Cosmic Ray Physics with the MINOS Detectors. Jeff de Jong Oxford Particle Seminar Feb 24, 2009

Size: px
Start display at page:

Download "Cosmic Ray Physics with the MINOS Detectors. Jeff de Jong Oxford Particle Seminar Feb 24, 2009"

Transcription

1 Cosmic Ray Physics with the MINOS Detectors Jeff de Jong Oxford Particle Seminar Feb 24, 2009

2 A Quick ShoutOut This is a brief summary of alot of work from different people within the MINOS collaboration : Eric,Alec,Brian,Stu,Maury,Giles...(to name but a few) My contribution was completed while at the Illinois Institute of Technology in Chicago Illinois 2

3 Seminar Outline The MINOS detectors. Cosmic Rays & muon production Physics Measurements I.Atmospheric muon charge ratio II.Seasonal variations III.Moon & Sun Shadow > Composition? Summary 3

4 The Near Detector Detector Dimensions : 3.8mx4.8mx15m Detector Mass 0.98 kton Location: Fermilab iron/scintillator tracking calorimeter magnetized 1 steel planes <B>~1.3T Scintillating strips 1.0cm x 4.1 cm (Orthogonal Planes) GPS time stamping to synchronize FD to ND OverBurden Cosmic Muon Rate Minimum Energy Average Muon Energy 225 mwe(95m) 30 Hz ~55 GeV 100 GeV The MINOS detectors were optimized for horizontal neutrino induced muons. Since the planes are oriented vertically, this limits zenith angular acceptance of cosmic muons. 4

5 The Far Detector Detector Dimensions : 8mx8mx30m Detector Mass 5.4 kton Location: Soudan, MN ~ 735 km from Fermilab OverBurden Cosmic Muon Rate Minimum Energy Average Muon Energy ~2100mwe(0.72km) 0.5 Hz ~ 730 GeV ~ TeV range Two identical detectors and two depths, we can probe the same physics process at two different energy scales!! 5

6 Cosmic Ray (Muons) In a nut shell : Earths B Field/IMF to observe the muons underground and from these measurements infer cosmic ray and shower composition Satellite experiments What do we expect? decay to µ's Primaries are mostly protons, so there will be an excess of π+ and K+ (over π,k ) R=N / N Balloon experiments Tend to get more + from Ks than s, therefore the more decayed Kaons in the shower (energy dependent) the higher the charge ratio. 5=5 Muon Rate increases with Temperature as more mesons decay over interact! Muons tend to point in the direction of the primary, and the (different) primaries bend (differently) in the various magnetic fields. Surface Detectors Underground Detectors Note: s are produced in conjunction with s so these measurements should help at ν fluxes, as well as shower modelling. (image borrowed from JLAB) 6

7 Let's get to the Physics 7

8 Atmospheric Muon Charge Ratio A little back story : In 2001 R=1.268 ± p(gev)] ~ Flat to 300 GeV!! (Hebbeker & Timmermans) MINOS Far detector publishes R=1.374±0.004 stat syst A large difference a TeV measurement 8

9 Atmospheric Muon Charge Ratio A little back story : In 2001 R= p(gev)] ~ Flat to 300 GeV!! (Hebbeker & Timmermans) MINOS Far detector publishes R=1.374±0.004 stat syst A large difference a TeV scale measurement Is this a true physical Effect? Is the offset a systematic error? 9

10 Atmospheric Muon Charge Ratio A little back story : In 2001 R= p(gev)] ~ Flat to 300 GeV!! (Hebbeker & Timmermans) MINOS Far detector publishes R=1.374±0.004 stat syst A large difference a TeV scale measurement Is this a true physical Effect? Is the offset a systematic error? (New) Minos Near Detector Result R=1.2703± stat. ± syst. Doesn't appear to be a systematic since the ND result is consistent with previous GeV scale measurements? We made a simple toy model. 10

11 Interpretation of the Charge Ratio Increase The differential muon spectrum (Gaisser's formula) dn de 0.14 E 2.7 = 2 cm sr GeV E cos Z GeV 1.1 E cos Z ~ contribution from Kaons 850 GeV ~ contribution from s If we define f and fk to be the fraction of /K that decay with a detected + then πk model R= N N f 1 = 1.1 E cos Z GeV 1 f 1.1 E cos Z 115GeV f K 1.1 E cos Z 850 GeV f K E cos Z 850 GeV Energy (E,0) always appears in conjunction with cos( Z) Assumes f,f are independent of energy. Does not account for solely energy dependent effects. Best Fit f =0.5488±0.0016, f K =0.7021±

12 Seasonal Variation of the Muon Flux density( ) is proportional to 1/Temperature(T) Fraction of ( /K) that decay (to ) vs interact f i = 1 1 DECAY / INTERACT = 1 1 c E i LIFE / i mi Note the similarity with Gaissers's differential muon spectrum. Problem: the observed muons come from different regions of the atmosphere! Find an Effective Temperature N Stratosphere Temperature T eff = n=0 x n T X n W n W nk N n=0 X n W n W nk weighting weighting How does muon rate change? Troposphere R Ground Level R = T T T 12

13 Seasonal Variation Results Far Detector Near Detector Preliminary Compilation of All T =0.881±0.010 stat ±0.015 syst Seasonal Results Large Fraction of mesons are interacting expect T~1 Large Fraction of mesons already decaying, expect T~0 lim X df i dt = fi T Can also observe sudden stratospheric warmings! 13

14 Sun And Moon Shadow Both the sun and the moon have angular diameters on the order of ½. At any given time we know very accurately where the moon and the sun are. Generally use deficit in muon flux(from the moon or sun direction) to determine Pointing Accuracy of your detector. Both near and far detectors have a pointing resolution of ~ 0.6, optimized using a multi muon sample set. Use the moon(sun) earth distance as a spectrometer positively charged protons will get bent west by ~1.6 /Ep[TeV] (between the earth and moon) There will be a deficit of muons then at 1.6 /Ep [TeV] east if the moon position. Location of other deficits base on charge and mass of other primaries (ie He,CNO,pbar) E (FarDet)~10 TeV, ~ TeV at the Near primary 4 years of data at the far detector(seen here) 14

15 Far Detector 1D Results A 1 Dimensional shadow can be fit to the expression N = 1 R 2 m 2 e average muon flux angular radius of moon Resolution term(from multimuon study) a) detector resolution b) geomagnetic effects c)multiple column scattering sun shadow moon shadow 3x10 5 chance probability this is flat =0.41± x10 4 chance probability this is flat =0.41±

16 Far Detector 2D Results Do a likelihood fit to nbin obs x, y, I =2 i=1 [ N i N i N i ln where: Th obs back N Th =N I s x, y i i Flat background Define the quantity: N Th i ] shadowing strength = x, y, 0 x, y, I s =23.5, 5 moon obs Ni =17.5, 4.3 sun 16

17 Summary Slide Increase in charge ratio at the Far detector is consistent with an increase probability that the muons come from Kaons. Seasonal Variation results are also consistent with expectations linked to detector depth and the assumed K content. Shadows of both the moon and sun can be observed in 1 and 2 dimensions, but deflection is too small for composition measurement. Near Detector should give a better handle due to lower cosmic ray primary energy. 17

The Multiple Muon Charge Ratio in MINOS Far Detector

The Multiple Muon Charge Ratio in MINOS Far Detector The Multiple Muon Charge Ratio in MINOS Far Detector C. M. Castromonte and R. A. Gomes Instituto de Física - Universidade Federal de Goiás, Brazil M. C. Goodman and P. Schreiner Argonne National Laboratory,

More information

Experimental results on the atmospheric muon charge ratio

Experimental results on the atmospheric muon charge ratio DOI:.51/epjconf/2016123007 Experimental results on the atmospheric muon charge ratio N. Mauri a Dipartimento di Fisica e Astronomia dell Università di Bologna and INFN, Sezione di Bologna, Viale Berti

More information

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon Presented by: Yupeng Xu ( ETH Zürich / L3+C collaboration) PhD Students Seminar, PSI, October 1-2, 2003 The L3+C Experiment

More information

Neutrinos & the MINOS Experiment

Neutrinos & the MINOS Experiment Neutrinos & the MINOS Experiment Krzysztof Wojciech Fornalski WF PW 2007 supervisor: Dr Katarzyna Grzelak UW Overview of the talk neutrino theory neutrino beam & MINOS experiment software analysis neutrino

More information

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 MINOS Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 2 Overview and Current Status Beam Detectors Analyses Neutrino Charged Current

More information

The atmospheric muon charge ratio: a probe to constrain the atmospheric ν µ / ν µ ratio

The atmospheric muon charge ratio: a probe to constrain the atmospheric ν µ / ν µ ratio The atmospheric muon charge ratio: a probe to constrain the atmospheric ν µ / ν µ ratio Nicoletta Mauri INFN - Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy DOI: http://dx.doi.org/.3204/desy-proc-2016-05/11

More information

Measurement of the CR e+/e- ratio with ground-based instruments

Measurement of the CR e+/e- ratio with ground-based instruments Measurement of the CR e+/e- ratio with ground-based instruments Pierre Colin Max-Planck-Institut für Physik CR Moon shadow MPP retreat - 21 January 2014 Cosmic ray electrons Observation: Above the atmosphere:

More information

MINOS Oscillation Results from The First Year of NuMI Beam Operation

MINOS Oscillation Results from The First Year of NuMI Beam Operation 1 MINOS Oscillation Results from The First Year of NuMI Beam Operation Masaki Ishitsuka, Indiana University For the MINOS Collaboration Kyoto University, July 3 rd, 006 Overview of the talk Introduction

More information

MINOS experiment at Fermilab

MINOS experiment at Fermilab MINOS experiment at Fermilab Tom Kafka for the MINOS Collaboration Argonne Athens Benedictine Brookhaven Caltech Cambridge Campinas Fermilab Harvard IIT Indiana Minnesota (Minneapolis; Duluth) Otterbein

More information

Latest results from MINOS

Latest results from MINOS Latest results from MINOS 1. Overview. Making neutrinos 3. Detecting neutrinos 4. Results 5. The future David E. Jaffe Brookhaven National Laboratory for the MINOS Collaboration Argonne Athens Benedictine

More information

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Cosmic Rays Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Nobel Prize in 1936 Origin of high energy cosmic rays is still not completely understood

More information

New Results for ν µ ν e oscillations in MINOS

New Results for ν µ ν e oscillations in MINOS New Results for ν µ ν e oscillations in MINOS Jelena Ilic Rutherford Appleton Lab 4/28/10 RAL PPD Seminar 1 Neutrino Mixing Mass eigenstates flavour eigenstates Maki-Nakagawa-Sakata: Flavour composition

More information

UC Irvine UC Irvine Previously Published Works

UC Irvine UC Irvine Previously Published Works UC Irvine UC Irvine Previously Published Works Title Study of the Shadows of the Moon and the Sun with VHE Cosmic Rays Permalink https://escholarship.org/uc/item/7xp0j97v Authors Atkins, R Benbow, W Berley,

More information

Atmospheric Neutrinos MINOS MINOS Far Detector Type of Atmospheric Neutrinos at MINOS Two MINOS Atmospheric Analyses.

Atmospheric Neutrinos MINOS MINOS Far Detector Type of Atmospheric Neutrinos at MINOS Two MINOS Atmospheric Analyses. Atmospheric Neutrinos MINOS MINOS Far Detector Type of Atmospheric Neutrinos at MINOS Two MINOS Atmospheric Analyses 1 Produced in the atmosphere from interactions of primary cosmic rays. p + N π ± + X

More information

The CNGS neutrino beam

The CNGS neutrino beam 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06) 1-5 October 2006 Siena, Italy ν The CNGS neutrino beam G. Sirri INFN Bologna CNGS (CERN Neutrinos to Gran Sasso) The project

More information

seasonal variations of atmospheric leptons as a probe for charm production

seasonal variations of atmospheric leptons as a probe for charm production seasonal variations of atmospheric leptons as a probe for charm production WIPAC & Department of Astronomy University of Wisconsin - Madison ISVHECRI 2014 CERN - August 20, 2014

More information

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge An Introduction to Modern Particle Physics Mark Thomson University of Cambridge Science Summer School: 30 th July - 1 st August 2007 1 Course Synopsis Introduction : Particles and Forces - what are the

More information

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser Neutrinos from the Milky Way 18th Symposium on Astroparticle Physics in the Netherlands 23-10-2013 Erwin Visser Outline How are these neutrinos produced? Why look for them? How to look for them The ANTARES

More information

First MINOS Results from the NuMI Beam

First MINOS Results from the NuMI Beam 1 First MINOS Results from the NuMI Beam Masaki Ishitsuka, Indiana University For the MINOS Collaboration KEK Seminar April 17th, 2006 2 Overview of the talk Introduction to the MINOS experiment MINOS

More information

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA University of Minnesota Minneapolis, Minnesota 5555, USA E-mail: pawloski@physics.umn.edu NOvA is a long-baseline accelerator neutrino experiment that studies neutrino oscillation phenomena governed by

More information

Anti-fiducial Muons in MINOS. Matthew Strait. University of Minnesota for the MINOS collaboration

Anti-fiducial Muons in MINOS. Matthew Strait. University of Minnesota for the MINOS collaboration Anti-fiducial Muons in MINOS Matthew Strait University of Minnesota for the MINOS collaboration APS "April" Meeting 15 Feb 2010 The MINOS Experiment A long-baseline accelerator neutrino oscillation experiment

More information

The Shadow of the Moon in IceCube

The Shadow of the Moon in IceCube The Shadow of the Moon in IceCube Laura Gladstone University of Wisconsin, Madison for the IceCube Collaboration Young Scientists Forum 46th Rencontres de Moriond La Thuile, Italy 1 Motivation: we know

More information

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10

A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis: http://area51.berkeley.edu/manuscripts Goals! Perform an all-sky search

More information

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond

MINOS. Physics Program and Construction Status. Karol Lang The University of Texas at Austin. YITP: Neutrinos and Implications for Physics Beyond MINOS Physics Program and Construction Status Karol Lang The University of Texas at Austin YITP: Neutrinos and Implications for Physics Beyond YITP Conference: Neutrinos and Implications The Standard for

More information

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Cosmic Ray panorama.  Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 1912 1932 Cosmic Ray panorama http::// Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1 Pamela : < 0.1 evt year/gev Flux E α α 2.7 / 3.3 Statistical precision

More information

Neutrino-Nucleus Scattering at MINERvA

Neutrino-Nucleus Scattering at MINERvA 1 Neutrino-Nucleus Scattering at MINERvA Elba XIII Workshop: Neutrino Physics IV Tammy Walton Fermilab June 26, 2014 2 MINERvA Motivation Big Picture Enter an era of precision neutrino oscillation measurements.

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Heidi Schellman June 6, 2000 Lots of help from Janet Conrad Charge mass,mev tandard Model of Elementary Particles 3 Generations of Fermions Force Carriers Q u a r k s u d 2/3 2/3

More information

Cosmic Ray Physics with the ARGO-YBJ experiment

Cosmic Ray Physics with the ARGO-YBJ experiment Cosmic Ray Physics with the ARGO-YBJ experiment Ivan De Mitri University of Salento and Istituto Nazionale di Fisica Nucleare Lecce, Italy On behalf of the ARGO-YBJ Collaboration Second Roma International

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

Detecting neutrinos from the next galactic supernova in the NOvA detectors. Andrey Sheshukov DLNP JINR

Detecting neutrinos from the next galactic supernova in the NOvA detectors. Andrey Sheshukov DLNP JINR Detecting neutrinos from the next galactic supernova in the NOvA detectors Andrey Sheshukov DLNP JINR 11 Apr 2018 Supernova neutrino signal detection: SN1987a 23 Feb 1987, 7:35 UTC A burst of 25 neutrino

More information

arxiv: v3 [hep-ex] 24 Nov 2015

arxiv: v3 [hep-ex] 24 Nov 2015 The Results of MINOS and the Future with MINOS+ arxiv:1511.6178v3 [hep-ex] 4 Nov 15 A.Timmons, a,1 a University of Manchester, Department of Physics and Astronomy, Oxford Road, Manchester, M13 9PL, United

More information

Neutrino Oscillation Results from MINOS

Neutrino Oscillation Results from MINOS Neutrino Oscillation Results from MINOS Alexander Himmel Caltech for the MINOS Collaboration IPMU Mini-workshop on Neutrinos, November 8 th 2010 Introduction What is MINOS? Neutrino Physics Oscillation

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

Double Chooz Sensitivity Analysis: Impact of the Reactor Model Uncertainty on Measurement of Sin 2 (2θ 13 )

Double Chooz Sensitivity Analysis: Impact of the Reactor Model Uncertainty on Measurement of Sin 2 (2θ 13 ) Double Chooz Sensitivity Analysis: Impact of the Reactor Model Uncertainty on Measurement of Sin 2 (2θ 13 ) Elizabeth Grace 1 Outline Neutrino Mixing: A Brief Overview Goal of Double Chooz Detector Schematic

More information

STREAM OF DARK MATTER AS A POSSIBLE CAUSE OF THE OPERA CLOCKS SYNCHRONIZATION SIGNALS DELAY

STREAM OF DARK MATTER AS A POSSIBLE CAUSE OF THE OPERA CLOCKS SYNCHRONIZATION SIGNALS DELAY STREAM OF DARK MATTER AS A POSSIBLE CAUSE OF THE OPERA CLOCKS SYNCHRONIZATION SIGNALS DELAY Jean Paul Mbelek 1 1. Sangha Center for Astronomy, Astrophysics and Cosmology, Sangha, Mali Correspondence to:

More information

New Results from the MINOS Experiment

New Results from the MINOS Experiment University College London E-mail: annah@hep.ucl.ac.uk The MINOS experiment is a long-baseline neutrino experiment designed to study neutrino behaviour, in particular the phenomenon of neutrino oscillations.

More information

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration)

Carsten Rott. mps. ohio-state. edu. (for the IceCube Collaboration) Searches for Dark Matter from the Galactic Halo with IceCube Carsten Rott carott @ mps. ohio-state. edu (for the IceCube Collaboration) Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State

More information

Neutrino Oscillations

Neutrino Oscillations 1. Introduction 2. Status and Prospects A. Solar Neutrinos B. Atmospheric Neutrinos C. LSND Experiment D. High-Mass Neutrinos 3. Conclusions Plenary talk given at DPF 99 UCLA, January 9, 1999 Introduction

More information

Neutrino Cross Sections for (Future) Oscillation Experiments. Pittsburgh Flux Workshop December 7, 2012 Deborah Harris Fermilab

Neutrino Cross Sections for (Future) Oscillation Experiments. Pittsburgh Flux Workshop December 7, 2012 Deborah Harris Fermilab Neutrino Cross Sections for (Future) Oscillation Experiments Pittsburgh Flux Workshop December 7, 2012 Deborah Harris Fermilab Outline Simple Toy model of why Cross Sections Matter (2004) 2 Case Studies:

More information

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Carlos Argüelles in collaboration with Gwen de Wasseige, Anatoli Fedynitch, and Ben Jones Based on JCAP07

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

arxiv: v1 [astro-ph] 29 Jun 2008

arxiv: v1 [astro-ph] 29 Jun 2008 The muon charge ratio in cosmic ray air showers arxiv:86.4739v1 [astro-ph] 29 Jun 28 H Rebel a, O Sima b, A Haungs a, C Manailescu b, B Mitrica c, C Morariu b a Institut für Kernphysik, Forschungszentrum

More information

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Search for diffuse cosmic neutrino fluxes with the ANTARES detector Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 1 Overview ANTARES description Full sky searches Special region searches Fermi bubbles

More information

Recent Heavy Flavors results from Tevatron. Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations

Recent Heavy Flavors results from Tevatron. Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations Recent Heavy Flavors results from Tevatron Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations March 27, 2017 Outline Tevatron, CDF and DØ Confirmation

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

Long Baseline Neutrinos

Long Baseline Neutrinos Long Baseline Neutrinos GINA RAMEIKA FERMILAB SLAC SUMMER INSTITUTE AUGUST 5-6, 2010 Lecture 1 Outline Defining Long Baseline Experiment Ingredients Neutrino Beams Neutrino Interactions Neutrino Cross

More information

Publications of Francesco Arneodo: journal articles

Publications of Francesco Arneodo: journal articles Publications of Francesco Arneodo: journal articles Figure 1: Citation report from ISI Web of Science (IF=31.0) [1] E. Aprile et al., First Axion Results from the XENON100 Experiment, arxiv.org (submitted

More information

Seasonal variations of the rate of multiple-muons in the Gran Sasso underground laboratory

Seasonal variations of the rate of multiple-muons in the Gran Sasso underground laboratory Seasonal variations of the rate of multiple-muons in the Gran Sasso underground laboratory F. Ronga 1,a 1 Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, via E.Fermi 40-00044 Frascati,

More information

Atmospheric neutrinos in the context of muon and neutrino radiography

Atmospheric neutrinos in the context of muon and neutrino radiography Earth Planets Space, 62, 195 199, 2010 Atmospheric neutrinos in the context of muon and neutrino radiography Thomas K. Gaisser Bartol Research Institute & Department of Physics and Astronomy, University

More information

Particle Production Measurements at Fermilab

Particle Production Measurements at Fermilab Particle Production Measurements at Fermilab Dr. Nickolas Solomey, IIT and Fermilab co Spokesman of E907 TEV II Astroparticle Physics Conference Univ. of Wisconsin, Madison 28 31 Aug., 2006 Particle Production

More information

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

Accelerator Neutrino Experiments News from Neutrino 2010 Athens Accelerator Neutrino Experiments News from Neutrino 2010 Athens Ed Kearns Boston University Outline Quick overview New result 1: OPERA tau appearance New result 2: MINOS nu- e appearance Looking forward

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors Kate Scholberg, Duke University Chicago, April 2011 OUTLINE - Overview/physics motivation - Event reconstruction

More information

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray

More information

Neutrinos Induced Pion Production in MINERvA

Neutrinos Induced Pion Production in MINERvA Neutrinos Induced Pion Production in MINERvA Aaron Higuera Universidad de Guanajuato, Mexico On behalf of the MINERvA collaboration Outline Neutrinos Induced Pion Production MINERvA Experiment E-938 CC

More information

Cosmic Muons Induced EM Shower in NOνA

Cosmic Muons Induced EM Shower in NOνA Cosmic Muons Induced EM Shower in NOνA Nitin Yadav Bipul Bhuyan, Hongyue Duyang, Sanjib Mishra, Peter Shanahan DAE Symposium IIT Guwahati 10 Dec, 2014 10 Dec, 2014 1 / 17 Outline NOνa detector Motivation

More information

Neutrino interaction systematic errors in MINOS and NOvA

Neutrino interaction systematic errors in MINOS and NOvA Neutrino interaction systematic errors in MINOS and NOvA Mayly Sanchez Iowa State University Argonne National Laboratory Nufact 01 - Williamsburg, VA July 4, 01 MINOS and NOvA in a nutshell Produce a high

More information

Measurement of the neutrino velocity with the OPERA detector in the CNGS beam

Measurement of the neutrino velocity with the OPERA detector in the CNGS beam Measurement of the neutrino velocity with the OPERA detector in the CNGS beam Torben Ferber (torben.ferber@physik.uni-hamburg.de) Hamburg University on behalf of the OPERA collaboration the OPERA collaboration

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing 章飞虹 ZHANG FeiHong zhangfh@ihep.ac.cn Ph.D. student from Institute of High Energy Physics, Beijing INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS 2012 Erice, 23 June 2 July 2012 1 Before Hunting Introduction

More information

EP228 Particle Physics

EP228 Particle Physics EP8 Particle Physics Topic 4 Particle Detectors Department of Engineering Physics University of Gaziantep Course web page www.gantep.edu.tr/~bingul/ep8 Oct 01 Page 1 Outline 1. Introduction. Bubble Chambers

More information

arxiv: v1 [hep-ex] 3 Aug 2012

arxiv: v1 [hep-ex] 3 Aug 2012 Analysis of the MACRO experiment data to compare particles arrival times under Gran Sasso 1 INFN Laboratori Nazionali di Frascati, Frascati Italy Corresponding author: francesco.ronga@lnf.infn.it Francesco

More information

Long Baseline Neutrino Experiments

Long Baseline Neutrino Experiments Physics in Collision, 27/6/2008 Mark Thomson 1 Long Baseline Neutrino Experiments Mark Thomson Cavendish Laboratory University of Cambridge Introduction Neutrino Beams Past Experiments: K2K Current Experiments:

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

The KATRIN experiment

The KATRIN experiment The KATRIN experiment Status and SDS comissioning Philipp Chung-On Ranitzsch for the KATRIN collaboration Insitute for Nuclear Physics, Westfälische Wilhelms-Universität, Münster The KATRIN experiment

More information

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays University of Sofia "St. Kl. Ohridski" E-mail: Venelin.Kozhuharov@cern.ch The ratio R K = Γ(K ± e ± ν)/γ(k ± µ ± ν) provides a very powerful probe for the weak interactions structure. This ratio of decay

More information

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration Cosmic Neutrinos in IceCube Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration HEM KICP UChicago 6/9/2014 1 Outline IceCube capabilities The discovery analysis with updated

More information

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Jutta Schnabel on behalf of the ANTARES collaboration Erlangen Centre for Astroparticle Physics, Erwin-Rommel Str.

More information

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Observation of Reactor Antineutrinos at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Outline Introduction Experimental setup & detector Data-taking & data

More information

Atmospheric muons & neutrinos in neutrino telescopes

Atmospheric muons & neutrinos in neutrino telescopes Atmospheric muons & neutrinos in neutrino telescopes Neutrino oscillations Muon & neutrino beams Muons & neutrinos underground Berlin, 1 October 2009 Tom Gaisser 1 Atmospheric neutrinos Produced by cosmic-ray

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

arxiv: v2 [hep-ph] 23 Jun 2016

arxiv: v2 [hep-ph] 23 Jun 2016 Energy and angular distributions of atmospheric muons at the Earth arxiv:1606.06907v [hep-ph] Jun 016 Prashant Shukla Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. Homi

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

The KASCADE-Grande Experiment

The KASCADE-Grande Experiment The KASCADE-Grande Experiment O. Sima 1 for the KASCADE-Grande Collaboration 2 1 University of Bucharest, Romania 2 https://web.ikp.kit.edu/kascade/ CSSP14 Sinaia 2014 Overview 1. KASCADE-Grande experimental

More information

Cosmic Muon induced EM Showers in NOνA Detector

Cosmic Muon induced EM Showers in NOνA Detector Cosmic Muon induced EM Showers in NOνA Detector a, Hongyue Duyang b, Peter Shanahan c, Sanjib Mishra b and Bipul Bhuyan a a Indian Institute of Technology Guwahati, India b University of South Carolina,

More information

MiniBooNE Progress and Little Muon Counter Overview

MiniBooNE Progress and Little Muon Counter Overview MiniBooNE Progress and Little Muon Counter Overview Neutrino Introduction and MiniBooNE Motivation MiniBooNE Detector and LMC Calibration and Performance Progress Toward Physics Results Terry Hart, University

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin

Cosmic Ray Physics with the IceTop Air Shower Array. Hermann Kolanoski Humboldt-Universität zu Berlin Cosmic Ray Physics with the IceTop Air Shower Array Hermann Kolanoski Humboldt-Universität zu Berlin SNOWPAC - March 22-28, 2010 Hermann Kolanoski: IceTop Air Shower Array Outline Cosmic rays: what IceCube/IceTop

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

PRELIMINARY RESULTS FROM THE CHICAGO AIR SHOWER ARRAY AND THE MICHIGAN MUON ARRAY*

PRELIMINARY RESULTS FROM THE CHICAGO AIR SHOWER ARRAY AND THE MICHIGAN MUON ARRAY* PRELIMINARY RESULTS FROM THE CHICAGO AIR SHOWER ARRAY AND THE MICHIGAN MUON ARRAY* H.A. Krimm, J.W. Cronin, B.E. Fick, K.G. Gibbs, N.C. Mascarenhas, T.A. McKay, D. Mfiller, B.J. Newport, R.A. Ong, L.J

More information

Investigation of the background sources of muography

Investigation of the background sources of muography Investigation of the background sources of muography László Oláh1, Hiroyuki Tanaka1, Dezső Varga2 1 Earthquake Research Institute, The University of Tokyo 2Wigner Research Centre for Physics of the HAS

More information

K2K and T2K experiments

K2K and T2K experiments K2K and T2K experiments Issei Kato TRIUMF, Canada for the K2K and T2K collaborations Neutrino Oscillation Workshop 2006 at Conca Specchiulla,, Otranto, Italy Outline K2K experiment, shortly What s updated

More information

Heaven-Sent Neutrino Interactions From TeV to PeV

Heaven-Sent Neutrino Interactions From TeV to PeV Heaven-Sent Neutrino Interactions From TeV to PeV Mauricio Bustamante Niels Bohr Institute, University of Copenhagen UCL HEP Seminar London, December 08, 2017 Two seemingly unrelated questions 1 Where

More information

MINOS Neutrino Flux. Using NuMI Muon Monitors for calculating flux for use in cross-section calculations. D. Jason Koskinen

MINOS Neutrino Flux. Using NuMI Muon Monitors for calculating flux for use in cross-section calculations. D. Jason Koskinen MINOS Neutrino Flux Using NuMI Muon Monitors for calculating flux for use in cross-section calculations 1 Outline MINOS Experiment Beam Basics Using Muon Monitors for flux NuMI beam line Monte Carlo Minimize

More information

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration Luminosity measurement and K-short production with first LHCb data Sophie Redford University of Oxford for the LHCb collaboration 1 Introduction Measurement of the prompt Ks production Using data collected

More information

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu PHYS 5326 Lecture #2 Wednesday, Jan. 24, 2007 Dr. 1. Sources of Neutrinos 2. How is neutrino beam produced? 3. Physics with neutrino experiments 4. Characteristics of accelerator based neutrino experiments

More information

Elastic and inelastic cross section measurements with the ATLAS detector

Elastic and inelastic cross section measurements with the ATLAS detector Elastic and inelastic cross section measurements with the ATLAS detector Simon Holm Stark Niels Bohr Institute University of Copenhagen MPI@LHC 2017 December 13, 2017, Shimla, India Outline: Physics motivation.

More information

Hadronic D Decays and the D Meson Decay Constant with CLEO c

Hadronic D Decays and the D Meson Decay Constant with CLEO c Hadronic D Decays and the D Meson Decay Constant with CLEO c representing the CLEO Collaboration presented at the 3nd International Conference on High Energy Physics, Beijing, China, Aug. 16, 004 This

More information

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 11 : Neutrino Oscillations. Neutrino Experiments

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 11 : Neutrino Oscillations. Neutrino Experiments Particle Physics Michaelmas Term 2009 Prof Mark Thomson Handout 11 : Neutrino Oscillations Prof. M.A. Thomson Michaelmas 2009 340 Neutrino Experiments Before discussing current experimental data, need

More information

MINOS Flux Determination

MINOS Flux Determination MINOS Flux Determination Žarko Pavlović Pittsburgh, 12/07/12 Outline Introduction MINOS experiment and NuMI beam Calculating flux and systematic errors Fitting the ND data (Beam tuning) Conclusion 2 Past

More information

Bari Osmanov, University of Florida. OscSNS - proposal for neutrino experiment at ORNL SNS facility

Bari Osmanov, University of Florida. OscSNS - proposal for neutrino experiment at ORNL SNS facility , University of Florida OscSNS - proposal for neutrino experiment at ORNL SNS facility 1 of 19 Outline ORNL SNS facility Neutrino production at SNS Neutrino detection at SNS Event reconstruction and particle

More information

Atmospheric Neutrinos and Neutrino Oscillations

Atmospheric Neutrinos and Neutrino Oscillations FEATURE Principal Investigator Takaaki Kajita Research Area Experimental Physics Atmospheric Neutrinos and Neutrino Oscillations Introduction About a hundred years ago Victor Hess aboard a balloon measured

More information

A SEARCH FOR ASTROPHYSICAL POINT SOURCES OF 100 TEV GAMMA RAYS BY THE UMC COLLABORATION

A SEARCH FOR ASTROPHYSICAL POINT SOURCES OF 100 TEV GAMMA RAYS BY THE UMC COLLABORATION A SEARCH FOR ASTROPHYSICAL POINT SOURCES OF 100 TEV GAMMA RAYS BY THE UMC COLLABORATION T.A.McKay, b A.Borione, b M.Catanese, a C.E.Covault, b J.W.Cronin, b B.E.Fick, b K.G.Gibbs, b K.D.Green, a S.Hauptfeld,

More information

500m. 1000m. /POT/GeV/cm 2. (GeV) E ν 10-14

500m. 1000m. /POT/GeV/cm 2. (GeV) E ν 10-14 1 The Future of the Short-Baseline Neutrino Oscillation Experiments in the US: MiniBooNE and ORLaND Ion Stancu a a Department of Physics, University of California, Riverside, CA 92521, USA E-mail: ion.stancu@ucr.edu

More information

Muon commissioning and Exclusive B production at CMS with the first LHC data

Muon commissioning and Exclusive B production at CMS with the first LHC data Muon commissioning and Exclusive B production at CMS with the first LHC data Silvia Taroni INFN Milano Bicocca On the behalf of the CMS collaboration Outline Introduction CMS detector Muon detection in

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

Primary cosmic ray mass composition above 1 PeV as measured by the PRISMA-YBJ array

Primary cosmic ray mass composition above 1 PeV as measured by the PRISMA-YBJ array as measured by the PRISMA-YBJ array Stenkin Yu.V. 1, 2, Alekseenko V.V. 1, Cui S.W. 4, He Ya.Yu. 4, Li B.B. 4, Ma X.H. 3, Shchegolev O.B. 1, Stepanov V.I. 1, Yanin Ya. 1,2, Zhao J. 3 1 - Institute for

More information