9 Controller Discretization

Size: px
Start display at page:

Download "9 Controller Discretization"

Transcription

1 9 Controller Discretization In most applications, a control system is implemented in a digital fashion on a computer. This implies that the measurements that are supplied to the control system must be sampled. If the sampler has period T, then the sampled value of the measurements are denoted by y k = y( ), = kt, k = 0, 1, 2, 3, (1) The output from the controller will take on discrete values which we denote by u k. The actual input to the plant be controlled is usually obtained by passing the sequence u k through a zero-order hold (ZOH). The output of the ZOH is given by u(t) = u k, t < +1 In this section we would like to determine mathematical models for the relationship between u k and y k and establish a technique for digital implementation of a controller design. 9.1 Discrete-Time Plant Model Assume that the plant to be controlled is described by a state-space model of the form ẋ = Ax + Bu, y = Cx (2) Let us first of all note that the sampled value of the output y satisfies y k = y( ) = Cx( ) = Cx k Given the plant model in (2), the solution is x(t) = e A(t t 0) x(t 0 ) + t t 0 e A(t τ) Bu(τ) dτ Let t 0 =, t = +1, and +1 = T. Therefore, x k+1 = e AT x k + = e AT x k + e A(+1 τ) Bu(τ) dτ e A(+1 τ) B dτu k

2 Letting, τ = +1 τ, we have Therefore, e A(+1 τ) B dτ = 0 T eaτ ( dτ )B = T 0 eaτ dτb x k+1 = A d x k + B d u k (3) y k = C d x k where C d A d B d = = C = e AT T 0 eaτ dτb This is termed the ZOH equivalent of the state-space system. 9.2 Stability of LTI Discrete-Time Systems Consider x k+1 = A d x k, x 0 given It is readily verified that the solution is x k = A k dx 0 For simplicity, assume that A d has distinct eigenvalues and permits the eigendecomposition A d = EΛE 1 Therefore, and Letting ˆx k = E 1 x k, it follows that A k d = (EΛE 1 )(EΛE 1 ) (EΛE 1 ) = EΛ k E 1 x k = EΛ k E 1 x 0 ˆx k = Λ kˆx 0

3 where Λ k = diag{λ k i }. If λ i < 1, i = 1,, n (4) then If λ i > 1 for some i, then λ k i 0 as k Λ k O as k x k = Eˆx k 0 as k λ k i as k x k as k Theorem 1. If the eigenvalues of A d lie within the open unit disk of the complex plane, the discrete-time system is asymptotically stable. Theorem 2. If any of the eigenvalues of A d lie outside the unit disk of the complex plane, then the discrete-time system is unstable. Consider the ZOH equivalent in (3) and assume that A has distinct eigenvalues. If A has the eigendecomposition A = EΛE 1, Λ = diag{λ i }, λ i = σ i ± jω i then Therefore A d = e AT = Ee ΛT E 1 λ{a d } = e λ it = e σ it e jω it Now, e λ it = e σ it. Hence if σ i < 0, then e λ it < 1. Therefore, the ZOH equivalent of an asymptotically stable continuous-time system is also asymptotically stable. 9.3 Digital Control Design There are two broad approaches to digital control design: (i) direct discrete design using the ZOH equivalent as a model;

4 (ii) discretization of a continuous-time design based on the continuous-time plant model. Initially we consider (ii) using the bilinear transformation (also called Tustin s rule or the trapezoidal rule). Assume that we have a continuous-time controller with the following model: ẋ = Ax + Bu, y = Cx (5) We want to replace this with difference equations that relate the sampled values y k and u k. Since y( ) = Cx( ) we have Since ẋ = Ax + Bu, it follows that x k+1 x k = y k = Cx k ẋ dt = A x dt + B u dt Now, approximate the integrals on the right-hand side using the trapezoidal rule: Therefore, x dt = T 2 (x k+1 + x k ) u dt = T 2 (u k+1 + u k ) x k+1 x k = A T 2 [x k+1 + x k ] + B T 2 [u k+1 + u k ] [1 A T 2 ]x k+1 = [1 + A T 2 ]x k + B T 2 [u k+1 + u k ] x k+1 = [1 A T 2 ] 1 [1 + A T 2 ] x k + [1 A T }{{} 2 ] 1 B T [u k+1 + u k ] }{{ 2} Â d Consider the difference equations z k+1 = Âdz k + ˆB d u k z k+2 = Âdz k+1 + ˆB d u k+1 ˆBd

5 Note that setting x k = z k + z k+1 and adding the two equations gives the desired one for x k. Hence y k = Cx k = C(z k + z k+1 ) = Cz k + C(Âdz k + ˆB d u k ) = C(1 + Âd) }{{} z k + C ˆB d }{{} u k Hence the discrete equivalent of the state-space model in Eq. (5) is Ĉ d where Âd, ˆB d, Ĉd, and ˆD d are defined as above. z k+1 = Âdz k + ˆB d u k (6) ˆDd y k = Ĉdz k + ˆD d u k (7) 9.4 Closed-Loop Discrete-Time Stability Analysis Assume the plant is described by its ZOH equivalent: x k+1 = A d x k + B d u k y k = C d x k Assume that the controller is described by a discrete equivalent of the form z k+1 = Âdz k + ˆB d y k Closing the loop gives: x k+1 u k = Ĉdz k + ˆD d y k = A d x k B d Ĉ d z k B d ˆDd y k Also, Combining these two gives x k+1 z k+1 = = (A d B d ˆDd C d )x k B d Ĉ d z k z k+1 = Âdz k + ˆB d C d x k A d B d ˆDd C d ˆB d C d B d Ĉ d  d }{{} A comp For stability λ{a comp } must lie within the unit disc. x k z k

6 9.5 Discrete-Time Optimal Control Assume that the system to be controlled is described by difference equations of the form x k+1 = Ax k + Bu k, x 0 = c (8) Consider a performance index of the form where J = 1 2 xt NSx N N 1 k=0 x T k Qx k + u T k Ru k (9) R = R T > O, Q = Q T O, S = S T O, We would like to determine u k, k = 0, 1, 2,, N 1 to minimize J. The state equation is treated as a constraint which we rewrite as Ax k + Bu k x k+1 = 0 (10) Let us adjoin (10) to (9) using Lagrange multipliers λ k, k = 1,, N: L = J + N 1 k=0 Necessary conditions for optimality are We have λ T k+1(ax k + Bu k x k+1 ) (11) x k = 0, k = 1,, N u k = 0, k = 1,, N 1 λ k = 0, k = 1,, N L = 1 2 xt NSx N + N 1 [ 1 2 xt k Qx k ut k Ru k + λ T k+1(ax k + Bu k x k+1 )] k=0 Hence the optimality conditions become x N = Sx N λ N = 0 x k = Qx k + A T λ k+1 λ k = 0, k = 1,, N 1

7 u k = Ru k + B T λ k+1 = 0, k = 1,, N 1 λ k = Ax k 1 + Bu k 1 x k = 0, k = 1,, N We can rewrite these as Substituting (14) into (12) leads to x k+1 = Ax k + Bu k, x 0 = c (12) x k+1 λ k = A T λ k+1 + Qx k, λ N = Sx N (13) u k = R 1 B T λ k+1 (14) = Ax k BR 1 B T λ k+1, x 0 = c λ k = A T λ k+1 + Qx k, λ N = Sx N (15) This is a discrete two-point boundary value problem. Since λ N = Sx N, let us assume λ k = P k x k, k = 1,, N (16) with P N = S. Substituting (16) into (14) gives: where (R + B T P k+1 B)u k u k u k = R 1 B T P k+1 x k+1 = R 1 B T P k+1 (Ax k + Bu k ) = B T P k+1 Ax k 1 = ˆR k+1b T P k+1 Ax k 1 = F k x k, F k = ˆR k+1b T P k+1 A ˆR k+1 = R + B T P k+1 B Hence, the optimal control is state feedback. In order to determine P k, let us substitute (16) into (15): P k x k = A T P k+1 x k+1 + Qx k = A T P k+1 (Ax k + Bu k ) + Qx k = A T P k+1 Ax k A T 1 P k+1 B ˆR k+1b T P k+1 Ax k + Qx k Since this must hold for all x k, the coefficient matrix on each side must match. Therefore, P k = A T 1 (P k+1 P k+1 B ˆR k+1b T P k+1 )A + Q (17)

8 This is called the discrete-time Riccati equation. It can be solved backwards given the terminal condition P N = S. When P k, k = N, N 1,, 0 is known, the optimal feedback gains F k can be determined.

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

Lecture 4 Continuous time linear quadratic regulator

Lecture 4 Continuous time linear quadratic regulator EE363 Winter 2008-09 Lecture 4 Continuous time linear quadratic regulator continuous-time LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon

More information

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University .. Quadratic Stability of Dynamical Systems Raktim Bhattacharya Aerospace Engineering, Texas A&M University Quadratic Lyapunov Functions Quadratic Stability Dynamical system is quadratically stable if

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Steady State Kalman Filter

Steady State Kalman Filter Steady State Kalman Filter Infinite Horizon LQ Control: ẋ = Ax + Bu R positive definite, Q = Q T 2Q 1 2. (A, B) stabilizable, (A, Q 1 2) detectable. Solve for the positive (semi-) definite P in the ARE:

More information

1 Continuous-time Systems

1 Continuous-time Systems Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

More information

ECEEN 5448 Fall 2011 Homework #4 Solutions

ECEEN 5448 Fall 2011 Homework #4 Solutions ECEEN 5448 Fall 2 Homework #4 Solutions Professor David G. Meyer Novemeber 29, 2. The state-space realization is A = [ [ ; b = ; c = [ which describes, of course, a free mass (in normalized units) with

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Homework Solution # 3

Homework Solution # 3 ECSE 644 Optimal Control Feb, 4 Due: Feb 17, 4 (Tuesday) Homework Solution # 3 1 (5%) Consider the discrete nonlinear control system in Homework # For the optimal control and trajectory that you have found

More information

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation EE363 Winter 2008-09 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linear-quadratic stochastic control problem estimation-control separation principle

More information

OPTIMAL CONTROL SYSTEMS

OPTIMAL CONTROL SYSTEMS SYSTEMS MIN-MAX Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University OUTLINE MIN-MAX CONTROL Problem Definition HJB Equation Example GAME THEORY Differential Games Isaacs

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

More information

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ 1 2 Lyapunov Stability Whereas I/O stability is concerned with the effect of inputs on outputs, Lyapunov stability deals with unforced systems: ẋ = f(x, t) (1) where x R n, t R +, and f : R n R + R n.

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

EE263: Introduction to Linear Dynamical Systems Review Session 6

EE263: Introduction to Linear Dynamical Systems Review Session 6 EE263: Introduction to Linear Dynamical Systems Review Session 6 Outline diagonalizability eigen decomposition theorem applications (modal forms, asymptotic growth rate) EE263 RS6 1 Diagonalizability consider

More information

Homogeneous and particular LTI solutions

Homogeneous and particular LTI solutions Homogeneous and particular LTI solutions Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Fondamenti di Automatica e Controlli Automatici A.A. 2014-2015

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 24: H2 Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 4, 2011 E. Frazzoli (MIT) Lecture 24: H 2 Synthesis May

More information

EE Control Systems LECTURE 9

EE Control Systems LECTURE 9 Updated: Sunday, February, 999 EE - Control Systems LECTURE 9 Copyright FL Lewis 998 All rights reserved STABILITY OF LINEAR SYSTEMS We discuss the stability of input/output systems and of state-space

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu SUCCESSIVE POLE SHIFING USING SAMPLED-DAA LQ REGULAORS oru Fujinaka Sigeru Omatu Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan Abstract: Design of sampled-data

More information

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Q-Parameterization 1 This lecture introduces the so-called

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.4: Dynamic Systems Spring Homework Solutions Exercise 3. a) We are given the single input LTI system: [

More information

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function: Optimal Control Control design based on pole-placement has non unique solutions Best locations for eigenvalues are sometimes difficult to determine Linear Quadratic LQ) Optimal control minimizes a quadratic

More information

Extensions and applications of LQ

Extensions and applications of LQ Extensions and applications of LQ 1 Discrete time systems 2 Assigning closed loop pole location 3 Frequency shaping LQ Regulator for Discrete Time Systems Consider the discrete time system: x(k + 1) =

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

Lecture 2 and 3: Controllability of DT-LTI systems

Lecture 2 and 3: Controllability of DT-LTI systems 1 Lecture 2 and 3: Controllability of DT-LTI systems Spring 2013 - EE 194, Advanced Control (Prof Khan) January 23 (Wed) and 28 (Mon), 2013 I LTI SYSTEMS Recall that continuous-time LTI systems can be

More information

Lecture 2: Discrete-time Linear Quadratic Optimal Control

Lecture 2: Discrete-time Linear Quadratic Optimal Control ME 33, U Berkeley, Spring 04 Xu hen Lecture : Discrete-time Linear Quadratic Optimal ontrol Big picture Example onvergence of finite-time LQ solutions Big picture previously: dynamic programming and finite-horizon

More information

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year

Lecture: Sampling. Automatic Control 2. Sampling. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Sampling Prof. Alberto Bemporad University of rento Academic year 2010-2011 Prof. Alberto Bemporad (University of rento) Automatic Control 2 Academic year 2010-2011 1 / 31 ime-discretization

More information

Linear Quadratic Optimal Control Topics

Linear Quadratic Optimal Control Topics Linear Quadratic Optimal Control Topics Finite time LQR problem for time varying systems Open loop solution via Lagrange multiplier Closed loop solution Dynamic programming (DP) principle Cost-to-go function

More information

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015 Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 15 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

ECSE.6440 MIDTERM EXAM Solution Optimal Control. Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004

ECSE.6440 MIDTERM EXAM Solution Optimal Control. Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004 ECSE.6440 MIDTERM EXAM Solution Optimal Control Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004 This is a take home exam. It is essential to SHOW ALL STEPS IN YOUR WORK. In NO circumstance is

More information

Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

More information

2 The Linear Quadratic Regulator (LQR)

2 The Linear Quadratic Regulator (LQR) 2 The Linear Quadratic Regulator (LQR) Problem: Compute a state feedback controller u(t) = Kx(t) that stabilizes the closed loop system and minimizes J := 0 x(t) T Qx(t)+u(t) T Ru(t)dt where x and u are

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Rational Implementation of Distributed Delay Using Extended Bilinear Transformations

Rational Implementation of Distributed Delay Using Extended Bilinear Transformations Rational Implementation of Distributed Delay Using Extended Bilinear Transformations Qing-Chang Zhong zhongqc@ieee.org, http://come.to/zhongqc School of Electronics University of Glamorgan United Kingdom

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

Hamilton-Jacobi-Bellman Equation Feb 25, 2008

Hamilton-Jacobi-Bellman Equation Feb 25, 2008 Hamilton-Jacobi-Bellman Equation Feb 25, 2008 What is it? The Hamilton-Jacobi-Bellman (HJB) equation is the continuous-time analog to the discrete deterministic dynamic programming algorithm Discrete VS

More information

6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN 6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013

Problem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013 EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding

More information

ME Fall 2001, Fall 2002, Spring I/O Stability. Preliminaries: Vector and function norms

ME Fall 2001, Fall 2002, Spring I/O Stability. Preliminaries: Vector and function norms I/O Stability Preliminaries: Vector and function norms 1. Sup norms are used for vectors for simplicity: x = max i x i. Other norms are also okay 2. Induced matrix norms: let A R n n, (i stands for induced)

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

DISCRETE-TIME SYSTEMS AND DIGITAL CONTROLLERS

DISCRETE-TIME SYSTEMS AND DIGITAL CONTROLLERS DISCRETE-TIME SYSTEMS AND DIGITAL CONTROLLERS In practice controllers are nowadays almost exclusively implemented digitally. This means that the controller operates in discrete time, although the controlled

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Time-Invariant Linear Quadratic Regulators!

Time-Invariant Linear Quadratic Regulators! Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 17 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

Model Reduction for Linear Dynamical Systems

Model Reduction for Linear Dynamical Systems Summer School on Numerical Linear Algebra for Dynamical and High-Dimensional Problems Trogir, October 10 15, 2011 Model Reduction for Linear Dynamical Systems Peter Benner Max Planck Institute for Dynamics

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Problem 2 (Gaussian Elimination, Fundamental Spaces, Least Squares, Minimum Norm) Consider the following linear algebraic system of equations:

Problem 2 (Gaussian Elimination, Fundamental Spaces, Least Squares, Minimum Norm) Consider the following linear algebraic system of equations: EEE58 Exam, Fall 6 AA Rodriguez Rules: Closed notes/books, No calculators permitted, open minds GWC 35, 965-37 Problem (Dynamic Augmentation: State Space Representation) Consider a dynamical system consisting

More information

Zeros and zero dynamics

Zeros and zero dynamics CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

More information

Linear Quadratic Regulator (LQR) Design II

Linear Quadratic Regulator (LQR) Design II Lecture 8 Linear Quadratic Regulator LQR) Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Stability and Robustness properties

More information

EE363 homework 2 solutions

EE363 homework 2 solutions EE363 Prof. S. Boyd EE363 homework 2 solutions. Derivative of matrix inverse. Suppose that X : R R n n, and that X(t is invertible. Show that ( d d dt X(t = X(t dt X(t X(t. Hint: differentiate X(tX(t =

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt +

= m(0) + 4e 2 ( 3e 2 ) 2e 2, 1 (2k + k 2 ) dt. m(0) = u + R 1 B T P x 2 R dt. u + R 1 B T P y 2 R dt + ECE 553, Spring 8 Posted: May nd, 8 Problem Set #7 Solution Solutions: 1. The optimal controller is still the one given in the solution to the Problem 6 in Homework #5: u (x, t) = p(t)x k(t), t. The minimum

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

EE221A Linear System Theory Final Exam

EE221A Linear System Theory Final Exam EE221A Linear System Theory Final Exam Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2016 12/16/16, 8-11am Your answers must be supported by analysis,

More information

Linear dynamical systems with inputs & outputs

Linear dynamical systems with inputs & outputs EE263 Autumn 215 S. Boyd and S. Lall Linear dynamical systems with inputs & outputs inputs & outputs: interpretations transfer function impulse and step responses examples 1 Inputs & outputs recall continuous-time

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Discrete-time systems p. 1/30 4F3 - Predictive Control Discrete-time State Space Control Theory For reference only Jan Maciejowski jmm@eng.cam.ac.uk 4F3 Predictive Control - Discrete-time

More information

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is ECE 55, Fall 2007 Problem Set #4 Solution The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ Ax + Bu is x(t) e A(t ) x( ) + e A(t τ) Bu(τ)dτ () This formula is extremely important

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

Module 02 CPS Background: Linear Systems Preliminaries

Module 02 CPS Background: Linear Systems Preliminaries Module 02 CPS Background: Linear Systems Preliminaries Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html August

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

1 Steady State Error (30 pts)

1 Steady State Error (30 pts) Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)

More information

Lecture 19 Observability and state estimation

Lecture 19 Observability and state estimation EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

Application of LMI for design of digital control systems

Application of LMI for design of digital control systems BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 56, No. 4, 28 Application of LMI for design of digital control systems A. KRÓLIKOWSKI and D. HORLA Institute of Control and Information

More information

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER Exercise 54 Consider the system: ẍ aẋ bx u where u is the input and x the output signal (a): Determine a state space realization (b): Is the

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems. CDS 110b CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 110b R. M. Murray Kalman Filters 25 January 2006 Reading: This set of lectures provides a brief introduction to Kalman filtering, following

More information

Lecture 5: Control Over Lossy Networks

Lecture 5: Control Over Lossy Networks Lecture 5: Control Over Lossy Networks Yilin Mo July 2, 2015 1 Classical LQG Control The system: x k+1 = Ax k + Bu k + w k, y k = Cx k + v k x 0 N (0, Σ), w k N (0, Q), v k N (0, R). Information available

More information

6. Linear Quadratic Regulator Control

6. Linear Quadratic Regulator Control EE635 - Control System Theory 6. Linear Quadratic Regulator Control Jitkomut Songsiri algebraic Riccati Equation (ARE) infinite-time LQR (continuous) Hamiltonian matrix gain margin of LQR 6-1 Algebraic

More information

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation A. Hably 1 1 Gipsa-lab, Grenoble-INP ahmad.hably@grenoble-inp.fr Commande d un robot mobile (Gipsa-lab (DA)) ASI 1 / 25 Outline 1 2 (Gipsa-lab (DA)) ASI 2 / 25 of controllers Signals must be sampled and

More information

Vibration Suppression and Optimal Repetitive Disturbance Rejection Control in Semi-Nyquist Frequency Region using Multirate Sampling Control

Vibration Suppression and Optimal Repetitive Disturbance Rejection Control in Semi-Nyquist Frequency Region using Multirate Sampling Control 39th IEEE Conference on Decision and Control, pp. 3745-375, Vibration Suppression and Optimal Repetitive Disturbance Rejection Control in Semi-Nyquist Frequency Region using Multirate Sampling Control

More information

Robust Multivariable Control

Robust Multivariable Control Lecture 2 Anders Helmersson anders.helmersson@liu.se ISY/Reglerteknik Linköpings universitet Today s topics Today s topics Norms Today s topics Norms Representation of dynamic systems Today s topics Norms

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 State Estimator In previous section, we have discussed the state feedback, based on the assumption that all state variables are

More information

Discrete-time linear systems

Discrete-time linear systems Automatic Control Discrete-time linear systems Prof. Alberto Bemporad University of Trento Academic year 2-2 Prof. Alberto Bemporad (University of Trento) Automatic Control Academic year 2-2 / 34 Introduction

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

EE451/551: Digital Control. Chapter 8: Properties of State Space Models

EE451/551: Digital Control. Chapter 8: Properties of State Space Models EE451/551: Digital Control Chapter 8: Properties of State Space Models Equilibrium State Definition 8.1: An equilibrium point or state is an initial state from which the system nevers departs unless perturbed

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 5. Input-Output Stability DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Input-Output Stability y = Hu H denotes

More information

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems

Perspective. ECE 3640 Lecture 11 State-Space Analysis. To learn about state-space analysis for continuous and discrete-time. Objective: systems ECE 3640 Lecture State-Space Analysis Objective: systems To learn about state-space analysis for continuous and discrete-time Perspective Transfer functions provide only an input/output perspective of

More information

Stabilization and Passivity-Based Control

Stabilization and Passivity-Based Control DISC Systems and Control Theory of Nonlinear Systems, 2010 1 Stabilization and Passivity-Based Control Lecture 8 Nonlinear Dynamical Control Systems, Chapter 10, plus handout from R. Sepulchre, Constructive

More information

EE 380. Linear Control Systems. Lecture 10

EE 380. Linear Control Systems. Lecture 10 EE 380 Linear Control Systems Lecture 10 Professor Jeffrey Schiano Department of Electrical Engineering Lecture 10. 1 Lecture 10 Topics Stability Definitions Methods for Determining Stability Lecture 10.

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

LECTURE NOTES IN CALCULUS OF VARIATIONS AND OPTIMAL CONTROL MSc in Systems and Control. Dr George Halikias

LECTURE NOTES IN CALCULUS OF VARIATIONS AND OPTIMAL CONTROL MSc in Systems and Control. Dr George Halikias Ver.1.2 LECTURE NOTES IN CALCULUS OF VARIATIONS AND OPTIMAL CONTROL MSc in Systems and Control Dr George Halikias EEIE, School of Engineering and Mathematical Sciences, City University 4 March 27 1. Calculus

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Discrete-Time Systems Hanz Richter, Professor Mechanical Engineering Department Cleveland State University Discrete-Time vs. Sampled-Data Systems A continuous-time

More information

Chapter 2 Optimal Control Problem

Chapter 2 Optimal Control Problem Chapter 2 Optimal Control Problem Optimal control of any process can be achieved either in open or closed loop. In the following two chapters we concentrate mainly on the first class. The first chapter

More information

Topic # Feedback Control

Topic # Feedback Control Topic #5 6.3 Feedback Control State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear

More information

LTI system response. Daniele Carnevale. Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata

LTI system response. Daniele Carnevale. Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata LTI system response Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Fondamenti di Automatica e Controlli Automatici A.A. 2014-2015 1 / 15 Laplace

More information