Basic and Special Design Concepts of CLT Elements loaded out-of-plane

Size: px
Start display at page:

Download "Basic and Special Design Concepts of CLT Elements loaded out-of-plane"

Transcription

1 1 Basic and Special Design Concepts of CLT Elements loaded out-of-plane G. Schickhofer *, A. Thiel **, J. Dröscher * * Institute of Timber Engineering and Wood Technology, Graz University of Technology ** Centre of Competence holz.bau forschungs gmbh, Graz proholz.at+universities.at.si.hr_masterclass Graz April 1, 2016 u

2 CONTENT 2 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

3 CONTENT 3 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

4 INTRODUCTION 4 Graz University of Technology 7 faculties 12,800 students 2,400 staff (2014/15) budget: 207 Mil. (31,5 % 3 rd party budget) Faculty of Civil Engineering Sciences 15 institutes about 1,500 students (2014/15) Institute of Timber Engineering and Wood Technology 1991: Chair for Timber Engineering : Institute of Timber Engineering and Wood Technology Scientific staff: 8 FTE 3 rd party budget: 470,000 (2015) Competence Centre holz.bau forschungs gmbh Competence Centre holz.bau forschungs gmbh rd acceptance of a 4-year funded programme: COMET-Project focus_sts [till the end of 2016] Scientific staff: 11 FTE budget: 625,000 (2015)

5 LAB MECH STOCH INTRODUCTION 5 R&D topics regarding Timber Engineering and Wood Technology at TU Graz Shell and Spatial Timber Constructions (SSTC) Innovative and Intelligent Connection Systems (IICS) Lightweight and Hybrid Hardwood Applications (LHHA) Evaluation and Maintenance of Historic Structures (EMHS)

6 CONTENT 6 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

7 ULS DESIGN OUT-OF-PLANE 7 Methods of Calculation Stresses Well-known procedures: Timoshenko beam theory transversal shear flexible beam (TIMO) shear analogy method (SAV) γ-method (GAMMA) finite element method (FE) 2 x 1.5 t CLT detail 4.8 m 4.8 m

8 normal stress [N/mm²] shear stress [N/mm²] rolling shear stress [N/mm²] ULS DESIGN OUT-OF-PLANE 8 Methods of Calculation Stresses Well-known procedures: Timoshenko beam theory transversal shear flexible beam (TIMO) shear analogy method (SAV) γ-method (GAMMA) finite element method (FE) 2 x 1.5 t CLT 2 x 1.5 t CLT 2 x 1.5 t CLT x [m] x [m] x [m]

9 ULS DESIGN OUT-OF-PLANE 9 2D Effects are relevant and have to be considered for point-supported CLT plates 1 partial area supported CLT plate cantilever 3 butt joints (construction) 4 point loads etc. 5 2 Deutscher Pavillon of Ludwig Mies van der Rohe build:1929 World Exhibition Barcelona Research activities in progress!

10 ULS DESIGN OUT-OF-PLANE 10 Stiffness Values Bending Stiffness Major direction K (E I ) (E A e ) 2 CLT i i i i i I i moment of inertia of layer i E i modulus of elasticity of layer i (E 0,i or E 90,i ) A i cross-sectional area of layer i e i distance between gravity centers S i and S Minor direction for example: 5s ( mm) K Nmm CLT,0 CLT, K Nmm 12 2 factor 6

11 ULS DESIGN OUT-OF-PLANE 11 Bending Normal Stress Distribution S M y,d σ max,d My (z) z E(z) K f max,d m,clt,d CLT 1.0 σ max,d S M y,d σ max,d f m,clt,d maximum design bending stress bending strength design value

12 ULS DESIGN OUT-OF-PLANE 12 Bending Shear Stress Distribution S V z,d τ r,max,d τ max,d (z ) 0 V z E(z) z da A 0 K b(z ) CLT 0 shear: rolling shear: f max,d v,clt,d 1.0 f r,max,d r,clt,d 1.0 S V z,d τ r,max,d τ max,d τ max,d τ r,max,d f v,clt,d f r,clt,d maximum shear stress maximum rolling shear stress shear strength design value rolling shear strength design value

13 CONTENT 13 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

14 SLS DESIGN OUT-OF-PLANE 14 Stiffness Values Shear Stiffness SCLT S tot (Gi A i) κ ~ 0.25 for ratio G 0 /G r = 10 nearly const. G i κ S(z) G(z) b(z) S 2 1 S (z,e(z)) tot 2 K CLT G(z) b(z) t CLT 1 dz shear modulus of layer i (G 0,i or G r,i ) shear correction coefficient first moment of area shear modulus width of cross section not considered: different board widths and gaps Δκ = 10 % to 15 %

15 SLS DESIGN OUT-OF-PLANE 15 Deflections Calculation including Shear Deformations CLT 1 1 w M M dx V V dx K S CLT single-span beam under uniform load: w(l / 2) 5 ql ql 384 K 8 S 4 2 CLT CLT w w(l/2) deflection out-of-plane deflection at midspan

16 SLS DESIGN OUT-OF-PLANE 16 Deflections Long-term Effects (Creep) Cross layers (rolling shear) lead to higher values than for ST or GLT SC 1: SC 2: k 0.85 def k 1.10 def Combinations acc. to EN 1990 and EN combination limit instantaneous t = 0 w inst w inst,g + w inst,q l/300 final t = w fin w inst + w creep l/150 net final t = w net,fin w fin - w c l/250

17 SLS DESIGN OUT-OF-PLANE 17 Vibrations Design Methods For l > 4 m: vibration governs design! Common procedures for CLT: verification according to EN verification according to ON B :2015 verification according to Hamm/Richter Canadian approach of Hu (CLT Handbook from FPInnovations) Parameters: natural frequency, stiffness criterion, vibration acceleration

18 SLS DESIGN OUT-OF-PLANE 18 Vibrations Design Concept according to ON B :2015 specification of performance limits for f, w and a 1 st natural frequency: f 1 f crit YES YES stiffness: w(1kn) w crit YES verification fulfilled NO NO 1 st natural frequency: f 1 f min YES vibration acceleration: a a crit verification not fulfilled NO NO

19 SLS DESIGN OUT-OF-PLANE 19 Vibrations Fundamental Natural Frequency Basics beams: km EI f 1,beam Hz 2 l 2 m plates: support conditions mass effective long. bending stiffness effective trans. bending stiffness effective twisting stiffness span resp. ratio span to width support condition k m hinged at both ends π 2 = 9.87 fixed at both ends 22.4 fixed / free (cantilever) 3.52

20 SLS DESIGN OUT-OF-PLANE 20 Vibrations Fundamental Natural Frequency Basics beams: km EI f 1,beam Hz 2 l 2 m plates: a higher mass decreases the fundamental natural frequency considering the shear flexibility (e.g. with apparent bending stiffness) reduces the fundamental natural frequencies (high influence of ratio l/t CLT ) considering continuous beam effect leads to a factor 1.0 to 1.5 depending on span ratio min to max

21 SLS DESIGN OUT-OF-PLANE 21 Vibrations Fundamental Natural Frequency Requirements critical frequency f crit applied method high requirements normal requirements ON B : Hz 6 Hz Minimum frequency: f min = 4.5 Hz

22 SLS DESIGN OUT-OF-PLANE 22 Vibrations Stiffness Criterion Deflection of a single-span girder with a single force F at midspan w(f,b ) F 3 F l F l 48 EI b 4 GA b l,ef F ef F with b F l EI EI b,ef l,ef limit values w crit,1kn applied method high requirements normal requirements ON B : mm 0.5 mm

23 CONTENT 23 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

24 SPECIAL DESIGN PROPOSALS 24 Ribbed Plates of CLT and GLT Effective Width b ef Non-uniformly distributed normal stresses in the flange due to shear deformations reduced (virtual) flange width b ef with constant normal stress and plane strain resultant of real stress over total flange width b = resultant of idealised stress over effective width b ef

25 SPECIAL DESIGN PROPOSALS 25 Ribbed Plates of CLT and GLT Effective Width b ef Influences type of loading (distributed concentrated) type of static model (single-span continuous beam) stiffness values of CLT c x, c xy, b x shear flexibility of CLT type of verification (ULS SLS) ratio L / b ULS distributed load SLS distributed load ULS concentrated load SLS concentrated load for example: L / b = 10 / 1.65 = 6.1 b ef,q = 0.72 b b ef,f = 0.44 b 6.1

26 SPECIAL DESIGN PROPOSALS 26 Ribbed Plates of CLT and GLT Effective Width b ef Influences Continuous beams under distributed loads shows also reduced areas in the effective width distribution at their supports. Proposal of Petersen (1988) Use of single-span solution field areas: distributed load span L F support area: concentrated load span L S bending moment course

27 SPECIAL DESIGN PROPOSALS 27 Ribbed Plates of CLT and GLT Effective Width b ef Stresses normal stress field area shear stress support area or concentrated loads effective width for shear stress calculation

28 SPECIAL DESIGN PROPOSALS 28 Local Load Introduction in Floors Compression perpendicular to Grain Adaption of strength and stiffness of a CLT cube to real structures and load situations factor k c,90,clt Model of Brandner and Schickhofer (2014) based on load distribution model of van der Put (1988): long. 45 ; cross 15 consideration of edge bonding or cracks in the top layers possible restricted to load applications where resultant forces acting in the same line Case load introduction (continuous supported) load application k c,90,clt = A dis A = w l dis dis w l continuous support w c,ef = l c,ef = w dis w w = l dis l l = w dis w l dis l

29 SPECIAL DESIGN PROPOSALS 29 Local Load Introduction in Floors Compression perpendicular to Grain General case (different size of load introduction areas) related values k c,90,clt = A c,ef A c,sec A c,ef = max émin( ëê w 1,dis (z) w 1 ; w 2,dis (z) w 2 ) min l 1,dis (z) l 1 ; l 2,dis (z) l 2 A c,sec = min(w 1 ;w 2 ) min(l 1 ;l 2 ) ( ) ù ûú

30 SPECIAL DESIGN PROPOSALS 30 Local Load Introduction in Floors Compression perpendicular to Grain Central load transmission example 5s 160 mm ( ) edge bonded top layers load introduction area 20 x 20 cm² k c,90,clt = 1,50

31 SPECIAL DESIGN PROPOSALS 31 Local Load Introduction in Floors Compression perpendicular to Grain Central load introduction example 5s 160 mm ( ) edge bonded top layers load introduction area 20 x 20 cm² k c,90,clt = 1,99

32 SPECIAL DESIGN PROPOSALS 32 Local Load Introduction in Floors Compression perpendicular to Grain Wall on column (wall parallel to top layers) example 5s 160 mm ( ) edge bonded top layers load introduction area 20 x 20 cm² k c,90,clt = 1,56

33 SPECIAL DESIGN PROPOSALS 33 Local Load Introduction in Floors Compression perpendicular to Grain Load transmission at edges top layers parallel to edge example 5s 160 mm ( ) edge bonded top layers load introduction area 20 x 20 cm² k c,90,clt = 1,39

34 SPECIAL DESIGN PROPOSALS 34 Local Load Introduction in Floors Compression perpendicular to Grain Load transmission at edges top layers transversal to edge example 5s 160 mm ( ) edge bonded top layers load introduction area 20 x 20 cm² k c,90,clt = 1,33

35 SPECIAL DESIGN PROPOSALS 35 Local Load Introduction in Floors Compression perpendicular to Grain Load transmission at corners example 5s 160 mm ( ) edge bonded top layers load introduction area 20 x 20 cm² k c,90,clt = 1,24

36 Mestek (2011) SPECIAL DESIGN PROPOSALS 36 Shear and Bending Failure of pointsupported CLT plates loaded out-of-plane concentrated load introduction locally high shear forces shear failure around the concentrated load ( punching ) 2D consideration shear flexible Reissner-Mindlin plate theory critical perimeter rolling shear stresses acc. to Mestek (2011) locally applicable rolling shear strength acc. to Mestek higher than base value, confirmed by Bogensperger (2015) critical perimeter

37 SPECIAL DESIGN PROPOSALS 37 Shear and Bending Failure of pointsupported CLT plates loaded out-of-plane Rolling shear failure of CLT elements with practically common spans possible? Tests on 5- and 7-ply CLT elements with 2.5 x 4.0 m² generally bending failure within longitudinal or cross layers

38 SPECIAL DESIGN PROPOSALS 38 Shear and Bending Failure of pointsupported CLT plates loaded out-of-plane Conclusion from tests type of failure (shear or bending) strongly dependent on geometrical dimensions and layup of the CLT plate verification of both types necessary reliable and practical design concept still missing and further investigations required (currently in progress)

39 CONTENT 39 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

40 SOFTWARE TOOLS 40 CLTdesigner The software tool for designing cross laminated timber elements (CLT) based on design concepts of EC 5 and numerous research works developed and provided by the Centre of Competence holz.bau forschungs gmbh and the Institute of Timber Engineering and Wood Technology of Graz University of Technology available in DE, EN, FR, IT and ES at

41 SOFTWARE TOOLS 41 CLTdesigner The software tool for designing cross laminated timber elements (CLT)

42 SOFTWARE TOOLS 42 CLTcalculator first CLT App for iphone and ipad available on the App Store

43 CONTENT 43 INTRODUCTION ULS DESIGN OUT-OF-PLANE SLS DESIGN OUT-OF-PLANE SPECIAL DESIGN PROPOSALS SOFTWARE TOOLS SUMMARY AND CONCLUSIONS

44 SUMMARY AND CONCLUSIONS 44 Summary and Conclusions CLT loaded out-of-plane Different methods of calculation approximations, but applicable, locally stress deviations at supports and point loads, consistency between design method and that used for derivation of strength and stiffness properties For floor and roof elements the SLS design is very important Due to shear-flexible cross layers, it is essential to include deformations caused by shear when calculating deflections and checking vibration behaviour Shown methods are limited to homogeneous CLT elements load bearing and design models for combined CLT are missing Interaction equations for stresses of combined actions are required

45 SUMMARY AND CONCLUSIONS 45 Summary and Conclusions Special Design Proposals Ribbed floor elements Proposal how to calculate T-beams according to beam theory higher shear stresses in the CLT element above the rib Compression perpendicular to grain model to determine the factor k c,90,clt restricted to load applications where resultant forces acting in the same line (no bending) include bending proposal of A.J.M. Leijten (2012) for structural timber elements Shear and bending failure of point-supported plates type of failure highly depends on geometrical dimensions reliable and practical design concept still missing, further investigations required

46 46 Basic and Special Design Concepts of CLT Elements loaded out-of-plane Contact: Univ.-Prof. DI Dr.techn. Gerhard Schickhofer Institute of Timber Engineering and Wood Technology, Graz University of Technology Inffeldgasse 24/I A-8010 Graz Tel.: u

Concentrated load introduction in CLT elements perpendicular to plane

Concentrated load introduction in CLT elements perpendicular to plane Concentrated load introduction in CLT elements perpendicular to plane EUROMECH Colloquium 556 May 27-29, 2015 Dresden, Germany Theoretical, Numerical and Experimental Analyses in Wood Mechanics http://556.euromech.org

More information

EFFECTS OF SELF-TAPPING SCREWS AS REINFORCEMENTS IN BEAM SUPPORTS ON THE DETERMINATION OF THE GLOBAL MODULUS OF ELASTICITY IN BENDING

EFFECTS OF SELF-TAPPING SCREWS AS REINFORCEMENTS IN BEAM SUPPORTS ON THE DETERMINATION OF THE GLOBAL MODULUS OF ELASTICITY IN BENDING EFFECTS OF SELF-TAPPING SCREWS AS REINFORCEMENTS IN BEAM SUPPORTS ON THE DETERMINATION OF THE GLOBAL MODULUS OF ELASTICITY IN BENDING - Investigations on Clearwood - University of Innsbruck Faculty of

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

R I B E L E M E N T S

R I B E L E M E N T S M a d e f o r b u i l d i n g b u i l t f o r l i v i n g R IB ELEMENTS I M P R I N T KLH Massivholz GmbH Publisher and responsible for content: KLH Massivholz GmbH Version: 01/2014, Rib Elements The content

More information

CHARACTERIZING INFLUENCE OF LAMINATE CHARACTERISTICS ON ELASTIC PROPERTIES OF CROSS LAMINATED TIMBER

CHARACTERIZING INFLUENCE OF LAMINATE CHARACTERISTICS ON ELASTIC PROPERTIES OF CROSS LAMINATED TIMBER CHARACTERIZING INFLUENCE OF LAMINATE CHARACTERISTICS ON ELASTIC PROPERTIES OF CROSS LAMINATED TIMBER Jan Niederwestberg 1, Ying Hei Chui ABSTRACT: Properties of CLT panels are influenced by the properties

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

L13 Structural Engineering Laboratory

L13 Structural Engineering Laboratory LABORATORY PLANNING GUIDE L13 Structural Engineering Laboratory Content Covered subjects according to the curriculum of Structural Engineering... 2 Main concept... 4 Initial training provided for laboratory

More information

Mechanical Properties of Innovative, Multi-Layer Composite Laminated Panels

Mechanical Properties of Innovative, Multi-Layer Composite Laminated Panels buildings Article Mechanical Properties of Innovative, Multi-Layer Composite Laminated Panels Jan Niederwestberg 1, Jianhui Zhou 1,2, * and Ying-Hei Chui 1 1 Department of Civil and Environmental Engineering,

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Physics 8 Monday, November 20, 2017

Physics 8 Monday, November 20, 2017 Physics 8 Monday, November 20, 2017 Pick up HW11 handout, due Dec 1 (Friday next week). This week, you re skimming/reading O/K ch8, which goes into more detail on beams. Since many people will be traveling

More information

Composite bridge design (EN1994-2) Bridge modelling and structural analysis

Composite bridge design (EN1994-2) Bridge modelling and structural analysis EUROCODES Bridges: Background and applications Dissemination of information for training Vienna, 4-6 October 2010 1 Composite bridge design (EN1994-2) Bridge modelling and structural analysis Laurence

More information

STRUCTURAL SURFACES & FLOOR GRILLAGES

STRUCTURAL SURFACES & FLOOR GRILLAGES STRUCTURAL SURFACES & FLOOR GRILLAGES INTRODUCTION Integral car bodies are 3D structures largely composed of approximately subassemblies- SSS Planar structural subassemblies can be grouped into two categories

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

TECHNICAL REPORT. Bending tests on glulam-clt beams connected with double-sided punched metal plate fasteners and inclined screws.

TECHNICAL REPORT. Bending tests on glulam-clt beams connected with double-sided punched metal plate fasteners and inclined screws. TECHNICAL REPORT Bending tests on glulam-clt beams connected with double-sided punched metal plate fasteners and inclined screws Nicolas Jacquier ISSN 14-1536 ISBN 978-91-7583-1-8 (pdf) Luleå 15 www.ltu.se

More information

S TRUCTUR A L PR E- A N A LYSIS TA B LES

S TRUCTUR A L PR E- A N A LYSIS TA B LES M a d e f o r b u i l d i n g b u i l t f o r l i v i n g S TRUTUR A L PR E- A N A LYSIS TA LES I M P R I N T KLH Massivholz GmbH Publisher and responsible for the content: KLH Massivholz GmbH Version:

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

Physics 8 Monday, November 23, 2015

Physics 8 Monday, November 23, 2015 Physics 8 Monday, November 23, 2015 Handing out HW11, due Friday, December 4. One or two more beam-related examples, then we ll move on to oscillations ( periodic motion ). This week s reading is Mazur

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

STRENGTH AND STIFFNESS OF CROSS LAMINATED TIMBER AT IN-PLANE BEAM LOADING. HENRIK DANIELSSON, MARIO JELEC and ERIK SERRANO. Structural Mechanics

STRENGTH AND STIFFNESS OF CROSS LAMINATED TIMBER AT IN-PLANE BEAM LOADING. HENRIK DANIELSSON, MARIO JELEC and ERIK SERRANO. Structural Mechanics STRENGTH AND STIFFNESS OF CROSS LAMINATED TIMBER AT IN-PLANE BEAM LOADING HENRIK DANIELSSON, MARIO JELEC and ERIK SERRANO Structural Mechanics DEPARTMENT OF CONSTRUCTION SCIENCES DIVISION OF STRUCTURAL

More information

SERVICEABILITY LIMIT STATE DESIGN

SERVICEABILITY LIMIT STATE DESIGN CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

More information

ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS

ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS 11 ELASTOPLASTIC STEEL BEAM BENDING ANALYSIS BY USING ABAQUS Biswajit Jena * * Corresponding author: biswa.tech88@gmail.com Abstract: In recent years tremendous efforts have been made in development of

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

Hardened Concrete. Lecture No. 16

Hardened Concrete. Lecture No. 16 Hardened Concrete Lecture No. 16 Fatigue strength of concrete Modulus of elasticity, Creep Shrinkage of concrete Stress-Strain Plot of Concrete At stress below 30% of ultimate strength, the transition

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Physics 8 Wednesday, November 29, 2017

Physics 8 Wednesday, November 29, 2017 Physics 8 Wednesday, November 29, 2017 HW11 due this Friday, Dec 1. After another day or two on beams, our last topic of the semester will be oscillations (a.k.a. vibration, periodic motion). Toward that

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200 Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

More information

NEW NUMERICAL MODELS FOR BEHAVIOUR OF STEEL AND CONCRETE STRUCTURES EXPOSED TO FIRE

NEW NUMERICAL MODELS FOR BEHAVIOUR OF STEEL AND CONCRETE STRUCTURES EXPOSED TO FIRE COST Action TU0904 Integrated Fire Engineering and Response Training school University of Malta, Sliema, 11.-14. April 2012. Scientific project: Reliability of Structures and Risk Assesment to Extreme

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Compression perpendicular to the grain

Compression perpendicular to the grain Compression perpendicular to the grain Univ.-Prof. Dr.-Ing. Hans Joachim Blass Dr.-Ing. Rainer Görlacher Universität Karlsruhe Kaiserstr. 1 71 Karlsruhe Blass@holz.uka.de Goerlacher@holz.uka.de Summary

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses 7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Review Lecture AE1108-II: Aerospace Mechanics of Materials Dr. Calvin Rans Dr. Sofia Teixeira De Freitas Aerospace Structures & Materials Faculty of Aerospace Engineering Analysis of an Engineering System

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Bridge deck modelling and design process for bridges

Bridge deck modelling and design process for bridges EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

1 Static Plastic Behaviour of Beams

1 Static Plastic Behaviour of Beams 1 Static Plastic Behaviour of Beams 1.1 Introduction Many ductile materials which are used in engineering practice have a considerable reserve capacity beyond the initial yield condition. The uniaxial

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

Verification Examples. FEM-Design. version

Verification Examples. FEM-Design. version FEM-Design 6.0 FEM-Design version. 06 FEM-Design 6.0 StruSoft AB Visit the StruSoft website for company and FEM-Design information at www.strusoft.com Copyright 06 by StruSoft, all rights reserved. Trademarks

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Lecture - 28 Hi, this is Dr. S. P. Harsha from Mechanical and

More information

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

7.3 Design of members subjected to combined forces

7.3 Design of members subjected to combined forces 7.3 Design of members subjected to combined forces 7.3.1 General In the previous chapters of Draft IS: 800 LSM version, we have stipulated the codal provisions for determining the stress distribution in

More information

Presented By: EAS 6939 Aerospace Structural Composites

Presented By: EAS 6939 Aerospace Structural Composites A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have

More information

CHAPTER 5 PROPOSED WARPING CONSTANT

CHAPTER 5 PROPOSED WARPING CONSTANT 122 CHAPTER 5 PROPOSED WARPING CONSTANT 5.1 INTRODUCTION Generally, lateral torsional buckling is a major design aspect of flexure members composed of thin-walled sections. When a thin walled section is

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Modeling the elastic properties of paper honeycomb panels using the finite element method

Modeling the elastic properties of paper honeycomb panels using the finite element method Proceedings of the XXVI th International Conference Research for Furniture Industry Modeling the elastic properties of paper honeycomb panels using the finite element method Viktor UTASSY, Levente DÉNES

More information

Aircraft Stress Analysis and Structural Design Summary

Aircraft Stress Analysis and Structural Design Summary Aircraft Stress Analysis and Structural Design Summary 1. Trusses 1.1 Determinacy in Truss Structures 1.1.1 Introduction to determinacy A truss structure is a structure consisting of members, connected

More information

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams University of Alberta Department of Civil & Environmental Engineering Master of Engineering Report in Structural Engineering Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

Structural Steel Design Project

Structural Steel Design Project Job No: Sheet 1 of 6 Rev Worked Example - 1 Made by Date 4-1-000 Checked by PU Date 30-4-000 Analyse the building frame shown in Fig. A using portal method. 15 kn C F I L 4 m 0 kn B E H K 6 m A D G J 4

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

Advanced modelling for design helping of heterogeneous CLT panels in bending

Advanced modelling for design helping of heterogeneous CLT panels in bending Advanced modelling for design helping of heterogeneous CLT panels in bending Lorenzo Franzoni, Arthur Lebée, Gilles Forêt, Florent Lyon To cite this version: Lorenzo Franzoni, Arthur Lebée, Gilles Forêt,

More information

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

Finite element modelling of structural mechanics problems

Finite element modelling of structural mechanics problems 1 Finite element modelling of structural mechanics problems Kjell Magne Mathisen Department of Structural Engineering Norwegian University of Science and Technology Lecture 10: Geilo Winter School - January,

More information

Slender Structures Load carrying principles

Slender Structures Load carrying principles Slender Structures Load carrying principles Basic cases: Extension, Shear, Torsion, Cable Bending (Euler) v017-1 Hans Welleman 1 Content (preliminary schedule) Basic cases Extension, shear, torsion, cable

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

TRANSVERSE STRESSES IN SHEAR LAG OF BOX-GIRDER BRIDGES. Wang Yuan

TRANSVERSE STRESSES IN SHEAR LAG OF BOX-GIRDER BRIDGES. Wang Yuan TRANSVERSE STRESSES IN SHEAR LAG OF BOX-GIRDER BRIDGES Wang Yuan Bacheloreindwerk Delft University of Technology Faculty of Civil Engineering and Geosciences October 2011 TABLE OF CONTENTS 1 INTRODUCTION...

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

CHAPTER 6: Shearing Stresses in Beams

CHAPTER 6: Shearing Stresses in Beams (130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

More information

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

Unit 15 Shearing and Torsion (and Bending) of Shell Beams Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Chapter 7: Bending and Shear in Simple Beams

Chapter 7: Bending and Shear in Simple Beams Chapter 7: Bending and Shear in Simple Beams Introduction A beam is a long, slender structural member that resists loads that are generally applied transverse (perpendicular) to its longitudinal axis.

More information

CHAPTER 5. Beam Theory

CHAPTER 5. Beam Theory CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The Euler-Bernoulli assumptions One of its dimensions

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Agenda Introduction to your lecturer Introduction

More information

For more Stuffs Visit Owner: N.Rajeev. R07

For more Stuffs Visit  Owner: N.Rajeev. R07 Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

More information

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels METNET Workshop October 11-12, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika Chuda-Kowalska, Robert Studziński, Andrzej Garstecki Poznan University

More information

Supplement: Statically Indeterminate Frames

Supplement: Statically Indeterminate Frames : Statically Indeterminate Frames Approximate Analysis - In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like

More information

The stiffness of plates

The stiffness of plates The stiffness of plates 1. Introduction The word plate is a collective term for elements in which forces can be transferred in two directions. Floors, walls, bridge slabs and laminates are all plates.

More information

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment. Introduction Fundamentals of statics Applications of fundamentals of statics Friction Centroid & Moment of inertia Simple Stresses & Strain Stresses in Beam Torsion Principle Stresses DEPARTMENT OF CIVIL

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

(Refer Slide Time: 2:43-03:02)

(Refer Slide Time: 2:43-03:02) Strength of Materials Prof. S. K. Bhattacharyya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 34 Combined Stresses I Welcome to the first lesson of the eighth module

More information

Rigid Pavement Mechanics. Curling Stresses

Rigid Pavement Mechanics. Curling Stresses Rigid Pavement Mechanics Curling Stresses Major Distress Conditions Cracking Bottom-up transverse cracks Top-down transverse cracks Longitudinal cracks Corner breaks Punchouts (CRCP) 2 Major Distress Conditions

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information