Superconducting Quantum Interference Devices for Current Sensing and Thermometry in the Millikelvin Range

Size: px
Start display at page:

Download "Superconducting Quantum Interference Devices for Current Sensing and Thermometry in the Millikelvin Range"

Transcription

1 Cryoconference 2010 Superconducting Quantum Interference Devices for Current Sensing and Thermometry in the Millikelvin Range J.-H. Storm, J. Beyer, D.Drung,Th.Schurig Physikalisch-Technische Bundesanstalt (PTB) Abbestraße 2-12, D Berlin, Germany Outline: fundamentals SQUIDs for the mk range (Array s and two-stage SQUIDs) SQUID noise thermometry (CSMT, MFFT)

2 What is a SQUID? Magnetic flux Electric current Electrical voltage/current Any physical quantity convertible into flux Typical applications: Readout of transition edge sensors (TES) PTB SQUIDs B Susceptometry I Trafo M L In TES Xray microcalorimeters at NASA/GSFC

3 Basic SQUID bias current I B screening current U / RI 0 2 Φ A = nφ 0 U / RI 0 2 Φ A = (n/2+1/4)φ 0 U I kreis magnetic flux Φ magnetischer Fluss Φ A 1 Φ A = (n+1/2)φ 0 1 U Josephson junction working point W I B / I 0 Φ A / Φ SQUID parameter: V Φ = du/dφ I Φ = di/dφ

4 SQUID current sensor I IN L IN L SQ I BIAS V SQUID M IN = k L SQ L IN A figure of merit for SQUID current sensors is the coupled energy resolution: S Φ,SQUID X 1 : read-out electronics ε C = (32k B T(L SQ C) ½ +Xi)(L IN /2M² IN ) = S I L In /2 temperature input coupling limited by fabrication technology

5 SQUID Noise & Electronics Noise Example: U N /V Φ =Φ N I N /I Φ =Φ N 4.2K/mK SQUID U N X 1 = S Φ,Amp = S V,Amp /V² Φ +S I,Amp /I² Φ I N G Amplifier V Out 300K Single 4.2K S Φ,Amp 0.25pΦ² 0 /Hz S Φ,SQUID 1.2pΦ² 0 /Hz System noise is dominated by SQUID noise Single 300mK S Φ,Amp 0.25pΦ² 0 /Hz 0.086pΦ² 0 /Hz S Φ,SQUID System noise is dominated by electronics noise

6 SQUID Array Feedback Input S Φ = S Φ,SQ1 /N L IN = L IN,SQ1 N ε C = ε CSQ1 Output / SA bias N * SQUID Series Array But the electronics contribution is decreased: S Φ,Amp =S V,Amp /N²V² Φ +S I,Amp /I² Φ 50 µm Single SQUID gradiometer Single-turn input coil SQUID loop Josephson junctions SQUID-to-SQUID connection Cooling fins

7 SQUID Array 3 mm 3 mm Two independent 16 SQUID series arrays per chip operable at mk, well behaved V-Φ characteristics no magnetic shield in Earth's field needed integrated bias resistors mω +F -F -V +V -INR +R +F -F -V +V -INR +R rf Filters Feedback Coil 1 Shunted 16-SQUID Array Bias Resistor Feedback Coil 2 Shunted 16-SQUID Array Bias Resistor -INR +IN +R -INR +IN +R S I <5 pa/ 0.1 K L IN <3nH ε C K P Diss 1nW (per channel)

8 Two-stage SQUID SQ1 bias Sensor SQUID (SQ1) R Bias L Amp Φ SQ1 Input U Out /SQ Amp bias Φ Amp M Amp f 3dB = (R Bias +R SQ1 )/2π L Amp Amplifier SQUID (SQ Amp ) ε C = S Φ,SQ1 +S Φ,R Bias + S Φ,SQ Amp + S Φ,Amp (Φ Amp /Φ SQ1 )² Φ Amp /Φ SQ1 = k Amp (L Amp *L SQ AMP ) ½ R Bais /V Φ + 1/I Φ

9 Two-stage SQUID 3 mm single SQUID front-end, read out by SQUID array operable at mk, well behaved V-Φ characteristics 3 mm no magnetic shield in Earth's field needed "single-squid-like V/Φ- characteristics several input inductances L IN from 25 nh to 1.8 µh +FIN -FIN Z +F -F +I +FX -IFX -V +V -FQ +FQ rf Filters Intermediate Loop Bias Resistor Shunted 16-SQUID Array Amplifier Feedback Transformer Shunted SQUID with APF +IN -Q -IN +Q Unshunted 16-SQUID Array Current Limiter S I < 0,01 pa/ 0.1K L IN = 1,05µH ε C < 0.1K P Diss 2 nw

10 SQUID Thermometers primary thermometer semi-primary thermometer measures directly the thermodynamic temperature T = g(x i ) is known without other thermometers measures directly the thermodynamic temperature g(x i ) is known, x i from one reference point One of the few established approaches of primary thermometry Nyquist noise thermometry: V 2 noise= 4k B TR f

11 CSNT & MFFT CSNT: R N M IN MFFT: R N ( f ) M T L In T L In 4kB T M In 2 2 (1 + f / f C ) B S Φ,therm ( f ) = S Φ,therm ( f ) = 2 2 R N π f R N (f,z,d,µ,σ) f C = R N / 2π L In k T R N ( f ) 2 mm SQUID current sensor & resistor 2 noise currents driven by thermal agitation of electric charges in conductor. B field fluctuations above surface Cu, 5N8 3 mm 3x3 mm 2 SQUID gradiometer chip ( µm), glued onto Cu sensor

12 Measurement procedure Measuring of the spectral noise density (S Φ (f, T Ref )) at a known reference temperature. Measuring of the spectral noise density (S Φ (f, T Meas )) at the unknown temperature. Calculation of the unknown temperature: T = T Ref. S Φ (0Hz, T Ref ) S Φ (0Hz,T Meas ) The frequency response of the noise spectrum remains constant as long as R N =const(t)

13 Measurement data of CSNT & MFFT 10-8 CSNT T 2000 = 698 mk 10-8 MFFT T 2000 = 676 mk 10-9 S Φ (Φ 0 2 /Hz) S Φ (Φ 0 2 / Hz) 10-9 T 2000 = 10 mk f (Hz) T 2000 = 10 mk f (Hz) measurement speed: t Smpl,CSNT > 3.3µs t Smpl,MFFT > 430µs relative uncertainty u rel ~ 1/ N Smpl : u rel,csnt = 1% 33ms u rel,mfft = 1% 5s

14 Linearity of CSNT & MFFT CSNT: MFFT: T CSNT (K) T MFFT (K) T 2000 (K) T 2000 (K) slight deviation from deviations within uncertainties bath temperature below 50mK R N = const(t ) (thermal anchoring of chip/resistor) & sensor at bath temperature

15 Conclusions SQUID current sensors for mk applications SQUID series array coupled energy resolution ε C < low input inductance ~ 3nH, fast and easy to use. Two stage SQUID coupled energy resolution ε C < and a compact design with several input inductances from 25 nh to 1.8 µh SQUID Noise Thermometers CSNT easy to handle, compact and fast for a temperature range from 50 mk to 4.2K MFFT easy to handle, moderately fast and highly linear down to below 10 mk. No self heating

dc-squid current sensors for the readout of high-resolution Metallic Magnetic Calorimeters J. Beyer for MetroBeta consortium

dc-squid current sensors for the readout of high-resolution Metallic Magnetic Calorimeters J. Beyer for MetroBeta consortium dc-squid current sensors for the readout of high-resolution Metallic Magnetic Calorimeters J. Beyer for MetroBeta consortium IWSSD AIST Tsukuba Nov 2016 The unit of activity - Bq - of b-emitters MMCs /SQUIDs

More information

A TES Bolometer for THz FT-Spectroscopy

A TES Bolometer for THz FT-Spectroscopy A TES Bolometer for THz FT-Spectroscopy M. Kehrt, J. Beyer, C. Monte, J. Hollandt Physikalisch-Technische Bundesanstalt Abbestraße 2-12, Berlin, Germany E-Mail: Mathias.Kehrt@PTB.de Abstract - We recently

More information

Large scale 2D SQIF arrays

Large scale 2D SQIF arrays Large scale 2D SQIF arrays Shane T Keenan CSIRO, Sydney, Australia EUCAS, 18 th September 2017 E Mitchell, K Hannam, J Lazar, C Lewis, A Grancea, K Wilson, B Vasilevski, W Purches and C Foley MANUFACTURING

More information

Thermometry at Low and Ultra-low Temperatures

Thermometry at Low and Ultra-low Temperatures Thermometry at Low and Ultra-low Temperatures Temperature is a thermodynamic property of state It can be defined by a reversible cycle, like a carnot cycle but this is not very practical General Considerations

More information

Characterization of a high-performance Ti/Au TES microcalorimeter with a central Cu absorber

Characterization of a high-performance Ti/Au TES microcalorimeter with a central Cu absorber Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) Y. Takei L. Gottardi H.F.C. Hoevers P.A.J. de Korte J. van der Kuur M.L. Ridder M.P. Bruijn Characterization of a high-performance

More information

Metallic magnetic calorimeters. Andreas Fleischmann Heidelberg University

Metallic magnetic calorimeters. Andreas Fleischmann Heidelberg University Metallic magnetic calorimeters Andreas Fleischmann Heidelberg University metallic magnetic calorimeters paramagnetic sensor: Au:Er 300ppm, Ag:Er 300ppm M detector signal: T main differences to calorimeters

More information

Hands on CUORE: investigation on the vibrations and temperature control of the cryostat

Hands on CUORE: investigation on the vibrations and temperature control of the cryostat : investigation on the vibrations and temperature control of the cryostat Simone Marcocci Gran Sasso Science Institute, Viale Crispi 7, 670 L Aquila, Italy E-mail: simone.marcocci@gssi.infn.it Physics

More information

LECTURE 2: Thermometry

LECTURE 2: Thermometry LECTURE 2: Thermometry Tunnel barrier Examples of aluminium-oxide tunnel barriers Basics of tunnel junctions E 1 2 Tunneling from occupied states to empty states V Metal Insulator Metal (NIN) tunnel junction

More information

Antiproton Decelerator at CERN, another advanced CCC for the FAIR project at GSI is under construction and will be installed in CRYRING. This

Antiproton Decelerator at CERN, another advanced CCC for the FAIR project at GSI is under construction and will be installed in CRYRING. This Proc. 12th Int. Conf. Low Energy Antiproton Physics (LEAP2016) https://doi.org/10.7566/jpscp.18.011042 Superconducting Beam Charge Monitors for Antiproton Storage Rings Volker TYMPEL*, Ralf NEUBERT 1,

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Scanning superconducting quantum interference device microscope in a dilution refrigerator

Scanning superconducting quantum interference device microscope in a dilution refrigerator REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 72, NUMBER 11 NOVEMBER 2001 Scanning superconducting quantum interference device microscope in a dilution refrigerator Per G. Björnsson Geballe Laboratory for Advanced

More information

Title. Author(s)Terauchi, N.; Noguchi, S.; Igarashi, H. CitationPhysica C: Superconductivity, 471(21-22): Issue Date Doc URL.

Title. Author(s)Terauchi, N.; Noguchi, S.; Igarashi, H. CitationPhysica C: Superconductivity, 471(21-22): Issue Date Doc URL. Title Magnetic shield effect simulation of superconducting magnetometer Author(s)Terauchi, N.; Noguchi, S.; Igarashi, H. CitationPhysica C: Superconductivity, 471(21-22): 1253-1257 Issue Date 2011-11 Doc

More information

arxiv: v1 [physics.ins-det] 9 Apr 2016

arxiv: v1 [physics.ins-det] 9 Apr 2016 Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) arxiv:1604.02535v1 [physics.ins-det] 9 Apr 2016 L. Gottardi Y. Takei J. van der Kuur P.A.J. de Korte H.F.C.Hoevers D.

More information

Some notes on transformers for MMCs

Some notes on transformers for MMCs Some notes on transformers for MMCs JP September Here some thoughts on adding a step up transformer to MMC designs are summarized. These are driven by the fact that most MMCs with low inductance meanders

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Title of Thesis. Development of A Highly Sensitive AC/DC Magnetometer utilizing High-T c SQUID for Characterization of Magnetic Mixture Materials

Title of Thesis. Development of A Highly Sensitive AC/DC Magnetometer utilizing High-T c SQUID for Characterization of Magnetic Mixture Materials Title of Thesis Development of A Highly Sensitive AC/DC Magnetometer utilizing High-T c SQUID for Characterization of Magnetic Mixture Materials 15, September Mohd Mawardi Bin Saari Graduate School of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Superconducting qubit oscillator circuit beyond the ultrastrong-coupling regime S1. FLUX BIAS DEPENDENCE OF THE COUPLER S CRITICAL CURRENT The circuit diagram of the coupler in circuit I is shown as the

More information

Superconducting QUantum Interference Device (SQUID) and applications. Massoud Akhtari PhD

Superconducting QUantum Interference Device (SQUID) and applications. Massoud Akhtari PhD Superconducting QUantum Interference Device (SQUID) and applications Massoud Akhtari PhD Topics Superconductivity Definitions SQUID Principles Applications Superconductivity Conduction lattice has zero

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Calibration capabilities at PTB for radiation thermometry, quantitative thermography and emissivity

Calibration capabilities at PTB for radiation thermometry, quantitative thermography and emissivity 14 th Quantitative InfraRed Thermography Conference Calibration capabilities at PTB for radiation thermometry, quantitative thermography and emissivity by I. Müller*, A. Adibekyan*, B. Gutschwager*, E.

More information

Measuring heat current and its fluctuations in superconducting quantum circuits

Measuring heat current and its fluctuations in superconducting quantum circuits Measuring heat current and its fluctuations in superconducting quantum circuits Bayan Karimi QTF Centre of Excellence, Department of Applied Physics, Aalto University, Finland Supervisor: Jukka P. Pekola

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

Temperature and Synchrotron Radiation

Temperature and Synchrotron Radiation info sheet PHYSIKALISCH-TECHNISCHE BUNDESANSTALT Division 7 Temperature and Synchrotron Radiation Infoblatt_7_Temperatur und Synchrotrons_en_wa.indd 1 14.08.2012 13:49:09 Temperature and Synchrotron Radiation

More information

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble The Nanotube SQUID J.-P. Cleuziou,, Th. Ondarçuhu uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble Outline Sample fabrication Proximity effect in CNT The CNT superconducting

More information

The Effects of Noise and Time Delay on RWM Feedback System Performance

The Effects of Noise and Time Delay on RWM Feedback System Performance The Effects of Noise and Time Delay on RWM Feedback System Performance O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores.

B I A S T E E Reducing the Size of the Filtering Hardware. for Josephson Junction Qubit Experiments Using. Iron Powder Inductor Cores. B I A S T E E 2. 0 Reducing the Size of the Filtering Hardware for Josephson Junction Qubit Experiments Using Iron Powder Inductor Cores. Daniel Staudigel Table of Contents Bias Tee 2.0 Daniel Staudigel

More information

Superconducting phase qubits

Superconducting phase qubits Quantum Inf Process (2009) 8:81 103 DOI 10.1007/s11128-009-0105-1 Superconducting phase qubits John M. Martinis Published online: 18 February 2009 The Author(s) 2009. This article is published with open

More information

Chapter 1 - Basic Concepts. Measurement System Components. Sensor - Transducer. Signal-conditioning. Output. Feedback-control

Chapter 1 - Basic Concepts. Measurement System Components. Sensor - Transducer. Signal-conditioning. Output. Feedback-control Chapter 1 - Basic Concepts Measurement System Components Sensor - Transducer Signal-conditioning Output Feedback-control MeasurementSystemConcepts.doc 8/27/2008 12:03 PM Page 1 Example: Sensor/ Transducer

More information

Electronic refrigeration and thermometry in nanostructures at low temperatures

Electronic refrigeration and thermometry in nanostructures at low temperatures Electronic refrigeration and thermometry in nanostructures at low temperatures Jukka Pekola Low Temperature Laboratory Aalto University, Finland Nanostructures Temperature Energy relaxation Thermometry

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor

Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Progress In Electromagnetics Research M, Vol. 34, 171 179, 2014 Analytical Optimization of High Performance and High Quality Factor MEMS Spiral Inductor Parsa Pirouznia * and Bahram Azizollah Ganji Abstract

More information

Limiting Factors in Target Rotation

Limiting Factors in Target Rotation Limiting Factors in Target Rotation April 10, 2018 1 Target Raster System We start from the premise that the Compact Photon Source (CPS) target system should be able to handle the the same heat load from

More information

High speed photon number resolving detector with titanium transition edge sensor

High speed photon number resolving detector with titanium transition edge sensor Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) D. Fukuda G. Fujii A. Yoshizawa H. Tsuchida R.M.T. Damayanthi H. Takahashi S. Inoue M. Ohkubo High speed photon number

More information

Output intensity measurement on a diagnostic ultrasound machine using a calibrated thermoacoustic sensor

Output intensity measurement on a diagnostic ultrasound machine using a calibrated thermoacoustic sensor Institute of Physics Publishing Journal of Physics: Conference Series 1 (2004) 140 145 doi:10.1088/1742-6596/1/1/032 Advanced Metrology for Ultrasound in Medicine Output intensity measurement on a diagnostic

More information

physics 590 ruslan prozorov magnetic measurements Nov 9,

physics 590 ruslan prozorov magnetic measurements Nov 9, physics 590 ruslan prozorov magnetic measurements Nov 9, 2009 - magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic field on the axis of a loop of radius R at

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Calorimetric approach to the direct measurement of the neutrino mass: the MARE project

Calorimetric approach to the direct measurement of the neutrino mass: the MARE project Neutrino Frontiers Minneapolis, 23-26 October 2008 Calorimetric approach to the direct measurement of the neutrino mass: the MARE project University of Insubria & INFN Milano Bicocca on behalf of the MARE

More information

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy Thomas Niedermayr, I. D. Hau, S. Terracol, T. Miyazaki, S. E. Labov and S. Friedrich Former colleagues: M. F. Cunningham, J. N.

More information

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS QUANTUM MEASUREMENT THEORY AND ITS APPLICATIONS KURT JACOBS University of Massachusetts at Boston fg Cambridge WW UNIVERSITY PRESS Contents Preface page xi 1 Quantum measurement theory 1 1.1 Introduction

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

NON DESTRUCTIVE SURFACE AND SUB-SURFACE MATERIAL ANALYSIS USING SCANNING SQUID MAGNETIC MICROSCOPE. Maria Adamo

NON DESTRUCTIVE SURFACE AND SUB-SURFACE MATERIAL ANALYSIS USING SCANNING SQUID MAGNETIC MICROSCOPE. Maria Adamo NON DESTRUCTIVE SURFACE AND SUB-SURFACE MATERIAL ANALYSIS USING SCANNING SQUID MAGNETIC MICROSCOPE Maria Adamo DOCTOR OF PHILOSOPHY AT UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II ITALY 30 TH NOVEMBER

More information

Direct Measurement of Penetration Length in Ultra-Thin and/or Mesoscopic Superconducting Structures

Direct Measurement of Penetration Length in Ultra-Thin and/or Mesoscopic Superconducting Structures Direct Measurement of Penetration Length in Ultra-Thin and/or Mesoscopic Superconducting Structures L. Hao National Physical Laboratory, Teddington, TW11 0LW, United Kingdom; J.C. Macfarlane Department

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Helium two-phase flow in a thermosiphon open loop

Helium two-phase flow in a thermosiphon open loop Presented at the COMSOL Conference 2009 Milan COMSOL Conference 2009 Milan October 14-16 2009 Helium two-phase flow in a thermosiphon open loop Florian Visentin, Bertrand Baudouy CEA Saclay Accelerator,

More information

Position Dependence of High Efficiency Single Photon Detectors: A Route to Better Understanding of Transition Edge Sensors

Position Dependence of High Efficiency Single Photon Detectors: A Route to Better Understanding of Transition Edge Sensors University of Colorado, Boulder CU Scholar Undergraduate Honors Theses Honors Program Spring 2017 Position Dependence of High Efficiency Single Photon Detectors: A Route to Better Understanding of Transition

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

Fabio Chiarello IFN-CNR Rome, Italy

Fabio Chiarello IFN-CNR Rome, Italy Italian National Research Council Institute for Photonics and Nanotechnologies Elettronica quantistica con dispositivi Josephson: dagli effetti quantistici macroscopici al qubit Fabio Chiarello IFN-CNR

More information

Lecture 3: Signal and Noise

Lecture 3: Signal and Noise Lecture 3: Signal and Noise J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland. 1. Detection techniques 2. Random processes 3. Noise mechanisms 4. Thermodynamics 5. Noise reduction

More information

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry Mohamed I. Ibrahim*, Christopher Foy*, Donggyu Kim*, Dirk R. Englund, and

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments 1 Instructor: Daryoush Shiri Postdoctoral fellow, IQC IQC, June 2015, WEEK-2 2 Parametric Amplifiers

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII Prospects for Superconducting ubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII uantum error correction and the future of solid state qubits David DiVincenzo 26.06.2012 Varenna Course CLXXXIII

More information

arxiv: v1 [cond-mat.supr-con] 26 Apr 2015

arxiv: v1 [cond-mat.supr-con] 26 Apr 2015 Transient dynamics of a superconducting nonlinear oscillator arxiv:5.6883v [cond-mat.supr-con] 6 Apr 5 P. Bhupathi,, Peter Groszkowski, M.P. DeFeo, Matthew Ware, Frank K. Wilhelm,, 3 and B.L.T. Plourde

More information

IbIs Curves as a useful sensor diagnostic

IbIs Curves as a useful sensor diagnostic IbIs Curves as a useful sensor diagnostic Tarek Saab November 7, 999 Abstract The IbIs plot is a very useful diagnostic for understanding the the behaviour and parameters of a TES as well as extracting

More information

Preamplifier in 0.5µm CMOS

Preamplifier in 0.5µm CMOS A 2.125 Gbaud 1.6kΩ Transimpedance Preamplifier in 0.5µm CMOS Sunderarajan S. Mohan Thomas H. Lee Center for Integrated Systems Stanford University OUTLINE Motivation Shunt-peaked Amplifier Inductor Modeling

More information

XI. Bolometers Principle XII. Bolometers Response. This lecture course follows the textbook Detection of

XI. Bolometers Principle XII. Bolometers Response. This lecture course follows the textbook Detection of Detection of Light XI. Bolometers Principle XII. Bolometers Response This lecture course follows the textbook Detection of Light 23-3-2018 by George Rieke, Detection Cambridge of Light Bernhard Brandl

More information

Eugenio Monticone. Nanoscience and Materials Division Istituto Nazionale di Ricerca Metrologica

Eugenio Monticone. Nanoscience and Materials Division Istituto Nazionale di Ricerca Metrologica Eugenio Monticone Nanoscience and Materials Division Istituto Nazionale di Ricerca Metrologica Eugenio Eugenio Monticone Monticone - - Workshop Workshop on on Axion Axion Physics Physics and and Experiments

More information

Ir TES electron-phonon thermal conductance and single photon detection

Ir TES electron-phonon thermal conductance and single photon detection Ir TES electron-phonon thermal conductance and single photon detection D. Bagliani, F. Gatti, M. Ribeiro Gomes, L. Parodi, L. Ferrari and R. Valle I.N.F.N. of Genoa, Via Dodecaneso, 33, 16146 Genova, Italy

More information

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design

More information

Testing axion physics in a Josephson junction environment

Testing axion physics in a Josephson junction environment Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University of London 1 Testing axion physics in a Josephson junction environment Christian Beck Queen Mary, University

More information

SUPERCONDUCTING MATERIALS

SUPERCONDUCTING MATERIALS SUPERCONDUCTING MATERIALS Superconductivity - The phenomenon of losing resistivity when sufficiently cooled to a very low temperature (below a certain critical temperature). H. Kammerlingh Onnes 1911 Pure

More information

Measurements of ultralow temperatures

Measurements of ultralow temperatures Measurements of ultralow temperatures Anssi Salmela 1 Outline Motivation Thermometry below 1K Methods below 1K (Adiabatic melting experiment) 2 Motivation Why tedious refrigeration is worthwhile? Reduced

More information

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving

Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Presented at the COMSOL Conference 2009 Milan University of Brescia Department of Electronics for Automation Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving Marco Baù, VF V.

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Kemppinen, Antti

More information

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this

More information

Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device

Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device Detection of Highly Enriched Uranium Using a Pulsed IEC Fusion Device R.F. Radel, R.P. Ashley, G.L. Kulcinski, and the UW-IEC Team US-Japan Workshop May 23, 2007 Outline Motivation for pulsed IEC research

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials *

Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials * Qubit circuit for advanced materials evaluation 1 Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials * Jeffrey S Kline, 1 Haohua Wang, 2 Seongshik Oh, 1 John M Martinis

More information

Beam Diagnostics for RIBF in RIKEN

Beam Diagnostics for RIBF in RIKEN Beam Diagnostics for RIBF in RIKEN T. Watanabe, M. Fujimaki, N. Fukunishi, M. Kase, M. Komiyama, N. Sakamoto, H. Watanabe, K. Yamada and O. Kamigaito RIKEN Nishina Center R. Koyama Sumitomo Heavy Industries

More information

Static flux bias of a flux qubit using persistent current trapping

Static flux bias of a flux qubit using persistent current trapping Static flux bias of a flux qubit using persistent current trapping Maria Gabriella Castellano 1, Fabio Chiarello 1, Guido Torrioli 1 Pasquale Carelli 2 1 Istituto di Fotonica e Nanotecnologie, CNR, via

More information

Decoherence in Josephson-junction qubits due to critical-current fluctuations

Decoherence in Josephson-junction qubits due to critical-current fluctuations PHYSICAL REVIEW B 70, 064517 (2004) Decoherence in Josephson-junction qubits due to critical-current fluctuations D. J. Van Harlingen, 1 T. L. Robertson, 2 B. L. T. Plourde, 2 P. A. Reichardt, 2 T. A.

More information

Developing a commercial superconducting quantum annealing processor

Developing a commercial superconducting quantum annealing processor Developing a commercial superconducting quantum annealing processor 30th nternational Symposium on Superconductivity SS 2017 Mark W Johnson D-Wave Systems nc. December 14, 2017 ED4-1 Overview ntroduction

More information

Nonlinear multilevel dynamics of a coupled SQUID ring-resonator system in the hysteretic regime

Nonlinear multilevel dynamics of a coupled SQUID ring-resonator system in the hysteretic regime Loughborough University Institutional Repository Nonlinear multilevel dynamics of a coupled SQUID ring-resonator system in the hysteretic regime This item was submitted to Loughborough University's Institutional

More information

D/A-Converters. Jian-Jia Chen (slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany

D/A-Converters. Jian-Jia Chen (slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany 12 D/A-Converters Jian-Jia Chen (slides are based on Peter Marwedel) Informatik 12 Germany Springer, 2010 2014 年 11 月 12 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

More information

Characterization of high temperature solar thermal selective absorber coatings at operation temperature

Characterization of high temperature solar thermal selective absorber coatings at operation temperature Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000 000 www.elsevier.com/locate/procedia SolarPACES 2013 Characterization of high temperature solar thermal selective absorber coatings

More information

The GERDA Phase II detector assembly

The GERDA Phase II detector assembly The GERDA Phase II detector assembly Tobias Bode 1, Carla Cattadori 2, Konstantin Gusev 1, Stefano Riboldi 2, Stefan Schönert 1, Bernhard Schwingenheuer 3 und Viktoria Wagner 3 for the GERDA collaboration

More information

BUREAU INTERNATIONAL DES POIDS ET MESURES. Comparison of Quantum Hall Effect resistance standards of the PTB and the BIPM

BUREAU INTERNATIONAL DES POIDS ET MESURES. Comparison of Quantum Hall Effect resistance standards of the PTB and the BIPM BUREAU INTERNATIONAL DES POIDS ET MESURES Comparison of Quantum Hall Effect resistance standards of the PTB and the BIPM on-going comparison BIPM.EM-K12 Report on the 2013 on-site comparison Final Report

More information

Manual. CBT Sensor H3L3 v1.0. Updates to this manual found at:

Manual. CBT Sensor H3L3 v1.0. Updates to this manual found at: Manual CBT Sensor H3L3 v1.0 This manual describes the handling and assembly of CBT sensor provided by Aivon Oy, Finland. Further information: Aivon Oy Tietotie 3, FI-02150 Finland tel. +358-400-265501

More information

Temperature Measurement

Temperature Measurement MECE 3320 Measurements & Instrumentation Temperature Measurement Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Introduction Temperature is one of the most

More information

Nanoelectronic Thermoelectric Energy Generation

Nanoelectronic Thermoelectric Energy Generation Nanoelectronic Thermoelectric Energy Generation Lourdes Ferre Llin l.ferre-llin.1@research.gla.ac.uk 1 Overview: Brief introduction on Thermoelectric generators. Goal of the project. Fabrication and Measurements

More information

A Radio For Hidden Photon Dark Matter

A Radio For Hidden Photon Dark Matter A Radio For Hidden Photon Dark Matter Saptarshi Chaudhuri Stanford University LTD-16 July 22, 2015 Co-Authors: Kent Irwin, Peter Graham, Harvey Moseley, Betty Young, Dale Li, Hsiao-Mei Cho, Surjeet Rajendran,

More information

Calibrating the Thermal Camera

Calibrating the Thermal Camera 1 of 5 4/19/2012 5:33 AM from photonics.com: 12/01/2009 http://www.photonics.com/article.aspx?aid=40679 Calibrating the Thermal Camera As thermal cameras gain ground in the commercial market, testing becomes

More information

arxiv: v1 [physics.ins-det] 21 Feb 2017

arxiv: v1 [physics.ins-det] 21 Feb 2017 arxiv:170.0645v1 [physics.ins-det] 1 Feb 017 Magnetic cooling for microkelvin nanoelectronics on a cryofree platform M. Palma, 1, a) D. Maradan, 1,, a) L. Casparis, 1, 3 T.-M. Liu, 1, 4 F. Froning, 1 1,

More information

The quantised Hall resistance as a resistance standard

The quantised Hall resistance as a resistance standard Federal Department of Justice and Police FDJP Federal Office of Metrology METAS The quantised Hall resistance as a resistance standard Blaise Jeanneret The quantised Hall resistance (QHR) as a resistance

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

Superconducting devices based on coherent operation of Josephson junction arrays above 77K

Superconducting devices based on coherent operation of Josephson junction arrays above 77K Electronic Devices, Invited talk, ISS 2017, Tokyo, Japan Superconducting devices based on coherent operation of Josephson junction arrays above 77K Boris Chesca Physics Department, Loughborough University,

More information

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and Lecture 6. Josephson junction circuits Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and I(t) its only destination is as supercurrent through the

More information

Shot Noise and the Non-Equilibrium FDT

Shot Noise and the Non-Equilibrium FDT Shot Noise and the Non-Equilibrium FDT Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets Ronald Agustsson Josiah Hartzell, Scott Storms RadiaBeam Technologies, LLC Santa Monica, CA US DOE SBIR Phase I Contract #

More information

HTc-SQUID BEAM CURRENT MONITOR AT THE RIBF

HTc-SQUID BEAM CURRENT MONITOR AT THE RIBF HTc-SQUID BEAM CURRENT MONITOR AT THE RIBF T. Watanabe, N. Fukunishi, M. Kase, RIKEN, Wako, Japan S. Inamori, K. Kon, TEP CorporationI, Katsushika, Japan Abstract For the purpose of measuring the DC current

More information

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung Braunschweiger Supraleiter-Seminar Seminar Qubits: Supraleitende Quantenschaltungen (i) Grundlagen und Messung Jens Könemann, Bundesallee 100, 38116 Braunschweig Q Φ 26. Mai 0/ 16 Braunschweiger Supraleiter-Seminar

More information