Some tools and methods for determination of dynamics of hydraulic systems

Size: px
Start display at page:

Download "Some tools and methods for determination of dynamics of hydraulic systems"

Transcription

1 Some tools and methods for determination of dynamics of hydraulic systems A warm welcome to the course in Hydraulic servo-techniques! The purpose of the exercises given in this material is to make you aquatint with the analysis tools you will have use of later on in the courses given at FluMeS and in industry. The rod does not move Figure 1. Equations describing the static behaviour of some hydraulic components. There are a number of ways of analysing the behaviour of a hydraulic system. The most common way is to ignore its dynamics (transients), see figure 1, and this can often be

2 2(12) performed by hand. In the figure, q is flow, p pressure, V volume, x position and remaining quantities are parameters. Sometimes it is not sufficient to calculate only the statics. Maybe it is interesting to know the response of a system, e.g. how long it takes for a cylinder to begin to move after a sudden change to the input signal to the control valve. The risk for instability, when having a closed loop as in servo systems could also be interesting to calculate. Examples of equations describing the dynamical behaviour of hydraulic components can be found in figure 2. At such occasions, computer simulations are used as a complement to analytical solutions. In the following exercises you will study two ways of analysing the dynamic behaviour; numerical simulation in the time domain and frequency domain analysis. The simulation package Matlab will be used in both cases. p L A L p 0 A 0 Mx Bx p kx p T ALPL A0 P0 T X p 2 Ms Bs k q in q ut dv dt V e dp dt P Q in Qut sv V s e q C q w v x v 2 ( p in p ut ) Q K q X v K c ( Pin Put ) q Kq x v, K c q ( p p in ut ) Figure 2. Examples of equations describing the dynamical properties of hydraulic systems in time- as well as the frequency domain

3 3(12) TOOLS USED FOR ANALYTICAL DETERMINATION OF DYNAMICAL PROPERTIES Since one of the equations in figure 2 is non-linear (the flow-equation of a turbulent orifice), it is very difficult and sometimes impossible to analytically determine dynamical properties if not the equations are linearised. On the other hand, numerical simulations can almost always be carried out without linearising non-linear equations. Linearisation of a continuous function f(x1, x2, x3,, xk) is performed using the first term in its Taylor series as below f k i1 f x i working_ point x i The function is linearised at a working point that has static conditions. The linearisation tells that f varies f if its variables x1, x2, x3,, xk vary x 1, x 2, x 3,..., x k round this working point. Linearisation doesn t work for discontinuous non-linearities like e.g. hysteresis. It is possible to make analytical calculations on dynamics in the time-domain, e.g. in mechanical vibrations, rotor dynamics etc. When it comes to control and hydraulics, analytical solutions are preferably derived in the frequency domain. When a time-domain variable is transformed into the frequency domain using Laplace, its capital is used to denote that it is now within the frequency domain. The variable f(t) then becomes F(s) where s is the so called Laplace-operator with unit rad/s. All this means that if you want to study bandwidth, stability etc of a hydraulic system, you must first linearise the equations and then Laplace-transform them. After that you can choose between making an analytical solution or a computer calculation in the frequency domain. In figure 2, not only the equations in the time-domain are shown but also their linearised and Laplace-transformed equalities. Try to do the linearisation and Laplacetransforming yourself so that you understand these tools. To simplify the linearised and Laplace transformed equations into one expression it is useful to make use of block diagram reduction as explained in the formula collection of Fluidmekanisk systemteknik grundkurs as well as in the Servo course itself of which this exercise is part. When preparing a block diagram is important to figure out what input and output signals the system has (without feedbacks) as well as what disturbance signals exist. An input signal that can be controlled is often a valve position, while the output signal can be speed or position of a cylinder rod or motor shaft. The disturbance could be an external force on a cylinder rod or motor shaft. Then draw the block diagram by using the equations

4 4(12) describing the system (figure 2 shows how to find them). The diagram is to be drawn causally, i.e. first input, then the state that directly depends on that signal, etc. and finally the output signal. Reduce the diagram if possible without eliminating any states that are to be used in feedbacks. Finally any feedbacks are drawn. In figure 3a and 3b the general structure of two diagrams are shown. Hydraulic system (after reduction) Disturbance Input signal Output signal Figure 3a. General structure of a block diagram. The position control of the load can be performed electro-hydraulically or hydro-mechanically. The system is drawn causally. Disturbance Hydraulic syst after reduction Input Output Hydraulic feedback Figure 3b. General structure of a block diagram. The hydraulic system has a hydro-mechanical feedback.

5 5(12) TIME-DOMAIN SIMULATION INSTABILITY IN THE NUMERICAL SOLVER Before starting your time-domain simulation we d like to issue a warning. It is easy to fail when simulating. Therefore it is of vital importance always to critically look at the results. Simulation in the time-domain is performed so that all variables are calculated for a particular time point and then the variables for the next time point are calculated using the former variable values. One of the most common sources of numerical problems is the numerical solver itself. Consider an ordinary differential equation (ODE) of the form: x ( t) 0x( t) 0 (1) The value of o is here treated as known and doesn t change. If this ODE is to be numerically integrated in order to find the time trajectory of x, then the time derivative of x needs to be computed as follows SX=-W0*X (2) where SX x (t), X x(t) and W0 = o in equation (1). This means: at time point i-1: SXi-1 = -W0*Xi-1 at time point i: SXi = -W0*Xi etc. (3-4) Here can be seen that if the value of X i-1 is known at time point (i-1) then SX i-1 can be calculated. But to calculate X i from this time point so that SX i can be calculated you need to integrate SX i-1 since no other equations are at hand. Now there are a number of explicit numerical integration methods to choose between. Suppose we choose the Euler-method to calculate X i for an ODE: Xi = Xi-1+Ts*SXi-1 (5) T s is the size of the time step. From this equation one interesting thing can be seen; X i is calculated from the old value X i-1. This means that the Euler-method is a closed loop system and can therefore become unstable!

6 6(12) To study the stability of the Euler-method applied on the mentioned ODE, the quotient between Xi and Xi-1 is used. The equations (4) and (5) yield: X X i i1 1 TSW0 X i (1 TsW0 For positive W0 this means that TsWo<2 gives a stable solution. ) i (6) EXERCISE 1 SIMULATION STABILITY In the first exercise, the task is to model the system in figure 4 with parameter values as in case 1 and 2 as well as study the influence of the time step on the results. Put up the equations needed to describe the system in the time domain (pressure build-up in the volume and flow created from pressure difference across the orifice). All equations are given in this material. A number of ODE:s will then have to be solved. This is to be accomplished by creating a Matlab script where no calls are made to built-in Matlab solvers. Start the simulation with the pressure 0,1 MPa (atmospheric pressure) in the volume. Simulate until the pressure p(t) has found its stationary level with the time step T s = 1 ms. Reduce and increase the time step 10 times and see what happens. For the time step 0.1 ms, decrease the size of the volume 100 times. Why are the results different for different time steps? Show analytically which time step that gives instability. Figure 4. System for studying integration stability. Case 1. Laminar orifice where q(t) = Kc (po - p(t)). Use following parameters: p o = 10 MPa V = 1 litre e = 1000 MPa K c = m 5 /N s Case 2. The orifice has turbulent flow q(t) (see equation in figure 1), has sharp edges and diameter d. (HINT: what happens if p(t) becomes higher than p o?) p o = 10 MPa V = 1 litre e = 1000 MPa d = 2 mm C q = 0,67 = 860 kg/m 3

7 7(12) EXERCISE 2 TIME DOMAIN ANALYSIS In this exercise, the task is to model the system in figure 5 in the time domain using Simulink. The system can be modelled with three differential equations. All parameters needed for this exercise are given below. The orifice has turbulent flow. Put up the equations needed to describe the system in the time domain. A number of ODE:s will then have to be solved. This is to be accomplished by creating a Simulink model, which uses built-in Matlab solvers. Use the integrator blocks to calculate the states. Simulate the system until all states have found its stationary level. Look at the results and calculate the resonance frequency and the damping of the system. Change parameter values and show how and explain why each parameter influence the resonance frequency and the damping. To avoid problems with integration stability in this exercise, go to Simulation Configuration Parameters in the Simulink top menu. Change the solver to ode23s (stiff/mod. Rosenbrock) and change the relative tolerance to 1e-6. Figure 5. The system that is to be analysed in the time domain. Supply: p s = 20 MPa Orifice xv = 1,0 mm ω = 10 mm Cylinder C q = 0,67 A1 = A2 = 50 cm 2 Vt = 50 litre (piston is assumed to be centered) e = 1000 MPa = 860 kg/m 3 Load M = 1000 kg F = N Bp = Ns/m

8 8(12) EXCERCISE 3 FREQUENCY DOMAIN ANALYSIS This exercise is an introduction to Matlab when it comes to frequency analysis. In figure 6 the system to be analysed is shown. The orifice has turbulent flow. Find the one transfer function describing the complete system analytically and show your analysis step by step. Calculate the static loop gain, the resonance frequency and the damping, with D(s) (orifice diameter) as input and N m (s) (motor speed) as output. The motor is loaded with an inertia moment, viscous friction and an external load torque. Also, make a non-linear Simulink model and compare the results with the linearzed transfer function. Figure 6. The system that is to be analysed in the frequency domain. The following parameter values are to be used. The parameter d is the orifice diameter, Dm is the volume needed by the motor to turn one revolution, Jm is the inertia of the motor and Bm multiplied by the motor speed gives a torque that opposes the rotational direction. Your non-linear Simulink model can be used to find the working point needed for the linearization. Calculate the bandwidth of the system. Compare the transfer function and the nonlinear simulation model. Change the external load torque and explain which changes that have to be made in order for the linearized model to be valid. How will a change in external load torque influence the dynamics of the system? Supply: p s = 15 MPa Volume V = 1 litre e = 1000 MPa = 860 kg/m 3 Orifice d = 1,0 mm C q = 0,67 Motor D m = 20 cm 3 /rev J m = 0,020 Nms 2 /rad B m = 0,13 Nms/rad M e = 20 Nm

9 9(12) EXCERCISE 4 TO UNDERSTAND BASIC CONTROL CONCEPTS To check that you have understood basic control concepts etc, we want you in this report also tell us a little about the follow things (without equations and with you own qualitative reasoning using your own words. Your explanation must work for any person that has some technical interest but no knowledge in the courses you ve read. What s the difference between static and dynamical calculations? When are ODE:s used? What is a feedback? Give three widely different examples of how it can look physically if the system is hydro-mechanical and/or electro hydraulic? Don t repeat the information in figure 3a-b What is necessary for instability to occur for any type of system? At what occasions can it be good to use computer analysis for static behaviour? What dynamic properties are most suitable to study with the help of timedomain simulations and what properties are best to study using frequency analysis? Give a few examples in each domain. Explain the concepts of stiffness, bandwidth, amplitude marginal and phase marginal. Also tell what is studied using the open transfer function and the closed transfer function and why.

10 10(12) THE REPORT This simulation task is presented by writing one report for each group of two persons. Answer all questions given on the previous pages and attach graphs when appropriate. The report should be written on a computer. If the report handed in is a copy of another then it will be rejected, but if you want to it is always allowed to talk to other groups and discuss problems. Hand in the report to Mikael Axin, room number 213:208, A-building. The latest day to hand in the report is Wednesday, December 17, If the report is not approved, you only have one more chance to hand in the report. The latest day to hand in the complementary report is Monday, January 19, Attach the first report to the complementary report.

11 11(12) APPENDIX A. MINI-MANUAL FOR MATLAB. The file basic_functions.m is available on the course home page and looks as below. There is also a file called Simulink_example.mdl available. Save those two on your account, execute it in MatLab and study the figures that appear. % If you want to execute one exercise separately, press ctrl+enter in the % desired cell % Remember to save the script before executing it! %% Exercise 1 Simulation stability clear all % Everything in the workspace is deleted % Create a time vector dt=0.1; % The time step is set to 0.1 s T=1; % The stop time is set to 1 s t=[0:dt:t]; % A time vector is created with start time = 0, % time step = dt and stop time = T % Create a for loop x(1)=-5; % Sets a start value for the x-vector for i=1:(t/dt) x(i+1)=x(i)+2; % The next value in the x-vector is the previous end % one plus 2 figure(1) plot(t,x) xlabel('time') ylabel('x-value') figure(2) plot(t,abs(x),'k') hold on plot(t,sign(x),'r') hold off % The x-vector is plotted a against the time vector % Defines a name to the x-axis % Defines a name to the y-axis % Creates a new plot window % plotting the absolute value of x % holds the current plot window % sign returns -1 if x<0 and % 1 if x>0 %% Exercise 2 Time domain analysis % Execute this cell and open the Simulink file. You can change values in % the Simulink file from here. clear all ps = 10e6; % Pa V = 1e-3; % m3 beta_e = 1e9; % Pa d = 2e-3; % m Cq = 0.67; % - rho = 860; % kg/m3 %% Plotting exercise 2 % This cell cannot be executed before simulating "Simulink_example.mdl" % Plotting the flow from the block "simout" in Simulink_example figure(3) plot(results.time,results.signals.values(:,1),'k','linewidth',2) grid on xlabel('time [s]') ylabel('flow [m/s]') hold on % The old plot will be kept if you change parmeter values % and want to plot again

12 12(12) % Plotting the pressure from the block "simout" in Simulink_example figure(4) plot(results.time,results.signals.values(:,2),'k','linewidth',2) grid on xlabel('time [s]') ylabel('pressure [Pa]') ylim([0 1.1e7]) %Specifying the upper and lower limit of the y-axis hold on %% Exercise 3 Frequency domain analysis % Create a bode plot Kv=5; wh=13; dh=0.2; G=tf(Kv,[1/wh^2 2*dh/wh 1]); % The open loop gain % The hydraulic resonance frequency % The hydraulic damping % Creates the transfer funcion % G=Kv/(s^2/wh^2 + 2*s*dh/wh +1) figure(5) bode(g) % Creates a bode plot of the transfer function APPENDIX B. SIMULINK EXAMPLE MODEL. The file Simulink_example.mdl is available on the course home page and looks as below. Save it on your account, execute it in Simulink and study how the pressure and flow evolves with time.

Lab 1: Dynamic Simulation Using Simulink and Matlab

Lab 1: Dynamic Simulation Using Simulink and Matlab Lab 1: Dynamic Simulation Using Simulink and Matlab Objectives In this lab you will learn how to use a program called Simulink to simulate dynamic systems. Simulink runs under Matlab and uses block diagrams

More information

Mechatronics Engineering. Li Wen

Mechatronics Engineering. Li Wen Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

Computer Aided Control Design

Computer Aided Control Design Computer Aided Control Design Project-Lab 3 Automatic Control Basic Course, EL1000/EL1100/EL1120 Revised August 18, 2008 Modified version of laboration developed by Håkan Fortell and Svante Gunnarsson

More information

Manufacturing Equipment Control

Manufacturing Equipment Control QUESTION 1 An electric drive spindle has the following parameters: J m = 2 1 3 kg m 2, R a = 8 Ω, K t =.5 N m/a, K v =.5 V/(rad/s), K a = 2, J s = 4 1 2 kg m 2, and K s =.3. Ignore electrical dynamics

More information

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

Laboratory Exercise 1 DC servo

Laboratory Exercise 1 DC servo Laboratory Exercise DC servo Per-Olof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,

More information

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems ET3-7: Modelling I(V) Introduction and Objectives Electrical, Mechanical and Thermal Systems Objectives analyse and model basic linear dynamic systems -Electrical -Mechanical -Thermal Recognise the analogies

More information

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

More information

Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses

Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses Ashok Joshi Department of Aerospace Engineering Indian Institute of Technology, Bombay Powai, Mumbai, 4 76, India

More information

Modelling and simulation of a measurement robot

Modelling and simulation of a measurement robot Modellbygge och Simulering, TSRT62 Modelling and simulation of a measurement robot Denna version: 4 oktober 2017 Servo- motor Strömregulator + u + i(t) [A] r (t) [V] u(t) [V] Arm Skruvtransmission Remtransmission

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

More information

Lab 6a: Pole Placement for the Inverted Pendulum

Lab 6a: Pole Placement for the Inverted Pendulum Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems Agenda of the Day 1. Resume of lesson I 2. Basic system models. 3. Models of basic electrical system elements 4. Application of Matlab/Simulink

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

More information

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) = 567 This is often referred to as Þnite settling time or deadbeat design because the dynamics will settle in a Þnite number of sample periods. This estimator always drives the error to zero in time 2T or

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information

TCS SERVO SYSTEM: Mechanical Modeling

TCS SERVO SYSTEM: Mechanical Modeling UNIVERSITY OF HAWAII INSTITUTE FOR ASTRONOMY 2680 Woodlawn Dr. Honolulu, HI 96822 NASA Infrared Telescope Facility TCS SERVO SYSTEM: Mechanical Modeling.......... Tim Bond May 12 / 2004 Version 1.0 Overview:

More information

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1 Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

More information

Model-Based Design, Analysis, & Control: Valve-Controlled Hydraulic System K. Craig 1

Model-Based Design, Analysis, & Control: Valve-Controlled Hydraulic System K. Craig 1 Model-Based Design, Analysis, & Control: K. Craig 1 K. Craig K. Craig 3 K. Craig 4 K. Craig 5 Mission: It s All About Process Dynamic System Investigation K. Craig 6 K. Craig 7 K. Craig 8 K. Craig 9 K.

More information

University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum

University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum University of Utah Electrical & Computer Engineering Department ECE 3510 Lab 9 Inverted Pendulum p1 ECE 3510 Lab 9, Inverted Pendulum M. Bodson, A. Stolp, 4/2/13 rev, 4/9/13 Objectives The objective of

More information

SRV02-Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout

SRV02-Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout SRV02-Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout SRV02-Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout 1. Objectives The objective in this experiment is

More information

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 0 1 4 Block Diagrams Block diagram models consist of two fundamental objects:

More information

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1

Multivariable Control Laboratory experiment 2 The Quadruple Tank 1 Multivariable Control Laboratory experiment 2 The Quadruple Tank 1 Department of Automatic Control Lund Institute of Technology 1. Introduction The aim of this laboratory exercise is to study some different

More information

Automatic Control (TSRT15): Lecture 7

Automatic Control (TSRT15): Lecture 7 Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward

More information

Computer lab for MAN460

Computer lab for MAN460 Computer lab for MAN460 (version 20th April 2006, corrected 20 May) Prerequisites Matlab is rather user friendly, and to do the first exercises, it is enough to write an m-file consisting of two lines,

More information

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N

Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real

More information

Lab 3: Model based Position Control of a Cart

Lab 3: Model based Position Control of a Cart I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position

More information

MAT 311 Midterm #1 Show your work! 1. The existence and uniqueness theorem says that, given a point (x 0, y 0 ) the ODE. y = (1 x 2 y 2 ) 1/3

MAT 311 Midterm #1 Show your work! 1. The existence and uniqueness theorem says that, given a point (x 0, y 0 ) the ODE. y = (1 x 2 y 2 ) 1/3 MAT 3 Midterm # Show your work!. The existence and uniqueness theorem says that, given a point (x 0, y 0 ) the ODE y = ( x 2 y 2 ) /3 has a unique (local) solution with initial condition y(x 0 ) = y 0

More information

Lab 5a: Pole Placement for the Inverted Pendulum

Lab 5a: Pole Placement for the Inverted Pendulum Lab 5a: Pole Placement for the Inverted Pendulum November 1, 2011 1 Purpose The objective of this lab is to achieve simultaneous control of both the angular position of the pendulum and horizontal position

More information

IfA Fachpraktikum - Experiment 3.7A : Flexible Shaft A

IfA Fachpraktikum - Experiment 3.7A : Flexible Shaft A Automatic Control Laboratory, ETH Zürich Profs. M. Morari, J. Lygeros Manual prepared by: P. Brunner, F. Ullmann, S. Richter, C. Fischer Revision from: February 16, 2013 IfA Fachpraktikum - Experiment

More information

Lab 1g: Horizontally Forced Pendulum & Chaotic Motion

Lab 1g: Horizontally Forced Pendulum & Chaotic Motion 58:080 Experimental Engineering OBJECTIVE Lab 1g: Horizontally Forced Pendulum & Chaotic Motion The objective of this lab is to study horizontally forced oscillations of a pendulum. This will be done trough

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1

More information

System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2

System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2 System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2 Prof. Rowley, Prof. Littman AIs: Brandt Belson, Jonathan Tu Technical staff: Jonathan Prévost Princeton University Feb. 21-24, 2012 1

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

Linear Control Systems Solution to Assignment #1

Linear Control Systems Solution to Assignment #1 Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1-DOF Torsion 1-DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF

More information

HARDWARE-IN-THE-LOOP SIMULATION EXPERIMENTS WITH A HYDRAULIC MANIPULATOR MODEL

HARDWARE-IN-THE-LOOP SIMULATION EXPERIMENTS WITH A HYDRAULIC MANIPULATOR MODEL HARDWARE-IN-THE-LOOP SIMULATION EXPERIMENTS WITH A HYDRAULIC MANIPULATOR MODEL Jorge A. Ferreira, André F. Quintã, Carlos M. Cabral Departament of Mechanical Engineering University of Aveiro, Portugal

More information

Appendix A Prototypes Models

Appendix A Prototypes Models Appendix A Prototypes Models This appendix describes the model of the prototypes used in Chap. 3. These mathematical models can also be found in the Student Handout by Quanser. A.1 The QUANSER SRV-02 Setup

More information

3 Mathematical modeling of the torsional dynamics of a drill string

3 Mathematical modeling of the torsional dynamics of a drill string 3 Mathematical modeling of the torsional dynamics of a drill string 3.1 Introduction Many works about torsional vibrations on drilling systems [1, 12, 18, 24, 41] have been published using different numerical

More information

Modeling and Simulation of the Nonlinear Computed Torque Control in Simulink/MATLAB for an Industrial Robot

Modeling and Simulation of the Nonlinear Computed Torque Control in Simulink/MATLAB for an Industrial Robot Copyright 2013 Tech Science Press SL, vol.10, no.2, pp.95-106, 2013 Modeling and Simulation of the Nonlinear Computed Torque Control in Simulink/MATLAB for an Industrial Robot Dǎnuţ Receanu 1 Abstract:

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 1 Lecture - 13 Undamped and Damped Systems II (Refer Slide

More information

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as:

Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: Torques 1.0 Two torques We have written the swing equation where speed is in rad/sec as: 2H Re ( t) T au T mu T eu (1) and when speed is in per-unit as 2H u ( t) Tau Tmu Teu (2) We note that in both cases

More information

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems

Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems 2 Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems Paul Lambrechts Digital Motion Control (4K4), 23 Faculty of Mechanical Engineering, Control Systems Technology Group /42 2

More information

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE

COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE COMPARISON OF TWO METHODS TO SOLVE PRESSURES IN SMALL VOLUMES IN REAL-TIME SIMULATION OF A MOBILE DIRECTIONAL CONTROL VALVE Rafael ÅMAN*, Heikki HANDROOS*, Pasi KORKEALAAKSO** and Asko ROUVINEN** * Laboratory

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction

A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new

More information

The Control of an Inverted Pendulum

The Control of an Inverted Pendulum The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the

More information

1 Trajectory Generation

1 Trajectory Generation CS 685 notes, J. Košecká 1 Trajectory Generation The material for these notes has been adopted from: John J. Craig: Robotics: Mechanics and Control. This example assumes that we have a starting position

More information

Transform Solutions to LTI Systems Part 3

Transform Solutions to LTI Systems Part 3 Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised

More information

State Space Representation

State Space Representation ME Homework #6 State Space Representation Last Updated September 6 6. From the homework problems on the following pages 5. 5. 5.6 5.7. 5.6 Chapter 5 Homework Problems 5.6. Simulation of Linear and Nonlinear

More information

Laboratory Exercise 1

Laboratory Exercise 1 FRTN05 Nonlinear Control and Servo Systems Laboratory Exercise Control of an Air Throttle with Dead-Zone Johan Gagner, Rickard Bondesson, Bo Bernhardsson, Dept. of Automatic Control Revised by Dan Henriksson,

More information

MECH 3140 Final Project

MECH 3140 Final Project MECH 3140 Final Project Final presentation will be held December 7-8. The presentation will be the only deliverable for the final project and should be approximately 20-25 minutes with an additional 10

More information

FALL UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF MECHANICAL ENGINEERING MEG 421 Automatic Controls Design Project

FALL UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF MECHANICAL ENGINEERING MEG 421 Automatic Controls Design Project FALL 2011 - UNIVERSITY OF NEVADA, LAS VEGAS DEPARTMENT OF MECHANICAL ENGINEERING MEG 421 Automatic Controls Design Project Objective: The design project will give everyone in the class an opportunity to

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

More information

Exam. 135 minutes + 15 minutes reading time

Exam. 135 minutes + 15 minutes reading time Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

More information

Hydraulic (Fluid) Systems

Hydraulic (Fluid) Systems Hydraulic (Fluid) Systems Basic Modeling Elements Resistance apacitance Inertance Pressure and Flow Sources Interconnection Relationships ompatibility Law ontinuity Law Derive Input/Output Models ME375

More information

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

More information

Control of an Induction Motor Drive

Control of an Induction Motor Drive Control of an Induction Motor Drive 1 Introduction This assignment deals with control of an induction motor drive. First, scalar control (or Volts-per-Hertz control) is studied in Section 2, where also

More information

Position Control Experiment MAE171a

Position Control Experiment MAE171a Position Control Experiment MAE171a January 11, 014 Prof. R.A. de Callafon, Dept. of MAE, UCSD TAs: Jeff Narkis, email: jnarkis@ucsd.edu Gil Collins, email: gwcollin@ucsd.edu Contents 1 Aim and Procedure

More information

Feedback Basics. David M. Auslander Mechanical Engineering University of California at Berkeley. copyright 1998, D.M. Auslander

Feedback Basics. David M. Auslander Mechanical Engineering University of California at Berkeley. copyright 1998, D.M. Auslander Feedback Basics David M. Auslander Mechanical Engineering University of California at Berkeley copyright 1998, D.M. Auslander 1 I. Feedback Control Context 2 What is Feedback Control? Measure desired behavior

More information

Name: Fall 2014 CLOSED BOOK

Name: Fall 2014 CLOSED BOOK Name: Fall 2014 1. Rod AB with weight W = 40 lb is pinned at A to a vertical axle which rotates with constant angular velocity ω =15 rad/s. The rod position is maintained by a horizontal wire BC. Determine

More information

A SHORT INTRODUCTION TO ADAMS

A SHORT INTRODUCTION TO ADAMS A. AHADI, P. LIDSTRÖM, K. NILSSON A SHORT INTRODUCTION TO ADAMS FOR MECHANICAL ENGINEERS DIVISION OF MECHANICS DEPARTMENT OF MECHANICAL ENGINEERING LUND INSTITUTE OF TECHNOLOGY 2017 1 FOREWORD THESE EXERCISES

More information

Dynamics Qualifying Exam Sample

Dynamics Qualifying Exam Sample Dynamics Qualifying Exam Sample Instructions: Complete the following five problems worth 20 points each. No material other than a calculator and pen/pencil can be used in the exam. A passing grade is approximately

More information

THE REACTION WHEEL PENDULUM

THE REACTION WHEEL PENDULUM THE REACTION WHEEL PENDULUM By Ana Navarro Yu-Han Sun Final Report for ECE 486, Control Systems, Fall 2013 TA: Dan Soberal 16 December 2013 Thursday 3-6pm Contents 1. Introduction... 1 1.1 Sensors (Encoders)...

More information

The control of a gantry

The control of a gantry The control of a gantry AAE 364L In this experiment we will design a controller for a gantry or crane. Without a controller the pendulum of crane will swing for a long time. The idea is to use control

More information

Control 2. Proportional and Integral control

Control 2. Proportional and Integral control Control 2 Proportional and Integral control 1 Disturbance rejection in Proportional Control Θ i =5 + _ Controller K P =20 Motor K=2.45 Θ o Consider first the case where the motor steadystate gain = 2.45

More information

Lab #2 - Two Degrees-of-Freedom Oscillator

Lab #2 - Two Degrees-of-Freedom Oscillator Lab #2 - Two Degrees-of-Freedom Oscillator Last Updated: March 0, 2007 INTRODUCTION The system illustrated in Figure has two degrees-of-freedom. This means that two is the minimum number of coordinates

More information

Part 1. The diffusion equation

Part 1. The diffusion equation Differential Equations FMNN10 Graded Project #3 c G Söderlind 2016 2017 Published 2017-11-27. Instruction in computer lab 2017-11-30/2017-12-06/07. Project due date: Monday 2017-12-11 at 12:00:00. Goals.

More information

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class ODE Homework Due Wed. 9 August 2009; At the beginning of the class. (a) Solve Lẏ + Ry = E sin(ωt) with y(0) = k () L, R, E, ω are positive constants. (b) What is the limit of the solution as ω 0? (c) Is

More information

MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION

MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION MODELING AND SIMULATION OF HYDRAULIC ACTUATOR WITH VISCOUS FRICTION Jitendra Yadav 1, Dr. Geeta Agnihotri 1 Assistant professor, Mechanical Engineering Department, University of petroleum and energy studies,

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Overview of motors and motion control

Overview of motors and motion control Overview of motors and motion control. Elements of a motion-control system Power upply High-level controller ow-level controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

DC-motor modelling and parameter identification

DC-motor modelling and parameter identification DC-motor modelling and parameter identification This version: November 1, 2017 Name: LERTEKNIK REG P-number: Date: AU T O MA RO TI C C O N T L Passed: LINKÖPING Chapter 1 Introduction The purpose of this

More information

Lab 3: Quanser Hardware and Proportional Control

Lab 3: Quanser Hardware and Proportional Control Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools

More information

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Goal: This exercise is designed to take a real-world problem and apply the modeling and analysis concepts discussed in class. As

More information

State Feedback Controller for Position Control of a Flexible Link

State Feedback Controller for Position Control of a Flexible Link Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

More information

UNIVERSITI TUN HUSSEIN ONN MALAYSIA FINAL EXAMINATION SEMESTER I SESSION 2009/2010

UNIVERSITI TUN HUSSEIN ONN MALAYSIA FINAL EXAMINATION SEMESTER I SESSION 2009/2010 Aftisse^ UNIVERSITI TUN HUSSEIN ONN MALAYSIA SEMESTER I SESSION 2009/2010 SUBJECT : DYNAMICS SUBJECT CODE : BDA2013 COURSE : 2 BDD DATE : NOVEMBER 2009 DURATION : 2 */ 2 HOURS INSTRUCTION : ANSWER FOUR

More information

Physics 8 Monday, December 4, 2017

Physics 8 Monday, December 4, 2017 Physics 8 Monday, December 4, 2017 HW12 due Friday. Grace will do a review session Dec 12 or 13. When? I will do a review session: afternoon Dec 17? Evening Dec 18? Wednesday, I will hand out the practice

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

BHASVIC MαTHS. Convert the below into the form ax m + bx n : (b) (c) (e) (f)

BHASVIC MαTHS. Convert the below into the form ax m + bx n : (b) (c) (e) (f) Convert the below into the form ax m + bx n : (a) 1+5x 4x 1 (b) 3x 4 x x 3 (c) 4 16x 3 3 27x 3 2x 2 (d) 4 5x 3x 2 (e) (f) 4x 3 1 2x 3 x 4x+ 81x2 9 x 2 Co-ordinate Geometry line The equation of straight

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

The Reynolds experiment

The Reynolds experiment Chapter 13 The Reynolds experiment 13.1 Laminar and turbulent flows Let us consider a horizontal pipe of circular section of infinite extension subject to a constant pressure gradient (see section [10.4]).

More information

(Refer Slide Time 1:25)

(Refer Slide Time 1:25) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 24 Transient Response of Pressure Transducers

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems R. M. Murray Fall 2004 CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 101/110 Homework Set #2 Issued: 4 Oct 04 Due: 11 Oct 04 Note: In the upper left hand corner of the first page

More information

Resonance and response

Resonance and response Chapter 2 Resonance and response Last updated September 20, 2008 In this section of the course we begin with a very simple system a mass hanging from a spring and see how some remarkable ideas emerge.

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

1-DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011

1-DOF Forced Harmonic Vibration. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 8 Fall 2011 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 8 Fall 2011 Harmonic Forcing Functions Transient vs. Steady Vibration Follow Palm, Sect. 4.1, 4.9 and 4.10 Harmonic forcing

More information

Double Inverted Pendulum (DBIP)

Double Inverted Pendulum (DBIP) Linear Motion Servo Plant: IP01_2 Linear Experiment #15: LQR Control Double Inverted Pendulum (DBIP) All of Quanser s systems have an inherent open architecture design. It should be noted that the following

More information

PARAMETER IDENTIFICATION, MODELING, AND SIMULATION OF A CART AND PENDULUM

PARAMETER IDENTIFICATION, MODELING, AND SIMULATION OF A CART AND PENDULUM PARAMETER IDENTIFICATION, MODELING, AND SIMULATION OF A CART AND PENDULUM Erin Bender Mechanical Engineering Erin.N.Bender@Rose-Hulman.edu ABSTRACT In this paper a freely rotating pendulum suspended from

More information