5.80 Small-Molecule Spectroscopy and Dynamics

Size: px
Start display at page:

Download "5.80 Small-Molecule Spectroscopy and Dynamics"

Transcription

1 MIT OpenCourseWare Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit:

2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1976 Closed Book Slide Rules and Calculators Permitted Examination #1 ANSWERS March 1, 1976 Answer any THREE of the four questions. You may work a fourth problem for extra credit. All work will be graded but no total grade will exceed 80 points. 1. A. (10 points) Give a concise statement of Hund s three rules. First rule: The lowest energy state belonging to a configuration has maximum S. Second Rule: Of the states of maximum spin, the lowest term has maximum L. Third Rule: The lowest J state of the lowest term is the one with maximum J for a more than half-filled shell and minimum J for less than half-filled shell. None of the Hund s rules apply to any but the lowest energy term belonging to a configuration. B. (10 points) State the definition of a vector operator. B is a vector with respect to A if [A i, B j ] = ǫ i jk iħb k C. (10 points) If B and C are vector operators with respect to A, then what do you know about matrix elements of B C in the AM A basis? B C is scalar with respect to A, therefore A M A B C AM A = δ A Aδ MA M A A B C A independent of M A. D. ( 5 points) The atomic spin-orbit Hamiltonian has the form H SO = ξ(r i )l i s i i Classify H SO as vector or scalar with respect to J, L, and S. State whether H SO is diagonal in the JM J LS or LM L S M S basis. H SO is scalar, vector, vector with respect to J, L, S. H SO is diagonal with respect to J and M J but not L and S in the JM J LS basis but diagonal in nothing in the LM L S M S basis.

3 5.76 Exam #1 ANSWERS March 1, 1976 page. Consider the following multiplet transition array: J? Lower State (L, L )??? (180) (16) (0) Upper State (L,S )?? (40) (16) (310) Intensities are in parentheses above transition frequencies in cm 1 ; line separations in cm 1 are given between relevant transition frequencies. A. (10 points) Use the Landé interval rule E(L, S, J) E(L, S, J 1) = ζ(nls )J to determine J and J values. Rather than list the J and J assignments of each line, only list J and J for the line observed to be most intense and for the line observed to be least intense. Consider upper state term separations first Upper state J ranges 5 3 Lower state: E(J MAX ) E(J MAX 1) J MAX = = = E(J MAX 1) E(J MAX ) J MAX J MAX = = J MAX lower state J ranges 4 Most intense line cm 1 in J = 4 J = 5 Least intense line cm 1 in J = 4 J = 3 B. (10 points) Use the range of J and J and the intensity distribution (i.e., that the most intense transition is not ΔJ = 0) to determine the term symbols ( S +1 L) for the upper and lower states. Assume ΔS = 0. Range of J implies either S = 1, L = 4, L = 3 or L = 1, S = 4, S = 3 The second possibility is ΔS 0 forbidden. Upper state is 3 G, Lower state is 3 F.

4 5.76 Exam #1 ANSWERS March 1, 1976 page 3 C. ( 5 points) Is the upper state regular (highest J at highest term energy) or inverted (highest J at lowest term energy)? Is the lower state regular or inverted? [Partial energy level diagrams might be helpful here.] 3 G J = 5 3 G J = J = 3 3 F upper state regular J = 4 3 F lower state inverted J = J = 4 3. A. ( 5 points) List the L-S terms that arise from the (ns)(np) and (ns) (np) configurations. [HINT: (np) gives 1 S, 3 P, 1 D; to get sp couple an s electron to these three states.] (ns)(np) S, P, 4 P, D (ns) (np) P B. ( 5 points) Which configuration gives rise to odd terms and which to even? (ns)(np) is even because Σl i = (ns) (np) is odd because Σl i = 1 C. ( 5 points) List the electric dipole allowed transitions between terms of the sp and s p configurations. (Ignore fine-structure splitting of L-S terms into J-states.) S P P P D P are the allowed transitions. D. (10 points) Construct qualitative energy level diagrams on which you display all allowed J J components of P S, P P, and P D transitions. Indicate which J J line you would expect to be strongest for each of these three transitions. J J J 5/ 3/ D P 3/ 1/ S 1/ P 3/ 3/ 3/ 1/ 1/ 1/ Strongest Strongest Strongest 3/ - 5/ 3/ - 3/ 3/ - 1/

5 5.76 Exam #1 ANSWERS March 1, 1976 page 4 4. (5 points) Calculate transition probabilities for the two transitions given the following information: nsnp 1 P 10 (np) 1 S 00 nsnp 1 P 10 (np) 1 D 0 1 P 10 = J = 1, M J = 0, L = 1, S = = s0 p0 + s0 + p0 1 S 00 J = 0, M J = 0, L = 0, S = = 3 p1 p p1 + p p0 + p0 1 D p1+ p p1 p p0+ p0 The electric dipole transition moment operator, µ, does not operate on spin coordinates, is a one-electron operator, and is a vector with respect to l i. nsnp (np) transitions are Δl =+1 processes. The relevant Δl =+1 matrix elements, as given by the Wigner-Eckart theorem for vector operators are 1 1 n,l = 1, m l = 1 (µ + + µ ) n,l = 0, m l = 0 = µ + (ns) n,l = 1, m l = 0 µ z n,l = 0, m l = 0 = µ + (ns) 1 1 n,l = 1, m l = 1 (µ ++ µ ) n,l = 0, m l = 0 =+ µ + (ns) where µ + (ns) is the reduced matrix element np µ ns.

6 5.76 Exam #1 ANSWERS March 1, 1976 page 5 Since µ is a one electron operator, the two-electron Slaters must match for one spin-orbital and must have identical spin in the other. This means we need only consider part of 1 S 00 and 1 D 0. 1 S p0+ p0 1 D 0 6 p0+ p0 because the p1 + p 1 and p1 p 1 + Slaters differ from the s0 p0 + and s0 + p0 Slaters by two spin-orbitals. So we do not even need to evaluate matrix elements to get the ratio of transition probabilities Actually evaluating matrix elements gives ( ) 1 1 P 1 10 S = ( = P 1 ) D [ ] 1 [ ] 1 P s0 p0 + p0 + s0 + p µ 1 S 00 = µ p0 p0 µ p0 6 1 [ = µ + (ns) µ + (ns) ] = µ + (ns) 6 6 Probability is 1 µ = 3 µ +(ns) = 4 3 µ +(ns) for P S for P D Show all your work including false starts. If you are unable to express the transition probabilities in terms of µ + (ns), lavish partial credit will be given for the ratio of transition probabilities 1 P 1 S P 10 1 D 00

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.8 Small-Molecule Spectroscopy and Dynamics Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Lecture #7: Many e Atoms. energly levels eigenstates transition intensities

Lecture #7: Many e Atoms. energly levels eigenstates transition intensities 5.76 Lecture #7 //94 Page Outline of approach: Configuration which L S J states? H eff [ζ, F k, G k ] alternative Limiting Case Coupling Schemes L S J vs. j j J off-diagonal ζ vs. F Lecture #7: Many e

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.61 Physical Chemistry Exam III (1) PRINT your name on the cover page. (2) It is suggested that you READ THE ENTIRE EXAM before

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry

5.61 Physical Chemistry Final Exam 12/16/09. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry 5.6 Physical Chemistry Final Exam 2/6/09 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.6 Physical Chemistry Final Examination () PRINT your name on the cover page. (2) It

More information

CHAPTER 8 Atomic Physics

CHAPTER 8 Atomic Physics CHAPTER 8 Atomic Physics 8.1 Atomic Structure and the Periodic Table 8.2 Total Angular Momentum 8.3 Anomalous Zeeman Effect What distinguished Mendeleev was not only genius, but a passion for the elements.

More information

( ) dσ 1 dσ 2 + α * 2

( ) dσ 1 dσ 2 + α * 2 Chemistry 36 Dr. Jean M. Standard Problem Set Solutions. The spin up and spin down eigenfunctions for each electron in a many-electron system are normalized and orthogonal as given by the relations, α

More information

ΑΜ Α and ΒΜ Β angular momentum basis states to form coupled ΑΒCΜ C basis states RWF Lecture #4. The Wigner-Eckart Theorem

ΑΜ Α and ΒΜ Β angular momentum basis states to form coupled ΑΒCΜ C basis states RWF Lecture #4. The Wigner-Eckart Theorem MIT Department of Chemistry 5.74, Spring 2004: Introductory Quantum Mechanics II Instructor: Prof. Robert Field 5.74 RWF Lecture #4 4 The Wigner-Ecart Theorem It is always possible to evaluate the angular

More information

Multielectron Atoms.

Multielectron Atoms. Multielectron Atoms. Chem 639. Spectroscopy. Spring 00 S.Smirnov Atomic Units Mass m e 1 9.109 10 31 kg Charge e 1.60 10 19 C Angular momentum 1 1.055 10 34 J s Permittivity 4 0 1 1.113 10 10 C J 1 m 1

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Atomic Spectroscopy II

Atomic Spectroscopy II Applied Spectroscopy Atomic Spectroscopy II Multielectron Atoms Recommended Reading: Banwell And McCash Chapter 5 The Building-Up (aufbau) Principle How do the electrons in multi-electron atoms get distributed

More information

PHYSICS 220 : GROUP THEORY FINAL EXAMINATION SOLUTIONS

PHYSICS 220 : GROUP THEORY FINAL EXAMINATION SOLUTIONS PHYSICS 0 : GROUP THEORY FINAL EXAMINATION SOLUTIONS This exam is due in my office, 5438 Mayer Hall, at 9 am, Monday, June 6. You are allowed to use the course lecture notes, the Lax text, and the character

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 8: Alkali metal spectra CHE_P8_M8 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Multi-electron

More information

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted.

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted. Chem 4502 Quantum Mechanics & Spectroscopy (Jason Goodpaster) Exam 4 Review Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be

More information

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found.

Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. Chapter 2 Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation Can Not be Found. In applying quantum mechanics to 'real' chemical problems, one is usually faced with a Schrödinger

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

Chemistry 21b Final Examination

Chemistry 21b Final Examination Chemistry 21b Final Examination Out: 11 March 2011 Due: 16 March 2011, 5 pm This is an open book examination, and so you may use McQuarrie or Harris and Bertolucci along with the posted Lecture Notes and

More information

Determine the Z transform (including the region of convergence) for each of the following signals:

Determine the Z transform (including the region of convergence) for each of the following signals: 6.003 Homework 4 Please do the following problems by Wednesday, March 3, 00. your answers: they will NOT be graded. Solutions will be posted. Problems. Z transforms You need not submit Determine the Z

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Physics 221B Spring 2017 Notes 32 Elements of Atomic Structure in Multi-Electron Atoms

Physics 221B Spring 2017 Notes 32 Elements of Atomic Structure in Multi-Electron Atoms Copyright c 2017 by Robert G. Littlejohn Physics 221B Spring 2017 Notes 32 Elements of Atomic Structure in Multi-Electron Atoms 1. Introduction In these notes we combine perturbation theory with the results

More information

CHEM- 457: Inorganic Chemistry

CHEM- 457: Inorganic Chemistry CHEM- 457: Inorganic Chemistry Midterm I March 13 th, 2014 NAME This exam is comprised of six questions and is ten pages in length. Please be sure that you have a complete exam and place your name on each

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 11, 016 (8:30 a.m. - 9:45 a.m.) PLACE: RB 306 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions:

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

5.111 Lecture Summary #7 Wednesday, September 17, 2014

5.111 Lecture Summary #7 Wednesday, September 17, 2014 5.111 Lecture Summary #7 Wednesday, September 17, 2014 Readings for today: Section 1.12 Orbital Energies (of many-electron atoms), Section 1.13 The Building-Up Principle. (Same sections in 5 th and 4 th

More information

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015 Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015 Next review time for the exam: December 2nd between 14:00-16:00 in my room. (This info is also available on the course homepage.) Examinator:

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Atomic Physics 3 rd year B1

Atomic Physics 3 rd year B1 Atomic Physics 3 rd year B1 P. Ewart Lecture notes Lecture slides Problem sets All available on Physics web site: http:www.physics.ox.ac.uk/users/ewart/index.htm Atomic Physics: Astrophysics Plasma Physics

More information

Chemistry 3502/4502. Exam III. March 28, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam III. March 28, ) Circle the correct answer on multiple-choice problems. A Chemistry 352/452 Exam III March 28, 25 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the short-answer

More information

I. CSFs Are Used to Express the Full N-Electron Wavefunction

I. CSFs Are Used to Express the Full N-Electron Wavefunction Chapter 11 One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N- Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in Particular. The Slater-Condon

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

takes the values:, +

takes the values:, + rof. Dr. I. Nasser hys- (T-) February, 4 Angular Momentum Coupling Schemes We have so far considered only the coupling of the spin and orbital momentum of a single electron by means of the spin-orbit interaction.

More information

Design and Analysis of Algorithms April 16, 2015 Massachusetts Institute of Technology Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Quiz 2

Design and Analysis of Algorithms April 16, 2015 Massachusetts Institute of Technology Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Quiz 2 Design and Analysis of Algorithms April 16, 2015 Massachusetts Institute of Technology 6.046J/18.410J Profs. Erik Demaine, Srini Devadas, and Nancy Lynch Quiz 2 Quiz 2 Do not open this quiz booklet until

More information

A.1 Alkaline atoms in magnetic fields

A.1 Alkaline atoms in magnetic fields 164 Appendix the Kohn, virial and Bertrand s theorem, with an original approach. Annex A.4 summarizes elements of the elastic collisions theory required to address scattering problems. Eventually, annex

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

362 Lecture 6 and 7. Spring 2017 Monday, Jan 30

362 Lecture 6 and 7. Spring 2017 Monday, Jan 30 362 Lecture 6 and 7 Spring 2017 Monday, Jan 30 Quantum Numbers n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to (infinity) l is the angular

More information

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds

Organic Chemistry. Review Information for Unit 1. Atomic Structure MO Theory Chemical Bonds Organic Chemistry Review Information for Unit 1 Atomic Structure MO Theory Chemical Bonds Atomic Structure Atoms are the smallest representative particle of an element. Three subatomic particles: protons

More information

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms Copyright c 2017 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms 1. Introduction The Zeeman effect concerns the interaction of atomic systems with

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals Laporte Selection Rule Polarization Dependence Spin Selection Rule 1 Laporte Selection Rule We first apply this

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

Simple Harmonic Motion Concept Questions

Simple Harmonic Motion Concept Questions Simple Harmonic Motion Concept Questions Question 1 Which of the following functions x(t) has a second derivative which is proportional to the negative of the function d x! " x? dt 1 1. x( t ) = at. x(

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 2: LONELY ATOMS - Systems of electrons - Spin-orbit interaction and LS coupling - Fine structure - Hund s rules - Magnetic susceptibilities Reference books: -

More information

Lecture 7: Electronic Spectra of Diatomics

Lecture 7: Electronic Spectra of Diatomics Lecture 7: Electronic Spectra of Diatomics. Term symbols for diatomic molecules Fortrat parabola, (Symmetric Top). Common molecular models for diatomics 3. Improved treatments 4. Quantitative absorption

More information

ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University

ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University NAME: PUID: : ECE 305 Exam 2: Spring 2017 March 10, 2017 Muhammad Alam Purdue University This is a closed book exam You may use a calculator and the formula sheet Following the ECE policy, the calculator

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7. (9 pts)

More information

Fine Structure of the metastable a 3 Σ u + state of the helium molecule

Fine Structure of the metastable a 3 Σ u + state of the helium molecule Fine Structure of the metastable a 3 Σ u + state of the helium molecule Rui Su and Charles Markus 12/4/2014 Abstract The original article written by Lichten, McCusker, and Vierima reported the measurement

More information

Paradox and Infinity Problem Set 6: Ordinal Arithmetic

Paradox and Infinity Problem Set 6: Ordinal Arithmetic 24.118 Paradox and Infinity Problem Set 6: Ordinal Arithmetic You will be graded both on the basis of whether your answers are correct and on the basis of whether they are properly justified. There is

More information

Atomic spectra of one and two-electron systems

Atomic spectra of one and two-electron systems Atomic spectra of one and two-electron systems Key Words Term symbol, Selection rule, Fine structure, Atomic spectra, Sodium D-line, Hund s rules, Russell-Saunders coupling, j-j coupling, Spin-orbit coupling,

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Spring 017 Exam1 017-0-08 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use

More information

Last Name or Student ID

Last Name or Student ID 12/05/18, Chem433 Final Exam answers Last Name or Student ID 1. (2 pts) 12. (3 pts) 2. (6 pts) 13. (3 pts) 3. (3 pts) 14. (2 pts) 4. (3 pts) 15. (3 pts) 5. (4 pts) 16. (3 pts) 6. (2 pts) 17. (15 pts) 7.

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS Name(Last/First): GUID: DEPARTMENT OF MATHEMATICS Ma322005(Sathaye) - Final Exam Spring 2017 May 3, 2017 DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO. Be sure to show all work and justify your

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS Name(Last/First): GUID: DEPARTMENT OF MATHEMATICS Ma322005(Sathaye) - Final Exam Spring 2017 May 3, 2017 DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO. Be sure to show all work and justify your

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

22.02 Intro to Applied Nuclear Physics

22.02 Intro to Applied Nuclear Physics .0 Intro to Applied Nuclear Physics Mid-Term Eam Thursday March 8, 00 Name:.................. Problem : Short Questions 40 points. What is an observable in quantum mechanics and by which mathematical object

More information

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling Colors of Co(III) solutions Electronic-Vibrational Coupling Vibronic Coupling Because they have g g character, the d-d transitions of complees of the transition metals are forbidden (LaPorte forbidden).

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2.

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2. 8 1. ELEMENTS OF RARE EARTH MAGNETISM 1.2 Rare earth atoms The starting point for the understanding of the magnetism of the rare earths is the description of the electronic states, particularly of the

More information

Last Name or Student ID

Last Name or Student ID 12/9/15, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 11. (4 pts) 2. (6 pts) 12. (3 pts) 3. (2 pts) 13. (4 pts) 4. (3 pts) 14. (3 pts) 5. (5 pts) 15. (3 pts) 6. (3 pts) 16. (7 pts) 7. (12 pts)

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 ANSWERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 ANSWERS Reading Assignment: Bernath, Chapter 5 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, 994 Problem Set # ANSWERS The following handouts also contain useful information:

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

Select/Special Topics in Atomic Physics Prof. P.C. Deshmukh Department Of Physics Indian Institute of Technology, Madras

Select/Special Topics in Atomic Physics Prof. P.C. Deshmukh Department Of Physics Indian Institute of Technology, Madras Select/Special Topics in Atomic Physics Prof. P.C. Deshmukh Department Of Physics Indian Institute of Technology, Madras Lecture - 37 Stark - Zeeman Spectroscopy Well, let us continue our discussion on

More information

9 Electron orbits in atoms

9 Electron orbits in atoms Physics 129b Lecture 15 Caltech, 02/22/18 Reference: Wu-Ki-Tung, Group Theory in physics, Chapter 7. 9 Electron orbits in atoms Now let s see how our understanding of the irreps of SO(3) (SU(2)) can help

More information

Chapter 1 - Basic Concepts: atoms

Chapter 1 - Basic Concepts: atoms Chapter 1 - Basic Concepts: atoms Discovery of atomic structure Rutherford (1910) JJ Thomson (1897) Milliken (1909) Rutherford (1911) 1 Symbol p + e - n 0 Mass (amu) 1.0073 0.000549 1.00870 Discovery 1919,

More information

Angular Momentum. Andreas Wacker Mathematical Physics Lund University

Angular Momentum. Andreas Wacker Mathematical Physics Lund University Angular Momentum Andreas Wacker Mathematical Physics Lund University Commutation relations of (orbital) angular momentum Angular momentum in analogy with classical case L= r p satisfies commutation relations

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 18 Title : Fine Structure : multi-electron atoms Lecture 8 Title : Fine Structure : multi-electrn atms Page-0 In this lecture we will cncentrate n the fine structure f the multielectrn atms. As discussed in the previus lecture that the fine structure

More information

Fine structure in hydrogen - relativistic effects

Fine structure in hydrogen - relativistic effects LNPhysiqueAtomique016 Fine structure in hydrogen - relativistic effects Electron spin ; relativistic effects In a spectrum from H (or from an alkali), one finds that spectral lines appears in pairs. take

More information

CHEMISTRY 121 PRACTICE EXAM 2

CHEMISTRY 121 PRACTICE EXAM 2 CHEMISTRY 121 PRACTICE EXAM 2 Slater s Rules 1. For an electron in an [ns np] group, electrons to the right contribute nothing to the screening (S). 2. For an electron in an [ns np] group, other electrons

More information

Multi-Electron Atoms II

Multi-Electron Atoms II Multi-Electron Atoms II LS Coupling The basic idea of LS coupling or Russell-Saunders coupling is to assume that spin-orbit effects are small, and can be neglected to a first approximation. If there is

More information

Electric Dipole Paradox: Question, Answer, and Interpretation

Electric Dipole Paradox: Question, Answer, and Interpretation Electric Dipole Paradox: Question, Answer, and Interpretation Frank Wilczek January 16, 2014 Abstract Non-vanishing electric dipole moments for the electron, neutron, or other entities are classic signals

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis.

q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis from any basis. Exam Review Material covered by the exam [ Orthogonal matrices Q = q 1... ] q n. Q T Q = I. Projections Least Squares best fit solution to Ax = b. Gram-Schmidt process for getting an orthonormal basis

More information

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices.

This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Exam review This lecture is a review for the exam. The majority of the exam is on what we ve learned about rectangular matrices. Sample question Suppose u, v and w are non-zero vectors in R 7. They span

More information

only two orbitals, and therefore only two combinations to worry about, but things get

only two orbitals, and therefore only two combinations to worry about, but things get 131 Lecture 1 It is fairly easy to write down an antisymmetric wavefunction for helium since there are only two orbitals, and therefore only two combinations to worry about, but things get complicated

More information

Physics 492 Lecture 19

Physics 492 Lecture 19 Physics 492 Lecture 19 Main points of last lecture: Relativistic transformations Four vectors Invarients, Proper time Inner products of vectors Momentum Main points of today s lecture: Momentum Example:

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 5.1 to 5.2 Electron Spin and Magnetism We have seen that an atomic orbital is described by three

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

0 belonging to the unperturbed Hamiltonian H 0 are known

0 belonging to the unperturbed Hamiltonian H 0 are known Time Independent Perturbation Theory D Perturbation theory is used in two qualitatively different contexts in quantum chemistry. It allows one to estimate (because perturbation theory is usually employed

More information

APPM 2360 Spring 2012 Exam 2 March 14,

APPM 2360 Spring 2012 Exam 2 March 14, APPM 6 Spring Exam March 4, ON THE FRONT OF YOUR BLUEBOOK write: () your name, () your student ID number, () lecture section (4) your instructor s name, and (5) a grading table. You must work all of the

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

Worksheet III. E ion = -Z eff 2 /n 2 (13.6 ev)

Worksheet III. E ion = -Z eff 2 /n 2 (13.6 ev) CHEM 362 SPRING 2017 M. Y. Darensbourg 3 rd Worksheet for Peer Learning Study Groups Worksheet III Useful Formulas: E ion = -Z 2 /n 2 (13.6 ev) μ(s. o. ) = 2 S (S + 1) E ion = -Z eff 2 /n 2 (13.6 ev) Ground

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II August 23, 208 9:00 a.m. :00 p.m. Do any four problems. Each problem is worth 25 points.

More information

Using the PGOPHER program to link experimental spectra with theory Rotations

Using the PGOPHER program to link experimental spectra with theory Rotations Using the PGOPHER program to link experimental spectra with theory Rotations Colin M. Western chool of Chemistry, University of Bristol, Bristol B8 1T, UK Email : C.M.Western@bristol.ac.uk http://pgopher.chm.bris.ac.uk

More information

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014 Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014 Outline Very short review of Schiff theorem Multipole

More information