Anatomy of a Bit. Reading for this lecture: CMR articles Yeung and Anatomy.

Size: px
Start display at page:

Download "Anatomy of a Bit. Reading for this lecture: CMR articles Yeung and Anatomy."

Transcription

1 Anatomy of a Bit Reading for this lecture: CMR articles Yeung and Anatomy. 1

2 Information in a single measurement: Alternative rationale for entropy and entropy rate. k measurement outcomes Stored in log 10 k decimal digits or log 2 k bits. Series of n measurements stored in n log 2 k bits. Number M of possible sequences of n measurements with n 1,n 2,...,n k counts: n M = n 1 n 2 n k n! = n 1!n 2! n k! 2

3 To specify/code which particular sequence occurred store: k log 2 n + log 2 M + log 2 n + Maximum number of bits to store the count ni of each of the k output values Number of bits to specify particular observed sequence within the class of sequences that have counts n1, n2,..., nk Bits to specify the number of bits in n itself bits Apply Stirlings approximation: n! = p 2 n(n/e) n kx To M: log 2 M n n i n log 2 n i n i=1 = nh[ n 1 n, n 2 n,..., n k n ] = nh[x] 3

4 Can compress if H[X] < log 2 k R 1 1-Symbol Redundancy R 1 = log 2 k R 1 H[X] log 2 k H[X] h µ (a) (b) (c) 4

5 Typical sources are not IID, therefore use: h µ = lim L!1 H(L) L R 1 R 1 Intrinsic Redundancy log 2 k R 1 = log 2 k h µ (Total Predictability) H[X] h µ Intrinsic Randomness (a) (b) (c) 5

6 In addition, measurements occur in the context of past and future. A semantically rich decomposition of a single measurement: µ q µ w µ H[X] h µ r µ r µ (a) (b) (c) (d) 6

7 A semantically rich decomposition of a single measurement... µ Anticipated from prior observations q µ w µ H[X] h µ Random component r µ r µ (a) (b) (c) (d) 7

8 A semantically rich decomposition of a single measurement... µ q µ Shared between the past and the current observation, but relevance stops there (stationary process only) Anticipated by the past, present currently, and plays a w µ role in future behavior. Can be negative! H[X] Relevant for predicting the future h µ r µ r µ Ephemeral: Exists only for the present (a) (b) (c) (d) 8

9 A semantically rich decomposition of a single measurement... µ q µ w µ Structural information H[X] h µ r µ r µ Ephemeral: exists only for the present (a) (b) (c) (d) 9

10 Settings: Before: Predict the present from the past, h µ = H[X 0 X ] X :0 X 0 X 1: X 3 X 2 X 1 X 0 X 1 X 2 X 3 10

11 Settings: Before: Predict the present from the past, h µ = H[X 0 X ] X :0 X 0 X 1: X 3 X 2 X 1 X 0 X 1 X 2 X 3 Today, prediction from the omniscient view: The present in the context of the past and the future. X :0 X 0 X 1: X 3 X 2 X 1 X 0 X 1 X 2 X 3 10

12 Notations: l-blocks: Past: Present: Future: X t:t+` = X t X t+1...x t+` 1 X :0 =...X 2 X 1 X 0 X 1: = X 1 X 2... Any information measure F : F(`) =F[X 0:`] 11

13 Recall block entropy: H(`) E + h µ` where: E = I[X :0 ; X 0: ] Recall total correlation: X T [X 0:N ]= H[X A ] H[X 0:N ] A2P (N) A =1 For stationary time series, get block total correlation: T (`) =`H[X 0 ] H(`) with T (0) = 0 T (1) = 0 Compares process s block entropy to the case of IID RVs. 12

14 Block entropy versus total correlation... Monotone increasing, with linear asymptote: T (`) E + µ` Convex up. H(`) T (`) Information [bits] E 0 E Block length ` [symbols] 13

15 Block entropy versus total correlation... Note: H(`)+T (`) =`H(1) Plug in asymptotes gives first decomposition: H(1) = h µ + µ µ Anticipated from prior observations q µ w µ H[X] h µ Random component r µ r µ (a) (b) (c) (d) 14

16 Scaling of other block informations: Bound information Enigmatic B(`) =H(`) Q(`) =T (`) R(`) B(`) Local Exogenous W (`) =B(`)+T (`) Asymptotes: R(`) E R + `r µ B(`) E B + ` R(`) B(`) Q(`) W (`) Q(`) E Q + `q µ W (`) E W + `w µ E R E B E Q, E W Block length ` [symbols] 15

17 Scaling of other block informations: Block entropy: H(`) =B(`)+R(`) =(E B + E R )+`( + r µ ) Thus, h µ = + r µ and E = E B + E R. Block total correlation: T (`) =B(`)+Q(`) =(E B + E Q )+`( + q µ ) Thus, µ = + q µ and E = E B E Q. µ Shared between the past and the current observation, but relevance stops there Gives second decomposition of H[X]. H[X] q µ Anticipated w µ by the past, present currently, and plays a role in future behavior. Can be negative! Relevant for predicting the future h µ r µ Ephemeral: r µ Exists only for the present Lecture 20: Natural Computation & Self-Organization, Physics 256A (a) (Winter 2014); (b) Jim Crutchfield (c) (d) 16

18 Scaling of other block informations: Block local exogenous: W (`) =B(`)+T (`) Thus, w µ = + µ. From definitions: =(E B E)+`( + µ ) R(`)+W (`) =`H(1) Plug in asymptotes gives third decomposition of H[X] : H(1) = w µ + r µ µ q µ w µ Structural information H[X] h µ r µ r µ Ephemeral: exists only for the present (a) (b) (c) (d) 17

19 Block multivariate mutual information: X I(`) =H(`) I[X A X Ā ] A2P (`) 0< A <` Asymptote: I(`) I + `i µ? Observations of finite-state process tend to independence: h µ > 0 : lim I(`) =0 i µ =0 I =0 `!1 I(`) Information [bits] I Block length ` [symbols] 18

20 Measurement Decomposition in the Process I-diagram: H[X 0 ] r µ H[X :0 ] H[X 1: ] q µ µ 19

21 Predictive decomposition: H[X 0 ] h µ µ 20

22 Atomic decomposition: H[X 0 ] r µ q µ 21

23 Structural decomposition: H[X 0 ] r µ w µ 22

24 Measurement Decomposition in the Process I-diagram... H[X 0 ] r µ H[X :0 ] H[X 1: ] q µ µ What is? µ Not a component of the information in a single observation. Information shared between past and future, not in present! Hidden state information! 23

25 Measurement Decomposition in the Process I-diagram: H[X 0 ] r µ H[X :0 ] H[X 1: ] q µ µ Decomposition of Excess Entropy: E = + q µ + µ 24

26 Example Processes: A B Even A B Golden Mean 1 0 B C A 1 1 D 1 0 E Noisy Random Phase Slip 25

27 Example: Parametrized Golden Mean Process: p Entropy rate [bits/symbol] h µ r µ 1 1 A B p Self loop probability p ~ Period 2: Randomness affects phase and so is remembered. r µ 0 ~ Period1: Randomness disrupts all 1s, but is not remembered. 0 h µ h µ r µ 26

28 Entropy-rate Decomposition: Logistic Map 27

29 Entropy-rate decomposition: Tent Map h µ = log 2 a 28

30 What is information? Depends on the question! Uncertainty, surprise, randomness,... Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound

31 What is information? Depends on the question! Uncertainty, surprise, randomness,... H(X) Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... h µ 29

32 What is information? Depends on the question! Uncertainty, surprise, randomness,... Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... H(X) h µ R = log 2 A h µ 29

33 What is information? Depends on the question! Uncertainty, surprise, randomness,... H(X) h µ Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... R = log 2 A I[X; Y ] h µ 29

34 What is information? Depends on the question! Uncertainty, surprise, randomness,... Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... H(X) h µ R = log 2 A h µ I[X; Y ] E 29

35 What is information? Depends on the question! Uncertainty, surprise, randomness,... Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... H(X) h µ R = log 2 A h µ I[X; Y ] E T 29

36 What is information? Depends on the question! Uncertainty, surprise, randomness,... Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... H(X) h µ R = log 2 A h µ I[X; Y ] E T rµ 29

37 What is information? Depends on the question! Uncertainty, surprise, randomness,... Compressibility. Transmission rate. Memory, apparent stored information,... Synchronization. Ephemeral. Bound.... H(X) h µ R = log 2 A h µ I[X; Y ] E T rµ 29

38 Analysis Pipeline: 1 A 1 B 0 0 C α γ 0 β δ 0 System Instrument Process Modeller 30

39 Analysis Pipeline: 1 A 1 B 0 0 C α γ 0 β δ 0 System Instrument Process Modeller 1. An information source: a. Dynamical System: deterministic or stochastic low-dimensional or high-dimensional (spatial?) b. Design instrument (partition) 2. Information-theoretic analysis: a. How much information produced? b. How much stored information? Calculate or estimate c. How does observer synchronize? H(L) h µ E T Pr(s L ) 30

40 Course summary: Dynamical systems as sources of complexity: 1. Chaotic attractors (State) 2. Basins of attraction (Initial conditions) 3. Bifurcation sequences (Parameters) Dynamical systems as information processors: 1. Randomness: Entropy hierarchy: block entropy, entropy convergence, rate, Information storage: 1. Total predictability 2. Excess entropy 3. Transient information 31

41 Preview of 256B: Physics of Computation Answers a number of questions 256A posed: What is a model? What are the hidden states and equations of motion? Are these always subjective, depending on the observer? Or is there a principled way to model processes? To discover states? What are cause and effect? To what can we apply these ideas? How much can we calculate analytically? How much numerically? How much from data? 32

42 Preview of 256B: Physics of Computation Punch line: How nature is organized is How nature computes 33

43 Reading for next lecture: CMR articles RURO (Introduction), CAO, and ROIC.... next quarter! 34

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

Anatomy of a Bit: Information in a Time Series Measurement

Anatomy of a Bit: Information in a Time Series Measurement Anatomy of a Bit: Information in a Time Series Measurement Ryan G. James Christopher J. Ellison James P. Crutchfield SFI WORKING PAPER: 2011-05-019 SFI Working Papers contain accounts of scientific work

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

Reconstruction Deconstruction:

Reconstruction Deconstruction: Reconstruction Deconstruction: A Brief History of Building Models of Nonlinear Dynamical Systems Jim Crutchfield Center for Computational Science & Engineering Physics Department University of California,

More information

ITCT Lecture IV.3: Markov Processes and Sources with Memory

ITCT Lecture IV.3: Markov Processes and Sources with Memory ITCT Lecture IV.3: Markov Processes and Sources with Memory 4. Markov Processes Thus far, we have been occupied with memoryless sources and channels. We must now turn our attention to sources with memory.

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Information Theoretic Properties of Quantum Automata

Information Theoretic Properties of Quantum Automata Information Theoretic Properties of Quantum Automata D. Gier Department of Physics and Astronomy, The University of Kansas, Lawrence, KS 66045 and Complexity Sciences Center and Physics Department, University

More information

Lecture 6: Entropy Rate

Lecture 6: Entropy Rate Lecture 6: Entropy Rate Entropy rate H(X) Random walk on graph Dr. Yao Xie, ECE587, Information Theory, Duke University Coin tossing versus poker Toss a fair coin and see and sequence Head, Tail, Tail,

More information

Hierarchical Thermodynamics

Hierarchical Thermodynamics Hierarchical Thermodynamics James P Crutchfield Complexity Sciences Center Physics Department University of California, Davis http://csc.ucdavis.edu/~chaos/ Workshop on Information Engines at the Frontier

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Complex Systems Methods 3. Statistical complexity of temporal sequences

Complex Systems Methods 3. Statistical complexity of temporal sequences Complex Systems Methods 3. Statistical complexity of temporal sequences Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 02.11.2007 1 / 24 Overview 1 Summary Kolmogorov sufficient

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

Statistical Complexity of Simple 1D Spin Systems

Statistical Complexity of Simple 1D Spin Systems Statistical Complexity of Simple 1D Spin Systems James P. Crutchfield Physics Department, University of California, Berkeley, CA 94720-7300 and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

More information

Computing and Communications 2. Information Theory -Entropy

Computing and Communications 2. Information Theory -Entropy 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Entropy Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Entropy Joint entropy

More information

Informational and Causal Architecture of Discrete-Time Renewal Processes

Informational and Causal Architecture of Discrete-Time Renewal Processes Entropy 2015, 17, 4891-4917; doi:10.3390/e17074891 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Informational and Causal Architecture of Discrete-Time Renewal Processes Sarah

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

Lecture 5: Asymptotic Equipartition Property

Lecture 5: Asymptotic Equipartition Property Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University Stock market Initial investment

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Predictive information in Gaussian processes with application to music analysis

Predictive information in Gaussian processes with application to music analysis Predictive information in Gaussian processes with application to music analysis Samer Abdallah 1 and Mark Plumbley 2 1 University College London 2 Queen Mary University of London Abstract. We describe

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Noisy channel communication

Noisy channel communication Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/ Week 6 Communication channels and Information Some notes on the noisy channel setup: Iain Murray, 2012 School of Informatics, University

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

EE5585 Data Compression April 18, Lecture 23

EE5585 Data Compression April 18, Lecture 23 EE5585 Data Compression April 18, 013 Lecture 3 Instructor: Arya Mazumdar Scribe: Trevor Webster Differential Encoding Suppose we have a signal that is slowly varying For instance, if we were looking at

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

The Organization of Intrinsic Computation: Complexity-Entropy Diagrams and the Diversity of Natural Information Processing

The Organization of Intrinsic Computation: Complexity-Entropy Diagrams and the Diversity of Natural Information Processing Santa Fe Institute Working Paper 8-6-XXX arxiv.org:86.4789 [nlin.cd] The Organization of Intrinsic Computation: Complexity-Entropy Diagrams and the Diversity of Natural Information Processing David P.

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

Lecture 8: Shannon s Noise Models

Lecture 8: Shannon s Noise Models Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 8: Shannon s Noise Models September 14, 2007 Lecturer: Atri Rudra Scribe: Sandipan Kundu& Atri Rudra Till now we have

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

Intrinsic Quantum Computation

Intrinsic Quantum Computation Intrinsic Quantum Computation James P. Crutchfield Karoline Wiesner SFI WORKING PAPER: 2006-11-045 SFI Working Papers contain accounts of scientific work of the author(s and do not necessarily represent

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

CS 229r Information Theory in Computer Science Feb 12, Lecture 5

CS 229r Information Theory in Computer Science Feb 12, Lecture 5 CS 229r Information Theory in Computer Science Feb 12, 2019 Lecture 5 Instructor: Madhu Sudan Scribe: Pranay Tankala 1 Overview A universal compression algorithm is a single compression algorithm applicable

More information

Regularities Unseen, Randomness Observed: Levels of Entropy Convergence

Regularities Unseen, Randomness Observed: Levels of Entropy Convergence Regularities Unseen, Randomness Observed: evels of Entropy Convergence James P. Crutchfield David P. Feldman SFI WORKING PAPER: -- SFI Working Papers contain accounts of scientific work of the author(s)

More information

Lecture 7: DecisionTrees

Lecture 7: DecisionTrees Lecture 7: DecisionTrees What are decision trees? Brief interlude on information theory Decision tree construction Overfitting avoidance Regression trees COMP-652, Lecture 7 - September 28, 2009 1 Recall:

More information

Regularities unseen, randomness observed: Levels of entropy convergence

Regularities unseen, randomness observed: Levels of entropy convergence CHAOS VOUME 13, NUMBER 1 MARCH 2003 Regularities unseen, randomness observed: evels of entropy convergence James P. Crutchfield a) Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 David

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

Information. = more information was provided by the outcome in #2

Information. = more information was provided by the outcome in #2 Outline First part based very loosely on [Abramson 63]. Information theory usually formulated in terms of information channels and coding will not discuss those here.. Information 2. Entropy 3. Mutual

More information

A Gentle Tutorial on Information Theory and Learning. Roni Rosenfeld. Carnegie Mellon University

A Gentle Tutorial on Information Theory and Learning. Roni Rosenfeld. Carnegie Mellon University A Gentle Tutorial on Information Theory and Learning Roni Rosenfeld Mellon University Mellon Outline First part based very loosely on [Abramson 63]. Information theory usually formulated in terms of information

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

1 Stat 605. Homework I. Due Feb. 1, 2011

1 Stat 605. Homework I. Due Feb. 1, 2011 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Stat 605. Homework I. Due

More information

How Random is a Coin Toss? Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos

How Random is a Coin Toss? Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos How Random is a Coin Toss? Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff Center for Complex Systems Research and Department of Physics University of Illinois

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Introduction to information theory and coding

Introduction to information theory and coding Introduction to information theory and coding Louis WEHENKEL Set of slides No 4 Source modeling and source coding Stochastic processes and models for information sources First Shannon theorem : data compression

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

Basic Principles of Video Coding

Basic Principles of Video Coding Basic Principles of Video Coding Introduction Categories of Video Coding Schemes Information Theory Overview of Video Coding Techniques Predictive coding Transform coding Quantization Entropy coding Motion

More information

Lecture 7. Order Out of Chaos

Lecture 7. Order Out of Chaos Lecture 7 Order Out of Chaos Lyapunov Exponents: Recall from Last Time The Lyapunov exponent for maps is: < 0if f 0 (x ) < 1 =ln f 0 (x ) = > 0if f 0 (x ) > 1 Lyapunov Exponents: Numerical Estimation Lyapunov

More information

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information. L65 Dept. of Linguistics, Indiana University Fall 205 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission rate

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 28 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Department of Mechanical Engineering 6.050J/2.0J Information and Entropy Spring 2005 Issued: March 7, 2005

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006)

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006) MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK SATELLITE COMMUNICATION DEPT./SEM.:ECE/VIII UNIT V PART-A 1. What is binary symmetric channel (AUC DEC 2006) 2. Define information rate? (AUC DEC 2007)

More information

Reconstruction. Reading for this lecture: Lecture Notes.

Reconstruction. Reading for this lecture: Lecture Notes. ɛm Reconstruction Reading for this lecture: Lecture Notes. The Learning Channel... ɛ -Machine of a Process: Intrinsic representation! Predictive (or causal) equivalence relation: s s Pr( S S= s ) = Pr(

More information

Lecture 1. Introduction

Lecture 1. Introduction Lecture 1. Introduction What is the course about? Logistics Questionnaire Dr. Yao Xie, ECE587, Information Theory, Duke University What is information? Dr. Yao Xie, ECE587, Information Theory, Duke University

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019

Lecture 11: Information theory THURSDAY, FEBRUARY 21, 2019 Lecture 11: Information theory DANIEL WELLER THURSDAY, FEBRUARY 21, 2019 Agenda Information and probability Entropy and coding Mutual information and capacity Both images contain the same fraction of black

More information

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy Haykin_ch05_pp3.fm Page 207 Monday, November 26, 202 2:44 PM CHAPTER 5 Information Theory 5. Introduction As mentioned in Chapter and reiterated along the way, the purpose of a communication system is

More information

3F1 Information Theory, Lecture 1

3F1 Information Theory, Lecture 1 3F1 Information Theory, Lecture 1 Jossy Sayir Department of Engineering Michaelmas 2013, 22 November 2013 Organisation History Entropy Mutual Information 2 / 18 Course Organisation 4 lectures Course material:

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK DEPARTMENT: ECE SEMESTER: IV SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A 1. What is binary symmetric channel (AUC DEC

More information

Information Theory, Statistics, and Decision Trees

Information Theory, Statistics, and Decision Trees Information Theory, Statistics, and Decision Trees Léon Bottou COS 424 4/6/2010 Summary 1. Basic information theory. 2. Decision trees. 3. Information theory and statistics. Léon Bottou 2/31 COS 424 4/6/2010

More information

Mechanisms of Chaos: Stable Instability

Mechanisms of Chaos: Stable Instability Mechanisms of Chaos: Stable Instability Reading for this lecture: NDAC, Sec. 2.-2.3, 9.3, and.5. Unpredictability: Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification

More information

Entropy as a measure of surprise

Entropy as a measure of surprise Entropy as a measure of surprise Lecture 5: Sam Roweis September 26, 25 What does information do? It removes uncertainty. Information Conveyed = Uncertainty Removed = Surprise Yielded. How should we quantify

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#8:(November-08-2010) Cancer and Signals Outline 1 Bayesian Interpretation of Probabilities Information Theory Outline Bayesian

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

Beyond the typical set: Fluctuations in Intrinsic Computation

Beyond the typical set: Fluctuations in Intrinsic Computation Beyond the typical set: Fluctuations in Intrinsic Computation Cina Aghamohammadi Complexity Sciences Center and Department of Physics, niversity of California at Davis, One Shields Avenue, Davis, CA 9566

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 15: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 29 th, 2015 1 Example: Channel Capacity of BSC o Let then: o For

More information

Can Feedback Increase the Capacity of the Energy Harvesting Channel?

Can Feedback Increase the Capacity of the Energy Harvesting Channel? Can Feedback Increase the Capacity of the Energy Harvesting Channel? Dor Shaviv EE Dept., Stanford University shaviv@stanford.edu Ayfer Özgür EE Dept., Stanford University aozgur@stanford.edu Haim Permuter

More information

Lecture 6 I. CHANNEL CODING. X n (m) P Y X

Lecture 6 I. CHANNEL CODING. X n (m) P Y X 6- Introduction to Information Theory Lecture 6 Lecturer: Haim Permuter Scribe: Yoav Eisenberg and Yakov Miron I. CHANNEL CODING We consider the following channel coding problem: m = {,2,..,2 nr} Encoder

More information

Lecture 1: Introduction, Entropy and ML estimation

Lecture 1: Introduction, Entropy and ML estimation 0-704: Information Processing and Learning Spring 202 Lecture : Introduction, Entropy and ML estimation Lecturer: Aarti Singh Scribes: Min Xu Disclaimer: These notes have not been subjected to the usual

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.44 Transmission of Information Spring 2006 Homework 2 Solution name username April 4, 2006 Reading: Chapter

More information

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan The Communication Complexity of Correlation Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan Transmitting Correlated Variables (X, Y) pair of correlated random variables Transmitting

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Please submit the solutions on Gradescope. Some definitions that may be useful: EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Definition 1: A sequence of random variables X

More information

Information Theory and Coding Techniques

Information Theory and Coding Techniques Information Theory and Coding Techniques Lecture 1.2: Introduction and Course Outlines Information Theory 1 Information Theory and Coding Techniques Prof. Ja-Ling Wu Department of Computer Science and

More information

From Determinism to Stochasticity

From Determinism to Stochasticity From Determinism to Stochasticity Reading for this lecture: (These) Lecture Notes. Lecture 8: Nonlinear Physics, Physics 5/25 (Spring 2); Jim Crutchfield Monday, May 24, 2 Cave: Sensory Immersive Visualization

More information

Information Dynamics Foundations and Applications

Information Dynamics Foundations and Applications Gustavo Deco Bernd Schürmann Information Dynamics Foundations and Applications With 89 Illustrations Springer PREFACE vii CHAPTER 1 Introduction 1 CHAPTER 2 Dynamical Systems: An Overview 7 2.1 Deterministic

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 10: Information Theory Textbook: Chapter 12 Communication Systems Engineering: Ch 6.1, Ch 9.1~ 9. 92 2009/2010 Meixia Tao @

More information

Modelling Non-linear and Non-stationary Time Series

Modelling Non-linear and Non-stationary Time Series Modelling Non-linear and Non-stationary Time Series Chapter 2: Non-parametric methods Henrik Madsen Advanced Time Series Analysis September 206 Henrik Madsen (02427 Adv. TS Analysis) Lecture Notes September

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Upper Bounds on the Capacity of Binary Intermittent Communication

Upper Bounds on the Capacity of Binary Intermittent Communication Upper Bounds on the Capacity of Binary Intermittent Communication Mostafa Khoshnevisan and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame, Indiana 46556 Email:{mhoshne,

More information

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited Ch. 8 Math Preliminaries for Lossy Coding 8.4 Info Theory Revisited 1 Info Theory Goals for Lossy Coding Again just as for the lossless case Info Theory provides: Basis for Algorithms & Bounds on Performance

More information

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5.

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Channel capacity Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Exercices Exercise session 11 : Channel capacity 1 1. Source entropy Given X a memoryless

More information

Revision of Lecture 5

Revision of Lecture 5 Revision of Lecture 5 Information transferring across channels Channel characteristics and binary symmetric channel Average mutual information Average mutual information tells us what happens to information

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 5: Symbolic Dynamics; Making Discrete Stochastic Processes from Continuous Deterministic Dynamics Cosma Shalizi 27 January 2009 Symbolic dynamics Reducing

More information

Shannon s A Mathematical Theory of Communication

Shannon s A Mathematical Theory of Communication Shannon s A Mathematical Theory of Communication Emre Telatar EPFL Kanpur October 19, 2016 First published in two parts in the July and October 1948 issues of BSTJ. First published in two parts in the

More information

Massachusetts Institute of Technology. Solution to Problem 1: The Registrar s Worst Nightmare

Massachusetts Institute of Technology. Solution to Problem 1: The Registrar s Worst Nightmare Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Department of Mechanical Engineering 6.050J/2.0J Information and Entropy Spring 2006 Issued: March 4, 2006

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information