LECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again

Size: px
Start display at page:

Download "LECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again"

Transcription

1 LECTURE : Butterworh & Chebeyshev BP Filters Part : Series and Parallel RLC Circuits On NOT Again. RLC Admittance/Impedance Transfer Functions EXAMPLE : Series RLC. H(s) I out (s) V in (s) Y in (s) R Ls Cs L s s R L s LC exhibits a BP characteristic. Why? Consider s 0,s, and s j LC. EXAMPLE : Parallel RLC.

2 Lecture 0 Sp 8 R. A. DeCarlo H(s) V out (s) I in (s) Z in (s) Cs R Ls C s s RC s LC exhibits a BP characteristic, again. OBSERVATION: Both transfer functions have the same general structure: H BP (s) s as b THE QUESTION: Rather than study individual circuits, study the transfer function H BP (s) s as b that is common to a large number of circuits. The general TF analysis then applies to ALL circuits with such a transfer function and avoids repetitive calculations. Assumption: H BP (s) has complex poles.

3 Lecture 0 Sp 8 3 R. A. DeCarlo Part : The Four Faces of H BP (s) s as b.. FACE BOOK EQUATION PAGES (I), (II), (III), & (IV) (I) H BP (s) ( s σ p jω d ) s σ p jω d ( ) (explicit complex-poles) (II) ( s σ p ) ω d s σ p s ω p (equivalent rational forms) (III) s ω p Q p s ω p (relationship of pole-frequency,ω p, & circuit/pole-q, Q p selectivity) (IV) s B ω s ω p (B ω 3dB Bandwidth ω p Q p σ p )

4 Lecture 0 Sp 8 4 R. A. DeCarlo. PICTURE BOOK PAGES & 3. DEFINITION & NOTATION BOOK (a) Poles: σ p jω d (b) Pole frequency: ω p σ p ω d (often but not always the peak frequency) (c) Peak Frequency: ω m, i.e., the frequency at which the magnitude peaks. (We need to show it is ω p for the parallel and series RLC, but NOT for all BP circuits.) (d) Peak Gain: H m, i.e., the peak value of the magnitude response defined as H m H BP ( ). Equivalently H m max ω H BP ( jω ). jω m

5 Lecture 0 Sp 8 5 R. A. DeCarlo (e) Half Power Frequencies, ω and ω, i.e., the frequencies at which the gain is H m H BP ( jω ) H BP ( jω ), 3dB down from the peak. Note: Power [Gain] H m H m Half Power (f) Bandwidth Half-Power Bandwidth B ω ω ω. 4. THE WHERE O WHERE ARE WE GOING BOOK (i) Show ω m ω p. (ii) Show B ω! ω ω σ p ω m ω m ω m Q p Q cir Q (iii) H m K K K Q σ p B ω ω m (iv) Thus, we have the filtering attribute forms of H BP (s) : H BP (s) s ω p Q p s ω p s B ω s ω m (v) Show ω,ω σ p σ p ω m

6 Lecture 0 Sp 8 6 R. A. DeCarlo (vi) Show for high Q, ω,ω ω m B ω (approximation) Part 3. The Derivations Step. Given H BP (s) s σ p s ω p, set s jω, and in which case H BP ( jω ) Kjω ω p ω jσ p ω H BP ( jω ) K ω ω p σ p j ω K 4σ p ω ω p ω Step. Derivation of maximum value and peak frequency: H m max ω H BP ( jω ) K min ω 4σ p ω ω p ω K 4σ p Thus at ω ω p, we have a maximum, i.e., ω m ω p with a peak value of H m K. σ p

7 Lecture 0 Sp 8 7 R. A. DeCarlo Step 3. Derivation of formulas for half power frequencies. (i) By Definition: H m H BP ( jω i ) K ( ) K 4σ p 4σ p ω i ω p ω i (ii) Upon months of meditation on a Sunday Afternoon. This equation requires that 4σ p ω i ω p (iii) Judiciously taking square roots, there appears a quadratic equation in ω i : ω i 0 ω i ± σ p ω i ω p (iv) Solving using the quadratic formula: Thus ω,ω σ p 4σ p 4ω p σ p σ p ω m ω i ± σ p ω i ω m 0 if and only if ω, ±σ p σ p ω m

8 Lecture 0 Sp 8 8 R. A. DeCarlo Exact Half Power Frequency Formula: ω, ±σ p σ p ω m Step 4. Bandwidth: from step 3, ( ) ( σ p σ ) p ω σ m p. B ω ω ω σ p σ p ω m Consequence: H m K K. σ p B ω Step 5. Approximate Half Power Frequency Formula when Q 6 : (i) B ω! ω p Q implies ω p QB ω Qσ p (ii) If Q 6, ω p σ p σ p ω p. (iii) σ p ω p ω p 44 ω p ω p 44 ω p Conclusion: if Q ω m σ p ω m B ω 6, then ω, ω m B ω

9 Lecture 0 Sp 8 9 R. A. DeCarlo The Active BP Circuit WORKSHEET ACTIVE BP DESIGN has Transfer function H cir (s) V out (s) V in (s) s R C s R C R C s R R C C Design Objective: Compute circuit parameters so that ω m 8000 rad/s and B ω 500 rad/s: for some K H BP (s) s B ω s ω m s ω m Q s ω m s s

10 Lecture 0 Sp 8 0 R. A. DeCarlo Part. Normalized Design: Frequency scale down so that ω m,norm : K f : H BP,norm (s) H BP K ω m ( K f s) H BP ( s) s s Q s K 8000 s s s Part. Simplification and Normalized Parameter Design: Denominators/poles make up the normalized design: s s s R C R C s R R C C. Simplification: normalize capacitance: C C F.. Design Conditions: s s s R s R R (a) R R Ω (b) R R R R Ω

11 Lecture 0 Sp 8 R. A. DeCarlo (c) Unfortunately (more like a BP-filter amplifier) H m H ( jω m ) R C R C R C R R Design Specs : Final capacitor values are to be C, final C, final 0. µf. Part 3. Frequency and magnitude scaling. K f. Find K m. C new C old K m K f K m C old C new K f It follows that C new C new 0. µf and R new K m R old Ω, R new K m R old kω Remark: The ratio of R to R is very large and unrealistic in general.

LECTURE 25 and MORE: Basic Ingredients of Butterworth Filtering. Objective: Design a second order low pass filter whose 3dB down point is f c,min

LECTURE 25 and MORE: Basic Ingredients of Butterworth Filtering. Objective: Design a second order low pass filter whose 3dB down point is f c,min LECTURE 25 and MORE: Basic Ingredients of Butterworth Filtering INTRODUCTION: A SIMPLISTIC DESIGN OVERVIEW Objective: Design a second order low pass filter whose 3dB down point is f c,min 500 Hz or ω c,min

More information

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS

Lecture 16 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Lecture 6 FREQUENCY RESPONSE OF SIMPLE CIRCUITS Ray DeCarlo School of ECE Purdue University West Lafayette, IN 47907-285 decarlo@ecn.purdue.edu EE-202, Frequency Response p 2 R. A. DeCarlo I. WHAT IS FREQUENCY

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

EE-202 Exam III April 13, 2015

EE-202 Exam III April 13, 2015 EE-202 Exam III April 3, 205 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo-7:30-8:30 Furgason 3:30-4:30 DeCarlo-:30-2:30 202 2022 2023 INSTRUCTIONS There are 2 multiple choice

More information

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response Frequency response XE3EO2 Lecture Pavel Máša - Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function

More information

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

H(s) = 2(s+10)(s+100) (s+1)(s+1000) Problem 1 Consider the following transfer function H(s) = 2(s10)(s100) (s1)(s1000) (a) Draw the asymptotic magnitude Bode plot for H(s). Solution: The transfer function is not in standard form to sketch

More information

EE-202 Exam III April 6, 2017

EE-202 Exam III April 6, 2017 EE-202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo--202 DeCarlo--2022 7:30 MWF :30 T-TH INSTRUCTIONS There are 3 multiple choice worth 5 points each and

More information

PROBLEMS OF CHAPTER 4: INTRODUCTION TO PASSIVE FILTERS.

PROBLEMS OF CHAPTER 4: INTRODUCTION TO PASSIVE FILTERS. PROBEMS OF CHAPTER 4: INTRODUCTION TO PASSIVE FITERS. April 4, 27 Problem 4. For the circuit shown in (a) we want to design a filter with the zero-pole diagram shown in (b). C X j jω e g (t) v(t) - σ (a)

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the

More information

EE-202 Exam III April 13, 2006

EE-202 Exam III April 13, 2006 EE-202 Exam III April 13, 2006 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION DeCarlo 2:30 MWF Furgason 3:30 MWF INSTRUCTIONS There are 10 multiple choice worth 5 points each and there is

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

Frequency Response part 2 (I&N Chap 12)

Frequency Response part 2 (I&N Chap 12) Frequency Response part 2 (I&N Chap 12) Introduction & TFs Decibel Scale & Bode Plots Resonance Scaling Filter Networks Applications/Design Frequency response; based on slides by J. Yan Slide 3.1 Example

More information

MODULE-4 RESONANCE CIRCUITS

MODULE-4 RESONANCE CIRCUITS Introduction: MODULE-4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.

More information

Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION INSTRUCTIONS

Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION INSTRUCTIONS EE 202 Exam III April 13 2011 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION Morning 7:30 MWF Furgason INSTRUCTIONS Afternoon 3:30 MWF DeCarlo There are 10 multiple choice worth 5 points

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

Solution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L

Solution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L Problem 9.9 Circuit (b) in Fig. P9.9 is a scaled version of circuit (a). The scaling process may have involved magnitude or frequency scaling, or both simultaneously. If R = kω gets scaled to R = kω, supply

More information

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:

More information

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015 First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E. Lecture 070 Stage Frequency esponse I (/0/0) Page 070 LECTUE 070 SINGLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 488504) Objective The objective of this presentation is:.) Illustrate the frequency analysis

More information

Second-order filters. EE 230 second-order filters 1

Second-order filters. EE 230 second-order filters 1 Second-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polynomials in the numerator. Use two

More information

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brick-wall characteristic shown in Figure

More information

ECE-202 FINAL April 30, 2018 CIRCLE YOUR DIVISION

ECE-202 FINAL April 30, 2018 CIRCLE YOUR DIVISION ECE 202 Final, Spring 8 ECE-202 FINAL April 30, 208 Name: (Please print clearly.) Student Email: CIRCLE YOUR DIVISION DeCarlo- 7:30-8:30 DeCarlo-:30-2:45 2025 202 INSTRUCTIONS There are 34 multiple choice

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

EE-202 Exam III April 15, 2010

EE-202 Exam III April 15, 2010 EE-0 Exam III April 5, 00 Name: SOLUTION (No period) (Please print clearly) Student ID: CIRCLE YOUR DIVISION Morning 8:30 MWF Afternoon 3:30 MWF INSTRUCTIONS There are 9 multiple choice worth 5 points

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering High-Frequency Model BJT & MOS B or G r x C f C or D r

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). nd-order filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer

More information

CE/CS Amplifier Response at High Frequencies

CE/CS Amplifier Response at High Frequencies .. CE/CS Amplifier Response at High Frequencies INEL 4202 - Manuel Toledo August 20, 2012 INEL 4202 - Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3

More information

ECE 255, Frequency Response

ECE 255, Frequency Response ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)

More information

Design of Narrow Band Filters Part 2

Design of Narrow Band Filters Part 2 E.U.I.T. Telecomunicación 200, Madrid, Spain, 27.09 30.09.200 Design of Narrow Band Filters Part 2 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Response of Second-Order Systems

Response of Second-Order Systems Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

Dr. Vahid Nayyeri. Microwave Circuits Design

Dr. Vahid Nayyeri. Microwave Circuits Design Lect. 8: Microwave Resonators Various applications: including filters, oscillators, frequency meters, and tuned amplifiers, etc. microwave resonators of all types can be modelled in terms of equivalent

More information

R-L-C Circuits and Resonant Circuits

R-L-C Circuits and Resonant Circuits P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M MASSACHUSETTS

More information

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration EE 58 Lecture Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same

More information

Lecture 4: R-L-C Circuits and Resonant Circuits

Lecture 4: R-L-C Circuits and Resonant Circuits Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Op-Amp Circuits: Part 3

Op-Amp Circuits: Part 3 Op-Amp Circuits: Part 3 M. B. Patil mbpatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay Introduction to filters Consider v(t) = v

More information

EE-202 Exam III April 10, 2008

EE-202 Exam III April 10, 2008 EE-202 Exam III April 10, 2008 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION Morning 8:30 MWF Afternoon 12:30 MWF INSTRUCTIONS There are 13 multiple choice worth 5 points each and there

More information

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ EGR 224 Spring 2017 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

7.2 Controller tuning from specified characteristic polynomial

7.2 Controller tuning from specified characteristic polynomial 192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic

More information

Multistage Amplifier Frequency Response

Multistage Amplifier Frequency Response Multistage Amplifier Frequency Response * Summary of frequency response of single-stages: CE/CS: suffers from Miller effect CC/CD: wideband -- see Section 0.5 CB/CG: wideband -- see Section 0.6 (wideband

More information

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)

Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ EGR 224 Spring 2018 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any

More information

EE221 - Practice for the Midterm Exam

EE221 - Practice for the Midterm Exam EE1 - Practice for the Midterm Exam 1. Consider this circuit and corresponding plot of the inductor current: Determine the values of L, R 1 and R : L = H, R 1 = Ω and R = Ω. Hint: Use the plot to determine

More information

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1. Problem ) RLC Parallel Circuit R L C E-4 E-0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)

More information

The Miller Approximation

The Miller Approximation The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r

More information

8.1.6 Quadratic pole response: resonance

8.1.6 Quadratic pole response: resonance 8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Second-order denominator, of the form 1+a 1 s + a s v 1 (s) + C R Two-pole low-pass filter example v (s) with

More information

6.1 Introduction

6.1 Introduction 6. Introduction A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then.

More information

Design of Narrow Band Filters Part 1

Design of Narrow Band Filters Part 1 E.U.I.T. Telecomunicación 2010, Madrid, Spain, 27.09 30.09.2010 Design of Narrow Band Filters Part 1 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D. Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT-3 Department of Electrical and Computer Engineering Winter 2012 1. A common-emitter amplifier that can be represented by the following equivalent circuit,

More information

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

8. Active Filters - 2. Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory 8. Active Filters - 2 Electronic Circuits Prof. Dr. Qiuting Huang Integrated Systems Laboratory Blast From The Past: Algebra of Polynomials * PP xx is a polynomial of the variable xx: PP xx = aa 0 + aa

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

Lecture 090 Multiple Stage Frequency Response - I (1/17/02) Page 090-1

Lecture 090 Multiple Stage Frequency Response - I (1/17/02) Page 090-1 Lecture 9 Multiple Stage Frequency esponse I (/7/2) Page 9 LECTUE 9 MULTIPLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 56527) Objective The objective of this presentation is:.) Develop methods for the frequency

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri st Class Basic RL and RC Circuits The RL circuit with D.C (steady state) The inductor is short time at Calculate the inductor current for circuits shown below. I L E R A I L E R R 3 R R 3 I L I L R 3 R

More information

2nd-order filters. EE 230 second-order filters 1

2nd-order filters. EE 230 second-order filters 1 nd-order filters Second order filters: Have second order polynomials in the denominator of the transfer function, and can have zeroth-, first-, or second-order polyinomials in the numerator. Use two reactive

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

CHAPTER 5 DC AND AC BRIDGE

CHAPTER 5 DC AND AC BRIDGE 5. Introduction HAPTE 5 D AND A BIDGE Bridge circuits, which are instruments for making comparison measurements, are widely used to measure resistance, inductance, capacitance, and impedance. Bridge circuits

More information

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model

ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1

More information

Unit 21 Capacitance in AC Circuits

Unit 21 Capacitance in AC Circuits Unit 21 Capacitance in AC Circuits Objectives: Explain why current appears to flow through a capacitor in an AC circuit. Discuss capacitive reactance. Discuss the relationship of voltage and current in

More information

Capacitors. How long did the LED remain lit when the capacitors were connected in series?

Capacitors. How long did the LED remain lit when the capacitors were connected in series? Labs for College Physics - Electricity and Magnetism Worksheet Lab 2-1 Capacitors As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet.

More information

Problem Weight Score Total 100

Problem Weight Score Total 100 EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

To find the step response of an RC circuit

To find the step response of an RC circuit To find the step response of an RC circuit v( t) v( ) [ v( t) v( )] e tt The time constant = RC The final capacitor voltage v() The initial capacitor voltage v(t ) To find the step response of an RL circuit

More information

Test II Michael R. Gustafson II

Test II Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ EGR 224 Spring 2016 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any

More information

Lecture 28. Passive HP Filter Design

Lecture 28. Passive HP Filter Design Lecture 28. Paive HP Filter Deign STRATEGY: Convert HP pec to Equivalent NLP pec. Deign an appropriate 3dB NLP tranfer function. Realize the 3dB NLP tranfer function a a circuit. Convert the 3dB NLP circuit

More information

Electronics Capacitors

Electronics Capacitors Electronics Capacitors Wilfrid Laurier University October 9, 2015 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists

More information

Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response. PART C: High Frequency Response Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

More information

6.302 Feedback Systems

6.302 Feedback Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Symbolic SPICE TM Circuit Analyzer and Approximator

Symbolic SPICE TM Circuit Analyzer and Approximator ymbolic PICE ymbolic PICE TM Circuit Analyzer and Approximator Application Note AN-001: eries Resonant Circuit by Gregory M. Wierzba Rev 07010 A) Introduction The schematic shown below in Fig. 1 is a series

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

Date: _15 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: _15 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS Conference: Date: _15 April 2005 EXAM #2: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Homwork AC circuits. due Friday Oct 8, 2017

Homwork AC circuits. due Friday Oct 8, 2017 Homwork AC circuits due Friday Oct 8, 2017 Validate your answers (show your work) using a Matlab Live Script and Simulink models. Include these computations and models with your homework. 1 Problem 1 Worksheet

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Lecture 15: Sinusoidal Steady State (SSS) Analysis or Phasors without a Phasor more or less

Lecture 15: Sinusoidal Steady State (SSS) Analysis or Phasors without a Phasor more or less Spring 18 page 1 Lecture 15: Sinusoidal Steady State (SSS) Analysis or Phasors without a Phasor more or less 1. Definition. A signal f (t) is periodic with period T > 0 if f (t) = f (t + T ) ; the smallest

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

FEEDBACK, STABILITY and OSCILLATORS

FEEDBACK, STABILITY and OSCILLATORS FEEDBACK, STABILITY and OSCILLATORS à FEEDBACK, STABILITY and OSCILLATORS - STABILITY OF FEEDBACK SYSTEMS - Example : ANALYSIS and DESIGN OF PHASE-SHIFT-OSCILLATORS - Example 2: ANALYSIS and DESIGN OF

More information

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current

Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Experiment 3: Resonance in LRC Circuits Driven by Alternating Current Introduction In last week s laboratory you examined the LRC circuit when constant voltage was applied to it. During this laboratory

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginally-stable

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:

More information

Texas A&M University Department of Electrical and Computer Engineering

Texas A&M University Department of Electrical and Computer Engineering Texas A&M University Department of Electrical and Computer Engineering ECEN 622: Active Network Synthesis Homework #2, Fall 206 Carlos Pech Catzim 72300256 Page of .i) Obtain the transfer function of circuit

More information