Experimental investigation of nonlinear dynamic tension In mooring lines

Size: px
Start display at page:

Download "Experimental investigation of nonlinear dynamic tension In mooring lines"

Transcription

1 J Mar Sci Technol (2012) 17: DOI /S ORIGINAL ARTICLE Experimental investigation of nonlinear dynamic tension In mooring lines Su-xia Zhang You-gang Tang Xi-jun Liu Received: 20 October 2010/Accepted: 27 December 2011 /Published online: 2 February 2012 JASNAOB 2012 Abstract Mooring lines are one of the most important parts of spar platforms. In this work, experimental investigation was canied out to obtain the dynamic tension and discover the nonlinear characters while a mooring hne transfers from taut to taut-slack. Results show that, when system parameters change, the mooring line system may transform from one steady state to another, accompanied by tension skip that is 5 times the former steady tension and twice the latter steady tension. Such skip tension may result in platform breakage. For the entire cable structure, the effects of system parameters are very important and need further theoretical research. The presented research lays the foundation for further studies on this transforming mechanism and for optimization of engineering designs. Keywords Taut-slack Mooring lines Nonlinear dynamic tension Chaos Experimental investigation 1 Introduction Mooring systems are widely used in ocean engineering. The moored buoyancy moves with large amplitude when S. Zhang (El) X. Liu School of Mechanical Engineering, Tianjin University, Tianjin, China zhangsux@tju.edu.cn S. Zhang X. Liu Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin University, Tianjin, China Y. Tang School of Civil Engineering, Tianjin University, Tianjin, China the ocean environment is extreme, and mooring lines quickly transfer from a slack state to a taut state, resulting in a snapping action that produces a large tensile force known as a snap load, posing great danger to such ocean structures. Hennessey [1] investigated and developed snap loads on synthetic fiber ropes based on experimental data collected in the master's thesis of Pearson [2], evaluating the behavior of ropes during the snapping action. Additional tests were also conducted under more controlled conditions to better understand how ropes change throughout a sequence of similar snap loadings and also to determine the amount of energy dissipated. Goeller [3] reviewed experimental and analytical investigations dealing with the dynamic response of vertically hanging segmented cable systems where the upper portion is a stranded steel cable and the lower segment is a nylon rope. A generalized distributed mass model has previously been developed by the authors for a segmented cable made up of two viscoelastic materials, including internal damping and linear external damping of the payload and cable. In that model, the viscoelastic behavior is simulated by a two-parameter Voigt model and external linear viscous damping is used for the payload and the cable, but an approximate method takes into account nonlinear damping effects due to the solid-fluid interaction. In general, good agreement was obtained between this mathematical model and experimental results. It was also shown that this agreement is better if one approximates the viscoelastic behavior of the nylon rope by a lumped three-parameter system. The behavior of single nylon cables was also studied analytically and experimentally under dynamic conditions in air and in water media. Fylling [4] presented a comparison of experimentally and theoretically determined tension in a horizontally ^

2 182 J Mar Sci Technol (2012) 17: suspended cable excited by forced end-point motion. The finite-element program LINDYN was based on a linear stiffness representation and includes nonlinear hydrodynamic forces according to the Morison equation. The comparison indicates that the theoretical results coirelate spring " crown block cable of length Fig. 1 Scheme of experimental setup Fig. 2 Experimental photo in tank excitation at a variety of Frequencies and amplitudes tension measurement well with experiments for moderate nonlinearities, provided that the dynamic force does not exceed the static force. Vassalos and Huang [5] canied out a series of model tests in a towing tank, using a horizontally suspended submerged cable to examine snap loading. The results obtained from monitoring the dynamic tension variation are presented in the time and frequency domains, together with a description of the dynamic behaviors of the cable. Sundaravadivelu [6] canied out experimental studies on a single-point taut moored buoy cable system in a 2-mwide regular wave flume for different wave heights and wave periods. Surge and heave accelerations of the buoy were measured using accelerometers inside the buoy in the respective directions. Two ring gages, one at the top and another at the bottom, were used to determine the top and bottom tensions in the cable. The results were processed to plot the variation of acceleration and tension for various wave steepnesses and relative water depths, finding application in study of the behavior of mooring systems. Halliwell [7] presented an extensive model test program on the behavior of single-point mooring (SPM) systems to investigate the influence on system response, as measured by motions and mooring forces. The environmental parameters varied were the frequency and height of regular waves; tests were also made using iixegular waves for comparison with the regular wave results. The influence of the hawser was examined by varying its length and elastic properties. Earth Berntsena [8] presented a conceptually new controller for position mooring operations. By using a structural reliability irieasure for the mooring lines, the new controller protects the mooring system whenever needed as a result of severe weather conditions and high environmental loads by maintaining Fig. 3 Tension history curves: a excited end, b fixed end time (s)

3 J Mar Sci Teclinol (2012) 17: Fig. 4 Tension spectrum at the excited end vortex-induced transverse loading at the expense of increased pitch motions. Zhang [10] investigated the factors affecting marine cable tension in taut-slack conditions. The results showed that, with the same pretension and excitation frequency, snap tension increases with increasing excitation amplitude; with the same excitation amplitude, the snap tension in the line increases with increasing excitation frequency. The tension increases with increasing excitation amplitude, stiffness, and modulus. Snap tension decreases with increases in the length of the line. In this work, experimental investigation was earned out to obtain the dynamic tension while the mooring line transfers from taut to taut-slack and to discover the nonlinear characters, laying the foundation for further studies of this transforming mechanism and optimization of engineering designs. New results are observed in the experiments, being of great significance for research and controllers of snap tension in mooring lines. 2 Model test setup Fig. 5 Tension spectrum at the fixed end The experiments were canied out in a ship model test tank in Tianjin University; the model test setup is shown in Fig. 1 [5]. The spring is used to change the stiffness of the cable system, and the value of the spring constant is N/m. An oscillator is constructed to excite harmonically the upper end of the cable with amplitude up to a maximum of 15 cm. Loading cells were attached to both ends of the cable to record the dynamic tension. The function of the crown block is to immerse the cable in the water, because the density of the cable is less than that of water, or out of the water for convenience during testing. The crown block is fixed on the bottom of the truss, shown as Fig. 2. ' In the experiment, load cells of dynamic strain gage type and resistance strain sensor were used. the probabihty of mooring hne failure below a preset value. In particular, excessive use of thrusters caused by conservatively defined safety regions in conventional PM systems is avoided, yielding fuel-optimal operation. The feasibility of the controller was successfully verified in laboratory experiments. Fitzgerald [9] verified that the dominant behavior can be simulated by a relatively simple mathematical model, allowing the critical parameters of peak anchor loads and pitch angles to be calculated and extrapolated to full scale. The experimental and simulation results demonstrated that the mass characteristics of a non-surface-piercing tower can be used to offset some of the challenges of moving to shallow water. If done correctly, it is possible to keep horizontal anchor loads under control and reduce 3 Results and discussion For cable length of 28 m, pretension of 164 N, frequency of 1.2 Hz, and excitation amplitude of 8 cm, the snap tension was recorded and observed. Tension history curves of the excited and fixed ends are shown in Fig. 3, from which we can see that there is a spike in the curve of the excited end, while the curve at the fixed end is harmonic. The frequency spectra are shown in Figs. 4 and 5. It is evident that, when snap tension occurs, the frequency content at the fixed end is composed of odd harmonics, while the harmonic content of the dynamic tension at the excited end changes from comprising only odd harmonics to including all harmonic orders, which is the same as in ^

4 184 J Mar Sci Teclinol (2012) 17: Fig. 6 Tension history curves at the mooring line end in the initial stage: a excited end, b fixed end tiine(s) time(s) tinie(s) Fig. 7 Tension history curves at the mooring line end in the middle stage: a excited end, b fixed end IOS tiine(s) [4]. The differences between reference [4] and this paper are that the top of the tension curve is relatively flat and the minimum tension is negative in this paper, while in [4] the minimum tension was very small or zero, and even some negative tension appears. These differences are due to the cable material. When the elastic stiffness is large and the bending stiffness of the line is not zero, the relatively large tension lasts some minutes, and the minimum tension is negative. The above results indicate that snap tension appears at the excited end. So, breakage may occur near the chain jack for practical applications in spar platforms. Given cable length of 30 m, excitation frequency of 1.2 Hz, and amplitude 8 cm, the tension in the cable appears to skip. In the first 100 s, the tension curves are shown in Fig. 6, but at 109 s, there is a skip in the tension curve, as shown as Fig. 7, after which the tension curve enters a different state, shown as Fig. 8. In the progress of transforming, there is no human influence. The frequency spectra are shown in Figs. 9 and 10. The tension curve in Fig. 6 is approximately harmonic, and there is no snap tension in the line. Comparison shows that Fig. 8 is similar to Fig. 3, both showing snap tensions. The transforming process from no snap tension to the <Ö Spr inger

5 J Mar Sci Teclmol (2012) 17: Fig. 8 Tension history curves at the mooring line end in the latter stage: a excited end, b fixed end time(s) time(s) _ Fig. 9 Tension spectrum at the excited end Fig. 10 Tension spectrum at the fixed end appearance of snap loading is recorded in Fig. 7, being accompanied with the tension skip. From the experimental results it can be seen that the first maximum tension at the initial stage is N, and at the middle stage the maximum tension is N, but the maximum tension is N during the skip. The transformation from taut to taut-slack condition evidently amplifies the tension amplitude. To reveal the mechanism of tension skip, the tension spectra at the excited and fixed ends were obtained. It is evident from the tension spectrum at the excited end that the harmonic content of the dynamic tension, besides primary frequency multiplication, such as ƒ, 2f, 3f, 4f, 5f, 6f, If, which is similar to Fig. 4, also includes other highfrequency components, which are similar to random vibration. Such random components in a determinate system may represent chaos [11]. Chaos often appears when system parameters are changed. In the process of testing, the length of the cable will become long after several periodic loadings because of plastic deformation, and the elastic modulus will change at the same time, with no other artificial parameters changes. Even at the same excitation frequency and amplitude, the system may be in the taut or taut-slack condition because of different initial conditions. The tension skip indicates that the mooring system is sensitive to the system parameters. When the parameters alter, the system may transform from one steady state, such as that shown in Fig. 6, to

6 186 J Mar Sci Technol (2012) 17: another, such as that- shown in Fig. 8, accompanied by a tension skip that is 5 times the former steady tension and double the latter steady tension. There is chaotic motion in the mooring line. The skip tension may cause platform breakage. For the entire cable structure, the effects of system parameters are very important and need further theoretical research. 4 Conclusions Based upon the test results, the following points can be concluded: 1. In the nonslack condition, tension variation is primarily at the excitation frequency. 2. Once the taut-slack condition sets in, harmonics of higher-frequency components appear in the tension. 3. The taut-slack condition significantly amplifies the maximum tension amplitude. 4. Once the transformation from the taut to taut-slack condition occurs, chaos may appear, the tension amplitude is evidently enlarged, and there is a complex dynamic response, which needs further theoretical research. Acknowledgments Gratefiü thanks are due to the National Natural Science Foundation of China (grant no ), Tianjin Natural Science Foundation (grant no. 09JCZDJC26800), and Seed Foundation of Tianjin University. References 1. Hennessey CM (2003) Analysis and modeling of snap loads on synthetic fiber ropes, master dissertation, Virginia Polytechnic Institute and State University 2. Pearson NJ (2002) Experimental snap loading of synthetic fiber ropes, master dissertation, Virginia Polytechnic Institute and State University 3. Goeller JE, Laura PA (1971) Analytical and experimental study of the dynamic response of segmented cable systems. J Sound Vib 18(3): Fylling IJ, Wold PT (1979) Cable dynamics-comparison of experimental and analytic results, report R (3RD ED). The Ship Research Institute of Norway R 5. Vassalos D, Huang S (2004) Experimental investigation of snap loading of marine cables. In: Proceedings of the 14th international offshore and polar engineering conference, Toulon, France 6. Sundaravadivelu R, Harikrishna Babu M, Murugaganesh R (1991) Experimental investigation on a single point buoy mooring system. Ocean Eng 18(5): Halliwell AR, HaiTis RE (1988) A parametric experimental study of low-frequency motions of single point mooring systems in waves. Appl Ocean Res 10(2): Barth Berntsena PI, Aamob OM, Leira BJ (2009) Ensuring mooring line integrity by dynamic positioning: controller design and experimental tests. Automatica Fitzgerald J, Bergdahl L (2009) Rigid moorings in shallow water: a wave power application. Part I: expeiimental verification of methods. Mar Struct 22: Zhang S-X, Tang Y-G (2009) Experimental investigation into factors affecting marine cable snap tension in taut-slack conditions. J Harbin Eng Univ 30(10): Chen Y-S (2002) Nonlinear vibrations. Higher Education Press, Beijing

Hull-tether-riser dynamics of deep water tension leg platforms

Hull-tether-riser dynamics of deep water tension leg platforms Fluid Structure Interaction V 15 Hull-tether-riser dynamics of deep water tension leg platforms R. Jayalekshmi 1, R. Sundaravadivelu & V. G. Idichandy 1 Department of Civil Engineering, NSS College of

More information

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 1, Jan 214, 7-16 IASET DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC

More information

MODAL ANALYSIS OF DEEPWATER MOORING LINES BASED ON A VARIATIONAL FORMULATION. A Thesis JOSE ALBERTO MARTINEZ FARFAN

MODAL ANALYSIS OF DEEPWATER MOORING LINES BASED ON A VARIATIONAL FORMULATION. A Thesis JOSE ALBERTO MARTINEZ FARFAN MODAL ANALYSIS OF DEEPWATER MOORING LINES BASED ON A VARIATIONAL FORMULATION A Thesis by JOSE ALBERTO MARTINEZ FARFAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

STUDIES ON DYNAMICS OF SUCTION PILES DURING THEIR LOWERING OPERATIONS. A Thesis LIQING HUANG

STUDIES ON DYNAMICS OF SUCTION PILES DURING THEIR LOWERING OPERATIONS. A Thesis LIQING HUANG STUDIES ON DYNAMICS OF SUCTION PILES DURING THEIR LOWERING OPERATIONS A Thesis by LIQING HUANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Hull loads and response, hydroelasticity

Hull loads and response, hydroelasticity Transactions on the Built Environment vol 1, 1993 WIT Press, www.witpress.com, ISSN 1743-3509 Hull loads and response, hydroelasticity effects on fast monohulls E. Jullumstr0 & J.V. Aarsnes Division of

More information

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations

On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations On the Dynamic Behaviors of Large Vessels Propulsion System with Hull Excitations Zhe Tian 1,2, Cong Zhang 1, Xinping Yan 1, Yeping Xiong 2 1. School of Energy and Power Engineering Wuhan University of

More information

Review on Vortex-Induced Vibration for Wave Propagation Class

Review on Vortex-Induced Vibration for Wave Propagation Class Review on Vortex-Induced Vibration for Wave Propagation Class By Zhibiao Rao What s Vortex-Induced Vibration? In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting

More information

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL P.Uma 1 1 M.TECH Civil Engineering Dadi Institute of Engineering and Technology College Abstract Single point Anchor Reservoir

More information

The Simulation of Dropped Objects on the Offshore Structure Liping SUN 1,a, Gang MA 1,b, Chunyong NIE 2,c, Zihan WANG 1,d

The Simulation of Dropped Objects on the Offshore Structure Liping SUN 1,a, Gang MA 1,b, Chunyong NIE 2,c, Zihan WANG 1,d Advanced Materials Research Online: 2011-09-02 ISSN: 1662-8985, Vol. 339, pp 553-556 doi:10.4028/www.scientific.net/amr.339.553 2011 Trans Tech Publications, Switzerland The Simulation of Dropped Objects

More information

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail Vol:7, No:1, 13 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail International Science Index, Bioengineering

More information

Cable-Pulley Interaction with Dynamic Wrap Angle Using the Absolute Nodal Coordinate Formulation

Cable-Pulley Interaction with Dynamic Wrap Angle Using the Absolute Nodal Coordinate Formulation Proceedings of the 4 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'17) Toronto, Canada August 21 23, 2017 Paper No. 133 DOI: 10.11159/cdsr17.133 Cable-Pulley Interaction with

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFOR IN REGULAR WAVES 1 Amr R. El-gamal, 2 Ashraf Essa, 1 Faculty of Engineering, Benha Univ., Egypt, 2 Associated prof., National

More information

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark) Grade 11 Physics -- Homework 16 -- Answers on a separate sheet of paper, please 1. A cart, connected to two identical springs, is oscillating with simple harmonic motion between two points X and Y that

More information

TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD

TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD Journal of Marine Science and Technology, Vol., No., pp. 5-36 (4) 5 DOI:.69/JMST-3-8- TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD Dong-Sheng

More information

Time Domain Simulation of Data Buoy Motion

Time Domain Simulation of Data Buoy Motion Proc. Natl. Sci. Counc. ROC(A) Vol. 22, No. 6, 1998. pp. 820-830 Time Domain Simulation of Data Buoy Motion MIN-CHIH HUANG Department of Naval Architecture and Marine Engineering National Cheng Kung University

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Model tests and FE-modelling of dynamic soil-structure interaction

Model tests and FE-modelling of dynamic soil-structure interaction Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV-2012-0712 IOS Press Model tests and FE-modelling of dynamic soil-structure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for

More information

Mooring Model for Barge Tows in Lock Chamber

Mooring Model for Barge Tows in Lock Chamber Mooring Model for Barge Tows in Lock Chamber by Richard L. Stockstill BACKGROUND: Extensive research has been conducted in the area of modeling mooring systems in sea environments where the forcing function

More information

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS Methodology for sloshing induced slamming loads and response Olav Rognebakke Det Norske Veritas AS Post doc. CeSOS 2005-2006 1 Presentation overview Physics of sloshing and motivation Sloshing in rectangular

More information

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Lecture Outline Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 10: Elasticity and Oscillations Elastic Deformations Hooke s Law Stress and

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

Study on Lateral Nonlinear Dynamic Response of Deepwater Drilling Riser with Consideration of The Vessel Motions in Its Installation

Study on Lateral Nonlinear Dynamic Response of Deepwater Drilling Riser with Consideration of The Vessel Motions in Its Installation Copyright 2015 Tech Science Press CMC, vol.48, no.1, pp.57-75, 2015 Study on Lateral Nonlinear Dynamic Response of Deepwater Drilling Riser with Consideration of The Vessel Motions in Its Installation

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST Alternative Siting February 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 13, 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Strength Study of Spiral Flexure Spring of Stirling Cryocooler

Strength Study of Spiral Flexure Spring of Stirling Cryocooler Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Strength Study of Spiral of Stirling Cryocooler WANG Wen-Rui, NIE Shuai, ZHANG Jia-Ming School of Mechanical Engineering, University of Science

More information

DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1

DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1 DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1 Problem 1 (Motor-Fan): A motor and fan are to be connected as shown in Figure 1. The torque-speed characteristics of the motor and fan are plotted on the same

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Dynamics of Offshore Structures

Dynamics of Offshore Structures - 7?// 3 Dynamics of Offshore Structures, Editor John Wiley & Sons, Inc. Contents Preface Contributors Acknowledgments xi xiii xv 1 Structures in the Offshore Environment 1 1.1 Historical Perspective,

More information

142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam

142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam 142. Determination of reduced mass and stiffness of flexural vibrating cantilever beam Tamerlan Omarov 1, Kuralay Tulegenova 2, Yerulan Bekenov 3, Gulnara Abdraimova 4, Algazy Zhauyt 5, Muslimzhan Ibadullayev

More information

Numerical Analysis for the Mooring System with Nonlinear Elastic Mooring Cables

Numerical Analysis for the Mooring System with Nonlinear Elastic Mooring Cables Copyright 214 Tech Science Press CMES, vol.12, no.2, pp.149-168, 214 Numerical Analysis for the Mooring System with Nonlinear Elastic Mooring Cables Z.W. Wu 1, J.K. Liu 1, Z.Q. Liu 1,2 and Z.R. Lu 1 Abstract:

More information

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads Qianwen HUANG 1 ; Jia LIU 1 ; Cong ZHANG 1,2 ; inping YAN 1,2 1 Reliability Engineering Institute,

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

Abstract: Complex responses observed in an experimental, nonlinear, moored structural

Abstract: Complex responses observed in an experimental, nonlinear, moored structural AN INDEPENDENT-FLOW-FIELD MODEL FOR A SDOF NONLINEAR STRUCTURAL SYSTEM, PART II: ANALYSIS OF COMPLEX RESPONSES Huan Lin e-mail: linh@engr.orst.edu Solomon C.S. Yim e-mail: solomon.yim@oregonstate.edu Ocean

More information

midas Civil Dynamic Analysis

midas Civil Dynamic Analysis Edgar De Los Santos Midas IT August 23 rd 2017 Contents: Introduction Eigen Value Analysis Response Spectrum Analysis Pushover Analysis Time History Analysis Seismic Analysis Seismic Analysis The seismic

More information

Preliminary Examination - Dynamics

Preliminary Examination - Dynamics Name: University of California, Berkeley Fall Semester, 2018 Problem 1 (30% weight) Preliminary Examination - Dynamics An undamped SDOF system with mass m and stiffness k is initially at rest and is then

More information

MODEL TESTS OF DRAGGING HALL ANCHORS IN SAND

MODEL TESTS OF DRAGGING HALL ANCHORS IN SAND 26 Journal of Marine Science and Technology, Vol. 24, No. 1, pp. 26-31 (216) DOI: 1.6119/JMST-16-125-4 MODEL TESTS OF DRAGGING HALL ANCHORS IN SAND Yu-Xiao Ren 1, 2, Zhen-Ming Lei 3, Li-Qiang Sun 1, 2,

More information

Computer Aided Design of Tine of Tuning Fork Densitometer Shuang LIU, Xin-sheng CHE *, Yi-shun ZHANG and Xin-yu-han JI

Computer Aided Design of Tine of Tuning Fork Densitometer Shuang LIU, Xin-sheng CHE *, Yi-shun ZHANG and Xin-yu-han JI 017 3rd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 017) ISBN: 978-1-60595-50-9 Computer Aided Design of Tine of Tuning Fork Densitometer Shuang LIU, Xin-sheng

More information

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway OMAE 2002-28435 ESTIMATION OF EXTREME RESPONSE AND FATIGUE DAMAGE FOR COLLIDING

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Feasibility of dynamic test methods in classification of damaged bridges

Feasibility of dynamic test methods in classification of damaged bridges Feasibility of dynamic test methods in classification of damaged bridges Flavio Galanti, PhD, MSc., Felieke van Duin, MSc. TNO Built Environment and Geosciences, P.O. Box 49, 26 AA, Delft, The Netherlands.

More information

Structural Dynamics Model Calibration and Validation of a Rectangular Steel Plate Structure

Structural Dynamics Model Calibration and Validation of a Rectangular Steel Plate Structure Structural Dynamics Model Calibration and Validation of a Rectangular Steel Plate Structure Hasan G. Pasha, Karan Kohli, Randall J. Allemang, Allyn W. Phillips and David L. Brown University of Cincinnati

More information

MATHIEU STABILITY IN THE DYNAMICS OF TLP's TETHERS CONSIDERING VARIABLE TENSION ALONG THE LENGTH

MATHIEU STABILITY IN THE DYNAMICS OF TLP's TETHERS CONSIDERING VARIABLE TENSION ALONG THE LENGTH MATHIEU STABILITY IN THE DYNAMICS OF TLP's TETHERS CONSIDERING VARIABLE TENSION ALONG THE LENGTH Simos, A.M.' & Pesce, C.P. Escola Politecnica, USP, CP61548, S.P., Brazil * Dep. of Naval Architecture and

More information

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM Sujan MALLA 1 ABSTRACT The seismic safety of the 147 m high Gigerwald arch dam in Switzerland was assessed for

More information

Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures

Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures Numerical Modelling of Dynamic Earth Force Transmission to Underground Structures N. Kodama Waseda Institute for Advanced Study, Waseda University, Japan K. Komiya Chiba Institute of Technology, Japan

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

Estimation of the Residual Stiffness of Fire-Damaged Concrete Members

Estimation of the Residual Stiffness of Fire-Damaged Concrete Members Copyright 2011 Tech Science Press CMC, vol.22, no.3, pp.261-273, 2011 Estimation of the Residual Stiffness of Fire-Damaged Concrete Members J.M. Zhu 1, X.C. Wang 1, D. Wei 2, Y.H. Liu 2 and B.Y. Xu 2 Abstract:

More information

Preliminary Examination in Dynamics

Preliminary Examination in Dynamics Fall Semester 2017 Problem 1 The simple structure shown below weighs 1,000 kips and has a period of 1.25 sec. It has no viscous damping. It is subjected to the impulsive load shown in the figure. If the

More information

FINITE ELEMENT ANALYSIS OF UNDER WATER TOWED CABLES

FINITE ELEMENT ANALYSIS OF UNDER WATER TOWED CABLES ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

REAL-TIME HYBRID EXPERIMENTAL SIMULATION SYSTEM USING COUPLED CONTROL OF SHAKE TABLE AND HYDRAULIC ACTUATOR

REAL-TIME HYBRID EXPERIMENTAL SIMULATION SYSTEM USING COUPLED CONTROL OF SHAKE TABLE AND HYDRAULIC ACTUATOR October -7, 8, Beijing, China REAL-TIME HYBRID EXPERIMENTAL SIMULATION SYSTEM USING COUPLED CONTROL OF SHAKE TABLE AND HYDRAULIC ACTUATOR A. Igarashi and Y.Kikuchi and H.Iemura 3 Assoc. Professor, Dept.

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

Calculation method and control value of static stiffness of tower crane

Calculation method and control value of static stiffness of tower crane Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology (008) 89~834 www.springerlink.com/content/1738-494x Calculation method and control of static stiffness of tower

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 11, November -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Study

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

Notes for the Students by Marilena Greco:

Notes for the Students by Marilena Greco: Notes for the Students by Marilena Greco: In the following you find topics proposed by MARINTEK, by DNV GL and by SINTEF Fisheries and Aquaculture, for possible Project and Master Theses on hydrodynamic

More information

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION Duanjie Li and Pierre Leroux, Nanovea, Irvine, CA Abstract The viscoelastic properties of a tire sample are comprehensively studied

More information

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE Ma Chong, Iijima Kazuhiro, Masahiko Fujikubo Dept. of Naval Architecture and Ocean Engineering OSAKA UNIVERSITY RESEARCH

More information

Natural frequency analysis of fluid-conveying pipes in the ADINA system

Natural frequency analysis of fluid-conveying pipes in the ADINA system Journal of Physics: Conference Series OPEN ACCESS Natural frequency analysis of fluid-conveying pipes in the ADINA system To cite this article: L Wang et al 2013 J. Phys.: Conf. Ser. 448 012014 View the

More information

AP Physics 1 Waves and Simple Harmonic Motion Practice Test

AP Physics 1 Waves and Simple Harmonic Motion Practice Test AP Physics 1 Waves and Simple Harmonic Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object is attached to a vertical

More information

A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis

A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis A Probabilistic Design Approach for Riser Collision based on Time- Domain Response Analysis B.J. Leira NTNU, Dept. Marine Structures,Trondheim, Norway T. Holmås MARINTEK, Div. of Structural Engineering,,

More information

Committee Draft No. 99 To be combined with T-150 as a method B. Determination of Natural Frequency and Flexural Modulus by Experimental Modal Analysis

Committee Draft No. 99 To be combined with T-150 as a method B. Determination of Natural Frequency and Flexural Modulus by Experimental Modal Analysis Committee Draft No. 99 To be combined with T-150 as a method B CCTI Standard Testing Procedure T-148 rev. special August 2002 Determination of Natural Frequency and Flexural Modulus by Experimental Modal

More information

9.6 - Energy and the Simple Harmonic Oscillator *

9.6 - Energy and the Simple Harmonic Oscillator * OpenStax-CNX module: m6040 9.6 - Energy and the Simple Harmonic Oscillator * Albert Hall Based on Energy and the Simple Harmonic Oscillator by OpenStax his wor is produced by OpenStax-CNX and licensed

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods ISSN (Print) : 2347-671 An ISO 3297: 27 Certified Organization Vol.4, Special Issue 12, September 215 Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods Anties K. Martin, Anubhav C.A.,

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

Dynamic response and fluid structure interaction of submerged floating tunnels

Dynamic response and fluid structure interaction of submerged floating tunnels Fluid Structure Interaction and Moving Boundary Problems 247 Dynamic response and fluid structure interaction of submerged floating tunnels S. Remseth 1, B. J. Leira 2, A. Rönnquist 1 & G. Udahl 1 1 Department

More information

2032. Dynamic characteristics of pipe-soil interaction for steel catenary riser in touchdown zone

2032. Dynamic characteristics of pipe-soil interaction for steel catenary riser in touchdown zone 2032. Dynamic characteristics of pipe-soil interaction for steel catenary riser in touchdown zone Yong-hong Cao 1, Yong-qiang Jing 2, Zheng-hong Guo 3 1, 2 School of Science, North University of China,

More information

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib

Finite Element Analysis Lecture 1. Dr./ Ahmed Nagib Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion

More information

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform American Journal of Civil Engineering and Architecture,, Vol., No. 3, 7- Available online at http://pubs.sciepub.com/ajcea//3/3 Science and Education Publishing DOI:.9/ajcea--3-3 Effect of Tethers Tension

More information

2108. Free vibration properties of rotate vector reducer

2108. Free vibration properties of rotate vector reducer 2108. Free vibration properties of rotate vector reducer Chuan Chen 1, Yuhu Yang 2 School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China 1 Corresponding author E-mail: 1 chenchuan1985728@126.com,

More information

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION IGC 2009, Guntur, INDIA NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION B. Manna Lecturer, Civil Engineering Department, National Institute of Technology, Rourkela 769008, India.

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

Dynamic Simulation on a Broken Test of Conductors

Dynamic Simulation on a Broken Test of Conductors Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 435 440 International Conference on Advances in Computational Modeling and Simulation Dynamic Simulation on a Broken Test of Conductors

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. Semester 1 July 2012

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS. Semester 1 July 2012 ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS Semester 1 July 2012 COURSE NAME: ENGINEERING PHYSICS I CODE: PHS 1005 GROUP: ADET 2 DATE: July 4, 2012 TIME: DURATION: 9:00 am 2 HOURS INSTRUCTIONS:

More information

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force

The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force The Ultimate Load-Carrying Capacity of a Thin-Walled Shuttle Cylinder Structure with Cracks under Eccentric Compressive Force Cai-qin Cao *, Kan Liu, Jun-zhe Dong School of Science, Xi an University of

More information

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION S. Uhlenbrock, University of Rostock, Germany G. Schlottmann, University of

More information

MOOC QP Set 2 Principles of Vibration Control

MOOC QP Set 2 Principles of Vibration Control Section I Section II Section III MOOC QP Set 2 Principles of Vibration Control (TOTAL = 100 marks) : 20 questions x 1 mark/question = 20 marks : 20 questions x 2 marks/question = 40 marks : 8 questions

More information

The Dynamics of Geometrically Compliant Mooring Systems

The Dynamics of Geometrically Compliant Mooring Systems The Dynamics of Geometrically Compliant Mooring Systems by Jason I. Gobat S.M., MIT/WHOI Joint Program (1997) B.S., University of California, San Diego (1993) B.A., University of California, San Diego

More information

Pushover Seismic Analysis of Bridge Structures

Pushover Seismic Analysis of Bridge Structures Pushover Seismic Analysis of Bridge Structures Bernardo Frère Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Technical University of Lisbon, Portugal October

More information

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 1: Applications of Oscillatory Motion Prof. WAN, Xin ( 万歆 ) inwan@zju.edu.cn http://zimp.zju.edu.cn/~inwan/ Outline The pendulum Comparing simple harmonic motion and uniform circular

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

Complex strategy for a development of highly elastic couplings

Complex strategy for a development of highly elastic couplings Complex strategy for a development of highly elastic couplings Pavel Novotny 1, Ivan Kocián 2, Aleš Prokop 3, Kamil Řehák 4 1, 3, 4 Brno University of Technology, Brno, Czech Republic 2 PIVKO BRAKES, Hromádkova

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

Submitted to Chinese Physics C CSNS/RCS

Submitted to Chinese Physics C CSNS/RCS Study the vibration and dynamic response of the dipole girder system for CSNS/RCS Liu Ren-Hong ( 刘仁洪 ) 1,2;1) Wang Min( 王敏 ) 1 Zhang Jun-Song( 张俊嵩 ) 2 Wang Guang-Yuan ( 王广源 ) 2 1 No. 58 Research Institute

More information

PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

More information

Measurements of Turbulent Pressure Under Breaking Waves

Measurements of Turbulent Pressure Under Breaking Waves MEASUREMENTS OF TURBULENT PRESSURE UNDER BREAKING WAVES 33 Measurements of Turbulent Pressure Under Breaking Waves Author: Faculty Sponsor: Department: Christopher Olsen Francis Ting, Ph.D., P.E. Civil

More information

Dynamic behavior of offshore spar platforms under regular sea waves

Dynamic behavior of offshore spar platforms under regular sea waves Dynamic behavior of offshore spar platforms under regular sea waves A.K. Agarwal, A.K. Jain * Department of Civil Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India Received

More information

EVALUATING RADIATION DAMPING OF SHALLOW FOUNDATIONS ON NONLINEAR SOIL MEDIUM FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF BRIDGES

EVALUATING RADIATION DAMPING OF SHALLOW FOUNDATIONS ON NONLINEAR SOIL MEDIUM FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF BRIDGES EVALUATING RADIATION DAMPING OF SHALLOW FOUNDATIONS ON NONLINEAR SOIL MEDIUM FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF BRIDGES Abstract Jian Zhang 1 and Yuchuan Tang 2 The paper evaluates the radiation

More information

Horizontal bulk material pressure in silo subjected to impulsive load

Horizontal bulk material pressure in silo subjected to impulsive load Shock and Vibration 5 (28) 543 55 543 IOS Press Horizontal bulk material pressure in silo subjected to impulsive load Radosław Tatko a, and Sylwester Kobielak b a The Faculty of Environmental Engineering

More information

Grade XI. Physics Exam Preparation Booklet. Chapter-wise Important Questions. #GrowWithGreen

Grade XI. Physics Exam Preparation Booklet. Chapter-wise Important Questions. #GrowWithGreen Grade XI Physics Exam Preparation Booklet Chapter-wise Important Questions #GrowWithGreen Units and Measurements Q1. After reading the physics book, Anamika recalled and noted down the expression for the

More information

Study on Motions of a Floating Body under Composite External Loads

Study on Motions of a Floating Body under Composite External Loads 137 Study on Motions of a Floating Body under Composite External Loads by Kunihiro Ikegami*, Member Masami Matsuura*, Member Summary In the field of marine engineering, various types of floating bodies

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 117.3 MIDTERM TEST February 11, 2016 Time: 90 minutes NAME: SOLUTIONS (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION

More information