressure

More information

Question 1. The van der Waals equation of state is given by the equation: a

Question 1. The van der Waals equation of state is given by the equation: a Kopiereg voorbehou Universiteit van retoria University of retoria Copyright reserved Departement Chemiese Ingenieurswese Department of Chemical Engineering CHEMICAL ENGINEERING CIR EKSAMEN Volpunte: Tydsduur:

More information

= for reversible < for irreversible

= for reversible < for irreversible CHAPER 6 Entropy Copyright he McGraw-Hill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: δ 0 Cyclic integral his inequality is valid for all cycles, reversible

More information

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v.

1. (10) True or False: A material with an ideal thermal equation of state must have a constant c v. AME 54531 Intermediate hermodynamics Examination : Prof. J. M. Powers 7 November 018 1. 10) rue or False: A material with an ideal thermal equation of state must have a constant c v. False. Forsuchamaterialc

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

Exergy and the Dead State

Exergy and the Dead State EXERGY The energy content of the universe is constant, just as its mass content is. Yet at times of crisis we are bombarded with speeches and articles on how to conserve energy. As engineers, we know that

More information

= for reversible < for irreversible

= for reversible < for irreversible CAPER 6 Entropy Copyright he McGraw-ill Companies, Inc. Permission required for reproduction or display. he Clausius Inequality: 0 his inequality is valid for all cycles, reversible or irreversible Cycle

More information

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams

AME 436. Energy and Propulsion. Lecture 7 Unsteady-flow (reciprocating) engines 2: Using P-V and T-s diagrams AME 46 Energy and ropulsion Lecture 7 Unsteady-flow (reciprocating) engines : Using - and -s diagrams Outline! Air cycles! What are they?! Why use - and -s diagrams?! Using - and -s diagrams for air cycles!!!!!!

More information

Lecture 7, 8 and 9 : Thermodynamic process by: Asst. lect. Karrar Al-Mansoori CONTENTS. 7) Thermodynamic process, path and cycle 2

Lecture 7, 8 and 9 : Thermodynamic process by: Asst. lect. Karrar Al-Mansoori CONTENTS. 7) Thermodynamic process, path and cycle 2 CONTENTS Topics pages 7) Thermodynamic process, path and cycle 8) Reversibility and irreversibility 4 9) Thermodynamic processes and calculation of work 5 9.: Constant pressure process or isobaric process

More information

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg Outeursreg voorbehou UNIVERSITEIT VAN PRETORIA Departement Wiskunde en Toegepaste Wiskunde Copyright reserved UNIVERSITY OF PRETORIA Department of Mathematics and Applied Maths 4 Junie / June 00 Punte

More information

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS VAN/SURNAME: VOORNAME/FIRST NAMES: WTW 218 - CALCULUS SEMESTERTOETS /

More information

Chap. 3. The Second Law. Law of Spontaneity, world gets more random

Chap. 3. The Second Law. Law of Spontaneity, world gets more random Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin - No process can transform heat completely into work Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin

More information

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ]

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ] Chemistry 433 Lecture 9 Entropy and the Second Law NC State University Spontaneity of Chemical Reactions One might be tempted based on the results of thermochemistry to predict that all exothermic reactions

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

Lecture 13 Heat Engines

Lecture 13 Heat Engines Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1. 5.6 A rigid tank is divided into two rooms by a membrane, both containing water, shown in Fig. P5.6. Room A is at 200 kpa, v = 0.5 m3/kg, VA = m3, and room B contains 3.5 kg at 0.5 MPa, 400 C. The membrane

More information

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

UNIT # 06 THERMODYNAMICS EXERCISE # 1. T i. 1. m Zn

UNIT # 06 THERMODYNAMICS EXERCISE # 1. T i. 1. m Zn UNI # 6 HERMODYNMIS EXERISE #. m Zn.S Zn.( f i + m H O.S H O.( f i (6.8 gm (.4 J/g ( f + 8 gm (4. J/g ( f [(6.8 (.4 + 8(4.] f (6.8 (.4 ( + (8 (4. ( (6.8(.4( (8(4.( f 97. (6.8(.4 (8(4.. U q + w heat absorb

More information

The First Law of Thermodynamics. Lecture 5

The First Law of Thermodynamics. Lecture 5 The First Law of Thermodynamics Lecture 5 First Law of Thermodynamics Overlooks the fine microscopic details (which in many cases are irrelevant). Describes the conversion of one form of energy (heat)

More information

Chapter 6. Problem solutions are available to instructors only. Requests from unverifiable sources will be ignored.

Chapter 6. Problem solutions are available to instructors only. Requests from unverifiable sources will be ignored. 0 his document is copyrighted 2015 by Marshall homsen. ermission is granted for those affiliated with academic institutions, in particular students and instructors, to make unaltered printed or electronic

More information

Heat What is heat? Work = 2. PdV 1

Heat What is heat? Work = 2. PdV 1 eat What is heat? eat (Q) is the flow or transfer of energy from one system to another Often referred to as heat flow or heat transfer Requires that one system must be at a higher temperature than the

More information

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow. Reversible Processes A reversible thermodynamic process is one in which the universe (i.e. the system and its surroundings) can be returned to their initial conditions. Because heat only flows spontaneously

More information

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 NATIONAL SENIOR CERTIICATE NASIONALE SENIOR SERTIIKAAT GRADE/GRAAD 1 PHYSICAL SCIENCES: PHYSICS (P1) ISIESE WETENSKAPPE: ISIKA (V1) EXEMPLAR 014 MODEL 014 MEMORANDUM MARKS/PUNTE: 150 This memorandum consists

More information

CLAUSIUS INEQUALITY. PROOF: In Classroom

CLAUSIUS INEQUALITY. PROOF: In Classroom Chapter 7 ENTROPY CLAUSIUS INEQUALITY PROOF: In Classroom 2 RESULTS OF CLAUSIUS INEQUALITY For internally reversible cycles δq = 0 T int rev For irreversible cycles δq < 0 T irr A quantity whose cyclic

More information

Lecture 9 Overview (Ch. 1-3)

Lecture 9 Overview (Ch. 1-3) Lecture 9 Overview (Ch. -) Format of the first midterm: four problems with multiple questions. he Ideal Gas Law, calculation of δw, δq and ds for various ideal gas processes. Einstein solid and two-state

More information

THERMODYNAMICS Lecture 5: Second Law of Thermodynamics

THERMODYNAMICS Lecture 5: Second Law of Thermodynamics HERMODYNAMICS Lecture 5: Second Law of hermodynamics Pierwsza strona Second Law of hermodynamics In the course of discussions on the First Law of hermodynamics we concluded that all kinds of energy are

More information

Entropy and the second law of thermodynamics

Entropy and the second law of thermodynamics Chapter 4 Entropy and the second law of thermodynamics 4.1 Heat engines In a cyclic transformation the final state of a system is by definition identical to the initial state. he overall change of the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CH. 19 PRACTICE Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When a fixed amount of ideal gas goes through an isobaric expansion, A) its

More information

Compiled by Korbitec in association with Jan S de Villiers. Afrikaans text of the guidelines edited by Jan S de Villiers.

Compiled by Korbitec in association with Jan S de Villiers. Afrikaans text of the guidelines edited by Jan S de Villiers. Tables calculated in accordance with the guidelines prescribed by the various Law Societies with Deeds Office charges according to the list in Notice R. 193 dated 25 February 2000 Government Gazette 20924.

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process

Outline. Property diagrams involving entropy. Heat transfer for internally reversible process Outline roperty diagrams involving entropy What is entropy? T-ds relations Entropy change of substances ure substances (near wet dome) Solids and liquids Ideal gases roperty diagrams involving entropy

More information

An introduction to thermodynamics applied to Organic Rankine Cycles

An introduction to thermodynamics applied to Organic Rankine Cycles An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Zeroth law temperature First law energy Second law - entropy CY1001 2010

More information

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde GRADES 10 AND 11 GRADE 10 EN 11 30 July 3 Aug 2018 30 Julie 3 Aug 2018 TIME: 2 HOURS TYD: 2 URE 2012 OUTEURSREG

More information

Oplos van kwadratiese vergelykings: die vind van die vergelyking *

Oplos van kwadratiese vergelykings: die vind van die vergelyking * OpenStax-CNX module: m39143 1 Oplos van kwadratiese vergelykings: die vind van die vergelyking * Free High School Science Texts Project Based on Solving quadratic equations: nding the equation by Free

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields 1 Huiswerk Hoofstuk Elektriese velde Homework Chapter Electric fields 8 th / 8 ste HRW 1, 5, 7, 10 (0), 43, 45, 47, 53 9 th / 9 de HRW (9.6 10 18 N left, 30 N/C), 3, 8 (0), 11, 39, 41, 47, 49 Elektriese

More information

Survey of Thermodynamic Processes and First and Second Laws

Survey of Thermodynamic Processes and First and Second Laws Survey of Thermodynamic Processes and First and Second Laws Please select only one of the five choices, (a)-(e) for each of the 33 questions. All temperatures T are absolute temperatures. All experiments

More information

PHY 206 SPRING Problem #1 NAME: SIGNATURE: UM ID: Problem #2. Problem #3. Total. Prof. Massimiliano Galeazzi. Midterm #2 March 8, 2006

PHY 206 SPRING Problem #1 NAME: SIGNATURE: UM ID: Problem #2. Problem #3. Total. Prof. Massimiliano Galeazzi. Midterm #2 March 8, 2006 PHY 06 SPRING 006 Prof. Massimiliano Galeazzi Midterm # March 8, 006 NAME: Problem # SIGNAURE: UM ID: Problem # Problem # otal Some useful relations: st lat of thermodynamic: U Q - W Heat in an isobaric

More information

Thermodynamics part III.

Thermodynamics part III. Thermodynamics part III. a.) Fenomenological thermodynamics macroscopic description b.) Molecular thermodynamics microscopic description b1.) kinetical gas theory b2.) statistical thermodynamics Laws of

More information

Heat Engines and the Second Law of Thermodynamics

Heat Engines and the Second Law of Thermodynamics Heat Engines and the Second Law of hermodynamics here are three equivalent forms of the second law of thermodynamics; will state all three, discuss: I. (Kelvin-Planck) It is impossible to construct an

More information

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22.

This follows from the Clausius inequality as a consequence of the second law of thermodynamics. Therefore. (for reversible process only) (22. Entropy Clausius inequality can be used to analyze the cyclic process in a quantitative manner. The second law became a law of wider applicability when Clausius introduced the property called entropy.

More information

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION VAN/SURNAME : UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA VOORNAME/FIRST NAMES : WTW26 NUMERIESE METODES WTW26 NUMERICAL METHODS EKSAMEN / EXAMINATION STUDENTENOMMER/STUDENT NUMBER : HANDTEKENING/SIGNATURE

More information

Lecture 34: Exergy Analysis- Concept

Lecture 34: Exergy Analysis- Concept ME 200 Thermodynamics I Lecture 34: Exergy Analysis- Concept Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 200240, P. R. China Email : liyo@sjtu.edu.cn

More information

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total:

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total: UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS DEPARTEMENT WISKUNDE EN TOEGEPASTE WISKUNDE WTW 15 - WISKUNDIGE MODELLERING / MATHEMATICAL MODELLING

More information

Kwadratiese rye - Graad 11

Kwadratiese rye - Graad 11 OpenStax-CNX module: m38240 1 Kwadratiese rye - Graad 11 Wiehan Agenbag Free High School Science Texts Project Based on Quadratic Sequences - Grade 11 by Rory Adams Free High School Science Texts Project

More information

GRADE/GRAAD 11 NOVEMBER 2018

GRADE/GRAAD 11 NOVEMBER 2018 NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 11 NOVEMBER 2018 TECHNICAL SCIENCES P2/TEGNIESE WETENSKAPPE V2 MARKING GUIDELINE/NASIENRIGLYN MARKS/PUNTE: 150 This marking guideline

More information

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037 onsequences of Second Law of hermodynamics Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & echnology BUE Dhaka-000, Bangladesh zahurul@me.buet.ac.bd

More information

Worksheet for Exploration 21.1: Engine Efficiency W Q H U

Worksheet for Exploration 21.1: Engine Efficiency W Q H U Worksheet for Exploration 21.1: Engine Efficiency In this animation, N = nr (i.e., k B = 1). This, then, gives the ideal gas law as PV = NT. Assume an ideal monatomic gas. The efficiency of an engine is

More information

Conservation of Energy

Conservation of Energy Conservation of Energy Energy can neither by created nor destroyed, but only transferred from one system to another and transformed from one form to another. Conservation of Energy Consider at a gas in

More information

TRANSPORTE EN VERBANDE/TRANSFERS AND BONDS

TRANSPORTE EN VERBANDE/TRANSFERS AND BONDS TANSPOTE EN VEBANDE/TANSFES AND BONDS Tables calculated in accordance with the guidelines prescribed by the various Law Societies with Deeds Office charges according to the list in Notice. 659 dated 02

More information

Physics 111. Thursday, Dec. 9, 3-5pm and 7-9pm. Announcements. Thursday, December 9, 2004

Physics 111. Thursday, Dec. 9, 3-5pm and 7-9pm. Announcements. Thursday, December 9, 2004 ics day, ember 9, 2004 Ch 18: diagrams isobaric process isochoric process isothermal process adiabatic process 2nd Law of Thermodynamics Class Reviews/Evaluations For the rest of the semester day,. 9,

More information

+ + SEPTEMBER 2016 MATHEMATICS PAPER 1 / WISKUNDE VRAESTEL 1 MEMORANDUM

+ + SEPTEMBER 2016 MATHEMATICS PAPER 1 / WISKUNDE VRAESTEL 1 MEMORANDUM SEPTEMBER 016 MATHEMATICS PAPER 1 / WISKUNDE VRAESTEL 1 MEMORANDUM NOTE: If a candidate answers a question TWICE, mark only the first one. Consistent accuracy applies in ALL aspects of the marking memorandum.

More information

GRADE 12 LEARNER SUPPORT PROGRAMME

GRADE 12 LEARNER SUPPORT PROGRAMME Province of the EASTERN CAPE EDUCATION Steve Vukile Tshwete Education Complex Zone 6 Zwelitsha 5608 Private Bag X003 Bhisho 5605 REPUBLIC OF SOUTH AFRICA CHIEF DIRECTORATE CURRICULUM MANAGEMENT GRADE 1

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

Irreversible Processes

Irreversible Processes Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Irreversible Processes Entropy-increasing

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM 13 CHAPER SPONANEOUS PROCESSES AND HERMODYNAMIC EQUILIBRIUM 13.1 he Nature of Spontaneous Processes 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 13.3 Entropy and Heat: Macroscopic

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Irreversible Processes

Irreversible Processes Irreversible Processes Examples: Block sliding on table comes to rest due to friction: KE converted to heat. Heat flows from hot object to cold object. Air flows into an evacuated chamber. Reverse process

More information

Physics 7B Midterm 1 Problem 1 Solution

Physics 7B Midterm 1 Problem 1 Solution Physics 7B Midterm Problem Solution Matthew Quenneville September 29, 206 (a) Suppose some amount of heat, Q, is added to the gas, while the volume is held constant. This is equivalent to adding some amount

More information