Fast inorganic scintillators - status and outlook -

Size: px
Start display at page:

Download "Fast inorganic scintillators - status and outlook -"

Transcription

1 Fast inorganic scintillators - status and outlook - R. W. Novotny 2nd Physics Institute University Giessen scintillator basics and history cross luminescence BaF 2 Ce 3+ luminescence centers PbWO 4 inorganic scintillator fibers outlook

2 basic concept of a scintillation detector X rays gamma rays heavy charged particles thermal neutrons Photoelectric effect Compton effect Pair production Bethe Bloch e scintillator nuclear reaction ionization excitation many e-h pairs energetic neutrons proton request for a wide spectrum of detector materials

3 Number of dicovered scintillators Quantity of principal inorganic scintillators discovered history SrI 2 :Eu 1968/2008 LSO:Ce,Ca 2007 LuI 3 :Ce 2003 LaBr 3 :Ce 2001 LYSO:Ce 2001 LuYAP:Ce 2001 LaCl 3 :Ce 2000 LuAP:Ce 1994 LSO:Ce investigation of Photomultiplier Curran / Baker M.Korzhik, 2003 X-ray imaging screens a -scattering Years year Alcali-Halides Oxides discovery and development of new scintillator materials are strongly correlated with basic research and technology in physics... M.J.Weber J. of Lum. 100 (2002) 35

4 pulse height / mv inorganic scintillators large variations in: compactness luminescence yield time / ns volume: 1X 0 3

5 basic processes basic processes in inorganic scintillator ionic crystal host material E gap > ~ 4-12 ev e luminescence center luminescence centre intrinsic or dopant conduction band luminescence h valence band thermalization transport

6 but it is more complex! e thermally released conduction band Trap radiationless recombination Shallow trap Defect direct excitation relaxation luminescence LC h thermalization transfer or luminescence valence band thermalization ps fast to slow (afterglow) > ns estimation of achievable light yield: Y E E gap S Q

7 interplay of excitation and emission and optical transparency of the material

8 achievable energy resolution can be further optimized by matching to photo sensor

9 most scintillators are sensitive to temperature thermal quenching!

10 YAlO 3 :Ce resolution at 662 kev / % Lu 3 Al 4 O 12 :Pr NaI:Tl BaF 2 BGO LSO:Ce achievable energy resolution not only determined by photon statistics!? CsI:Tl 4 LaCl 3 SrI 2 :Eu 2 R stat LaBr 3 but: number of detected photons at 662 kev linear response of the scintillator, index of refraction, light collection, quantum efficiency and linearity of sensor, etc.

11 Energy reslution at FWHM (%) Relative light yield non-proportionality and energy resolution NaI:Tl LaBr 3 :Ce typical examples Energy (kev)

12 how everything started: R.Hofstadter, Phys.Rev. 74 (1948) 100 NaI with source NaI without source

13 BaF 2 kinetics of the two fast scintillation components at l 195nm and l 220nm ideal for fast timing: fast rise time fast decay time sufficient light yield timing determined by arrival of first photons at sensor P.Schotanus et al., NIM A259 (1987) 586

14 BaF 2 both luminescence components show a different temperature dependence different scintillation mechanisms fast slow component slow component: strongly temperature dependent determines energy resolution dy/dt-1.4%/ 0 K

15 BaF 2 : fast UV luminescence CondB 6s, 5d Ba 2+ E gap STE ValB 2p F - Ionic crystal E VOC < E gap E VOC fast Core-Valence Luminescence CVL Auger-free luminescence Cross luminescence OCoreB Yu.M. Aleksandrov et al, Sov. Phys. Sol. State 26 (1984) p Ba 2+

16 identification via pulse shape analysis PSA due to intrinsic luminescence properties: scintillation components show different response to electromagnetic or hadronic probes CsI(Tl), BaF 2,... proton time photon E-fast photons protons fast component total light output signal integration width E-total plastic VETO BaF 2 -detector identification of charged and neutral events

17 time-of-flight / ns E (MeV) particle ID: time-of-flight BaF 2 (TAPS) 250 C 0 X AGeV Ca+Ca t (ns) energy / MeV time resolution: s t > 85 ps

18 Time-of-flight PET detector concept achieved position resolution S.Tavernier et al., BaF 2 with MWPC-TMAE readout

19 TAPS 511 modules counts Mainz tagged photon facility E < 1.5GeV on-line data complete new readout invariant mass / MeV

20 CVL candidates E gap 4-13 ev Condition for CVL E VOC < E gap I Br Cl F E VOC 13 ev 17 ev Sr 2+ Ca 2+ P.A. Rodnyi, Sov. Phys. Solid State 34(1992)1053 C.W.E. van Eijk, Nucl. Tracks. Radiat. Meas. 21(1993)5 8 ev 10 ev 7.5 ev 4.5 ev Ba 2+ K + CVL Cs + Rb + F, Cl, Br, I CondB ValB OCoreB decay time ~ 1 ns light yield 2000 photons/mev

21 Ce 3+ luminescence center e Ce 3+ conduction band Core + 1 electron in 4f state excitation h relaxation 5d 4f emission valence band 5d 4f allowed dipole transition fast response ~ 20 ns

22 Ce 3+ luminescence center energy Intensity (arb. units) Ce 3+ relaxation Stokes shift 1 ps quenching Rodnyi C 3h 5.10 ev 4.96 ev 4.71 ev 4.52 ev 4.41 ev 5d LaCl 3 :0.57%Ce S=5900 cm ev 3.46 ev 0.1 fs > ns configuration coordinate 4f levels shielded no line broadening Exc. 6.2 ev Wavelength (nm) 4f 1740 cm -1 broad emission lines C. van Eijk

23 additional candidates ion ground state notation excited state La 3+ Xe configuration (closed shell) Ce 3+,, + 1 4f electron 4f 1 4f 0 5d 1 Pr 3+,, + 2 4f electrons 4f 2 4f 1 5d 1 Nd 3+,, + 3 4f electrons 4f 3 4f 2 5d 1 Eu 2+ (half filled shell) + 7 4f electrons 4f 7 4f 6 5d 1 Gd 3+ (half filled shell) 4f 7 Lu 3+ (closed shell) f electrons 4f 14

24 fast scintillation mechanism see papers by P. Dorenbos Ce 3+ Egap 5d 4f in favourable host Y E E gap LY ~ 20 ns S Q Ce 3+ levels and Egap E [ev] fluorides chlorides E gap Ce 3+ E 5d-4f oxides 8 bromides free ion iodides 6 sulfides 4 Egap l matching light sensor 2 0 selenides timing properties: 1 n l 2 2 n 2 5d 4f 3 3 2

25 K 2 LaX 5 :0.7% Ce 3+ (X = Cl, Br, I) scintillation decay lifetime from Cl to Br to I emission wavelength from Cl to Br to I

26 LaCl 3 :Ce 3+ Intensity (a.u.) scintillation decay 25 ns 10% LaCl3 :Ce 3+ NaI:Tl 230 ns 30% LSO NaI:Tl Lu 2 SiO 5 :Ce 40 ns Time (ns)

27 LaCl 3 :Ce 3+ Intensity (a.u.) energy resolution 55 Fe R=42% 241 Am R=10.5% 137 Cs R=3.3% 50,000 photons/mev NaI:Tl 40,000 photons/mev Energy (kev) E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Appl. Phys. Lett. 77 (2000) Lu 2 SiO 5 :Ce 26,000 photons/mev

28 LaCl 3 :Ce 3+ Counts 4 x 6 E/E=4.1% 4 x 6 mm 2 32keV Ba E/E=3.1% La X-ray escape peak E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K. W. Krämer, H.U. Güdel, Energy (kev) Appl. Phys. Lett. 77 (10) (2000) 1467.

29 counts (arb. units) LaBr 3 : 5%Ce 3+ energy resolution Pulse height spectrum 662 kev gamma rays NaI:Tl 61,000 ph/mev 2.8 % FWHM R=2.9% 6.5 % FWHM energy (kev) light yield 70,000 photons/mev (NaI:Tl 40,000 ph/mev) decay time 16 ns (NaI:Tl 230 ns) 380 E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel Appl Phys Lett 79(2001)1573

30 intensity, normalized LaBr 3 :Ce 3+ decay time and time resolution % 5% 10% 20 % 30% 511 kev kev t < 300ps 10-3 decay time 16 ns rise time faster time, ns courtesy Kanai Shah, RMD

31 LaBr 3 :Ce 3+ Counts 345 cm 3 volume BrilLanCe 380 3x3 137 Cs FWHM 3.00% channel

32 Lanthanum halides: X-ray excited optical luminescence LaCl 3 :Ce 3+ LaBr 3 :Ce 3+ Ce concentration, light yield Ce concentration, light yield Ce concentration, host emission

33 some scintillator specs Density g/cm 3 Attenuation length at 511 kev mm Photoel effect % Light yield phot/mev Decay time ns Emission max nm NaI:Tl , Bi 4 Ge 3 O 12 (BGO) , Lu 2 SiO 5 :Ce (LSO) , Lu 2(1-x) Y 2x SiO 5 :Ce (LYSO) X = , LuAlO 3 :Ce (LuAP) , Lu x Y 1-x AlO 3 :Ce (LuYAP) X = 0.2 LaCl 3 :Ce , (65%) 350 LaBr 3 :Ce , (97%) 380 LuI 3 :Ce , (72%) 472, 535 new generation of dense, bright and radiation hard scintillators

34 counts counts counts Counts PbWO 4 : a fast scintillator - but with low light yield Improved PWO crystal strong temperature quenching t1= 6.5 ns D1= 97% t2= 30.4 ns D2= 3% Cs s/e=14,5% time, ns T = +6 0 C 60Co light yield / a.u. s/e=16.9% T = -7 0 C T = C T = C Na s/e=10.9% light yield / a.u light yield / a.u.

35 E, cm -1 PbWO 4 : a fast scintillator - but with low light yield WO 4 2- Energy levels of dopings pure PbWO 4 3T 3 1, T ev 3 ev Donor Acceptor non radiative losses in PWO temperature quenching of WO 4 2- luminescence 1 A 1 R doped PWO:Y, La,Mo the shallow WO La centre is an additional radiating centre prevents e - to be trapped by deep Mo centres suppresses afterglow and large part of slow components WO ev 3 ev 1 A 1 e ev 3 ev 1 A 1 WO La 1 A 1 MoO ev

36 device crystal modules depth photosensor B where beam energy 10 3 X 0 T TeV CMS ECAL PbWO APD/VPT 4 LHC 7 s E 0.5%@120GeV

37 the PANDA detector at FAIR photon detection with high resolution over a large dynamic range: barrel 10MeV < E < 15GeV high count-rate capability ( ~ Annihilations/s) nearly 4 coverage sufficient radiation hardness endcaps timing information for trigger-less DAQ ~4.000 concept Target Spectrometer PWO-II 200mm (23X o ) crystals 4 detector for spectroscopy and reaction dynamics with antiproton

38 the Target Spectrometer: based on high-quality PWO-II

39 optical transmission light radiation hardness

40 energy resolution s prototype performance extension response to to energies high energy < 50MeV MaxLab optimized light output: PWO-II cooling: operation at T=-25 o C tagged photon MAMI, Mainz E = 26 MeV E =43.3MeV readout with photomultiplier e - s 64 MeV < E 1.5 GeV readout with incident energy / GeV photomultiplier

41 readout via SADC: further improvement energy-resolution ( 3x3 matrix ) 1 ns time resolution

42 rel. light 25 o C / % consequences of cooling: fast decay kinetics even at T=-25 o C LY(100ns)/LY(1µs) > 0.9 constant ratio LY(-25 o C)/LY(+18 o C) = 3.9 no recovery of radiation damage at T=-25 o C asymptotic light loss correlated with k (RT) T= -25 C RT / m -1

43 recovery of radiation damage recovery of normalized light yield / k (420 nm) / m -1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, illumination time / min o C Spontaneous LED_1550nm LED_1300nm LED_1060nm LED_940nm LED_464nm illumination time / min 470 nm 525 nm 640 nm 840 nm 935 nm applied integral dose of 60 Co: D = 30Gy

44 technology: micro-pulling-down technique (µpd)

45 material LuAG :Ce density g/cm 3 Z eff emission wavelength nm index of refraction decay time ns light Yield ph/mev Lu 3 Al 5 O 12 :Ce 3+ tested fibers: 0.45mm - 2.0mm emission spectra at various positions: slight changes

46 LuAG:Ce response to 241 Am - single sided readout Ø 1.0 mm fiber ~ e -μ d additional wrapping with teflon increases the light yield by 70 %

47 response to 241 Am - coincidence readout fiberlength between 2.5 cm and 4.5 cm LuAG:Ce time resolution of a single PMT: (deduced from left - right coincidence) σ t Δt 2

48 improvement of technology efficiency reproducibility multi-pulling packaging 100 mm LuAG:Ce simultaneous growth of 7 LuAG fibers 20 fibers of comparable quality

49 material density g/cm 3 Z eff emission wavelength nm index of refraction decay time ns light Yield ph/mev LYSO Lu 2(1-x) Y 2x SiO 5 :Ce 3+ tested fibers: 0.6mm - 2.0mm emission spectra: Ø 0.6mm - nearly constant emission - severe attenuation

50 LYSO:Ce fiber (Ø = 0.3 mm, L = 100 mm) response to 241 Am - single sided readout LYSO:Ce μ cm -1 μ 0.68 cm -1 average attenuation coefficient: μ (0.68 ± 0.02) cm -1 LuAG:Ce (Ø 0.3 mm): μ (0.85 ± 0.06) cm -1 good homogeneity of all investigated fibers

51 LuAG:Ce fibers 100 mm long 1 mm diameter round

52 SiPM readout PET application KVI LuAG:Ce Hamamatsu MPPC S C 60 Co source placed close to fiber at position A B close-up: fibers coupled to SiPM SiPM fiber bundle of 5 LuAG:Ce MPPC preamplifier (KVI development)

53 contact established with Russian fiber developer joint activity with WP28 SiPM laboratory in Chernogolovka

54 Thanks for your attention

55 energy resolution - example: NaI:Tl N el schematic ΔE/E (%) R sci Non prop E / kev

56 identification via pulse shape analysis PSA all events reaction products: 2 AGeV Ar + Ca charged events protons photons neutral events n

57 identification via pulse shape analysis PSA radius / MeV visualisation of PSA in polar coordinates transformation: radius short 2 long 2, angle short a tan( ) long protons + photons angle /

58 Ce 3+ luminescence center 5d 4f energy difference 5d level Ce 3+ 5d-4f level distance 5d bands 5d bands in crystal 5d level shifts down bands split by crystal field 4f levels hardly affected the lowest 5d-band edge matters 4f levels 4f levels free Ce Ce ion Pr 3+ Ce 3+ Nd 3+ Pr 3+ Nd 3+ in crystal C. van Eijk

59 additional candidates Intensity [arb.units] Ce, Pr, Nd 5d-4f transitions - ions in crystal field 5d bands The lowest 5d-band edge matters Radioluminescence spectra of 0.5 % Ce 3+ -doped and Pr 3+ -doped Ca 3 (BO 3 ) 2 single crystals under 241Am 5.5 MeV α-ray. Y. Fujimoto et al, 2010 IEEE NSS Conf. Rec., pp f levels Ce 3+ Pr 3+ Nd 3+ Wavelength [nm] X-ray induced emission spectrum of LaF 3 :Nd. C.W.E. van Eijk et al, IEEE Trans. Nucl. Sci., 41, pp , 1994.

60 Ce 3+ energy level shifts E [ev] 12 fluorides E gap Ce 3+ E 5d-4f free ion chlorides oxides bromides iodides sulfides 2 0 selenides

61 comparison of a 1.0 mm and a 0.3 mm fiber LuAG:Ce Ø Ø = 1.0 mm fiber average attenuation coefficient for Ø = 1.0 mm fibers: μ (1.56 ± 0.32) cm -1 Ø = 0.3 mm fibers: μ (0.85 ± 0.06) cm -1 1 mm

62 improvement of technology LuAG:Ce special bundle

63 improvement of technology LYSO:Ce new Iridium crucible with square nozzle 830µm 940µm fiber with quadratic cross section + improved packaging + cost efficient

64 improvement of technology LYSO:Ce new geometry of the seed: longer size decreases the longitudinal thermal gradient reduced growth speed favors crystallization of monoclinic crystal structures like LYSO operating in oxidizing atmosphere better thermal insulation reduction of macroscopic cracks quadratic LYSO fiber

Characterization of the Lanthanum Chloride Scintillation Detector

Characterization of the Lanthanum Chloride Scintillation Detector Characterization of the Lanthanum Chloride Scintillation Detector François Kazadi Kabuya 1*, Zslot Podolyak 2 1 Commissariat Général à l Energie Atomique, PO BOX 868 Kinshasa XI, DR Congo 2 Department

More information

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples Aim of this tal Detector technology WMIC Educational Program Nuclear Imaging World Molecular Imaging Congress, Dublin, Ireland, Sep 5-8, 202 You can now the name of a bird in all the languages of the world,

More information

Introduction to scintillators

Introduction to scintillators Introduction to scintillators M. Kobayashi (KEK) 17 November, 2003 1. Luminescence, fluorescence, scintillation, phosphorescence, etc. 2. Scintillation mechanism 3. Scintillation efficiency 4. Main characteristics

More information

Inorganic Scintillators

Inorganic Scintillators Inorganic Scintillators Inorganic scintillators are inorganic materials (usually crystals) that emit light in response to ionizing radiation NaI is the protypical example Scintillation mechanism is different

More information

New Scintillators for the Border Monitoring Equipment

New Scintillators for the Border Monitoring Equipment New Scintillators for the Border Monitoring Equipment M. Moszynski a a Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk, Poland Performance of new scintillators characterized by a high energy

More information

Scintillators for photon detection at at medium energies

Scintillators for photon detection at at medium energies Scintillators for photon detection at at medium energies R.Novotny II.Physics II.Physics Institute, Institute, University University Giessen, Giessen, Germany Germany and and for for the the TAPS TAPS

More information

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET

Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET Prospects for achieving < 100 ps FWHM coincidence resolving time in time-of-flight PET, 28-Feb-2012, ICTR-PHE, Geneva, Switzerland 1 Time-of-flight PET Colon cancer, left upper quadrant peritoneal node

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future June 5, 2006 1 International Conference on Calorimetry in Particle Physics, Chicago, USA Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future Ren-Yuan Zhu California Institute

More information

INORGANIC crystal scintillators are widely used in high

INORGANIC crystal scintillators are widely used in high 29 IEEE Nuclear Science Symposium Conference Record N32-5 Gamma Ray Induced Radiation Damage in and LSO/LYSO Crystals Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member,

More information

OPPORTUNITY TO JOIN IEEE AND NPSS

OPPORTUNITY TO JOIN IEEE AND NPSS OPPORTUNITY TO JOIN IEEE AND NPSS If you are NOT an IEEE Member, IEEE & NPSS offers you a FREE: Half-year membership in IEEE (value= ~$80)* Half-year membership in NPSS (value= ~$13)* Half-year subscription

More information

The Scintillation properties of Pr 3+ doped and Pr 3+, Ce 3+

The Scintillation properties of Pr 3+ doped and Pr 3+, Ce 3+ JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 13, No. 2, February 2011, p. 111-116 The Scintillation properties of Pr 3+ doped and Pr 3+, Ce 3+ doubly doped LaBr 3 X. GAO *, Y. J. HE, Y. B. CHEN

More information

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future April 4, 2006 1 International Symposium on Detector Development, SLAC, USA Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future Ren-Yuan Zhu California Institute of Technology

More information

LSO/LYSO Crystal Development Ren-yuan Zhu

LSO/LYSO Crystal Development Ren-yuan Zhu LSO/LYSO Crystal Development Ren-yuan Zhu California Institute of Technology Why Crystal Calorimeter Enhance physics discovery potential since photons and electrons are fundamental particles for the standard

More information

Precision Crystal Calorimetry in High Energy Physics

Precision Crystal Calorimetry in High Energy Physics Precision Crystal Calorimetry in High Energy Physics Ren Yuan Zhu California Institute of Technology August 13, 2008 Hard X Ray, Gamma Ray, and Neutron Detector Physics X, SPIE 2008, San Diego Why Crystal

More information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008 2425 Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics Rihua Mao, Member, IEEE, Liyuan Zhang, Member,

More information

2.5 Physics of the Universe, Astrophysics, Nuclear Planetology Dark Matter and Double Beta Decay Study Planetary Nuclear

2.5 Physics of the Universe, Astrophysics, Nuclear Planetology Dark Matter and Double Beta Decay Study Planetary Nuclear Contents 1 Scintillation and Inorganic Scintillators... 1 1.1 The Phenomenon of Scintillation... 1 1.1.1 What Is a Scintillator?... 1 1.2 Survey of Scintillation Mechanisms.... 7 1.3 Scintillation Radiating

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Labr3:Ce scintillators for gamma ray spectroscopy Permalink https://escholarship.org/uc/item/38f0c7zv Authors Shah, K.S.

More information

Calibration and Monitoring for Crystal Calorimetry

Calibration and Monitoring for Crystal Calorimetry Calibration and Monitoring for Crystal Calorimetry CsI(Tl) Ren-yuan Zhu CALTECH BGO PWO SCINT03 Valencia, Spain Properties of Crystal Scintillators Crystal NaI(Tl) CsI(Tl) CsI BaF 2 BGO PbWO 4 LSO(Ce)

More information

A new scintillator detector for nuclear physics experiments: the CLYC scintillator

A new scintillator detector for nuclear physics experiments: the CLYC scintillator A new scintillator detector for nuclear physics experiments: the CLYC scintillator Franco Camera 1 and Agnese Giaz 2 1 Università di Milano and INFN sezione di Milano 2 INFN sezione di Milano (current

More information

BSO Crystals for the HHCAL Detector Concept

BSO Crystals for the HHCAL Detector Concept BSO Crystals for the HHCAL Detector Concept Fan Yang 1, Hui Yuan 2, Liyuan Zhang 1, Ren-Yuan Zhu 1 1 California Institute of Technology 2 Shanghai Institute of Ceramics 1 Homogeneous Hadronic Calorimeter

More information

Platinum resistance. also wirewound versions. eg

Platinum resistance. also wirewound versions. eg Platinum resistance Platinum resistance Very stable and reproducible, wide T range (~ -200 C to 1000 C) T coefficient ~ +0.4%/ C Bulky and expensive for some applications (~ 2-3) need wires (R) or local

More information

Large Size LYSO Crystals for Future High Energy Physics Experiments

Large Size LYSO Crystals for Future High Energy Physics Experiments Large Size LYSO Crystals for Future High Energy Physics Experiments Jianming Chen, Liyuan Zhang, Ren-Yuan Zhu California Institute of Technology October 18, 2004 IEEE NSS04, Rome 1 Scintillating Crystals

More information

Scintillation Detectors

Scintillation Detectors Radiation Measurement Systems Scintillation Detectors Ho Kyung Kim Pusan National University Scintillation detector = scintillator + light sensor Scintillators Inorganic alkali halide crystals Best light

More information

Crystals for the HHCAL Detector Concept Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member, IEEE

Crystals for the HHCAL Detector Concept Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member, IEEE IEEE TRANSACTIONS ON NUCLEAR SCIENCE 1 Crystals for the HHCAL Detector Concept Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member, IEEE Abstract Crystal calorimeter has

More information

Week 6: Ch. 8 Scintillation Counters

Week 6: Ch. 8 Scintillation Counters Week 6: Ch. 8 cintillation Counters Proportional Counters Principles of cintillation Counters -- organic materials --- light production -- inorganic materials --- light production -- light output, collection

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Chapter 6: Basic radiation detectors

Chapter 6: Basic radiation detectors Chapter 6: Basic radiation detectors Set of 60 slides based on the chapter authored by C.W.E. VAN EIJK Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands of the publication

More information

Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals

Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals Ultra High Quantum Efficiency PMT for energy resolution measurements of LaBr 3 (Ce) scintillation crystals Roberto Pani INFN and Sapienza - University of Rome, Italy On behalf of ECORAD Collaboration Cinti

More information

05 - Scintillation detectors

05 - Scintillation detectors 05 - Scintillation detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_05, Scintillation detectors Version 2 1 / 39 Scintillation detector principles

More information

The NaI:Tl and CsI:Tl crystals for effective detection of X-rays and low energy charged particles

The NaI:Tl and CsI:Tl crystals for effective detection of X-rays and low energy charged particles The NaI:Tl and CsI:Tl crystals for effective detection of X-rays and low energy charged particles Alexander M. Kudin Institute for Scintillation Materials NAS of Ukraine National University of Civil Protection

More information

Design of a Lanthanum Bromide Detector for TOF PET

Design of a Lanthanum Bromide Detector for TOF PET Design of a Lanthanum Bromide Detector for TOF PET A. Kuhn, S. Surti, Member, IEEE, J. S. Karp, Senior Member, IEEE, P. S. Raby, K. S. Shah, A. E. Perkins, Member, IEEE, G. Muehllehner, Fellow Member,

More information

CHAPTER 6. Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands Radiation detectors complexity and relevance

CHAPTER 6. Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands Radiation detectors complexity and relevance CHAPTER 6 C.W.E. VAN EIJK Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands 6.1. INTRODUCTION 6.1.1. Radiation detectors complexity and relevance Radiation detectors are of

More information

A Study on Radiation Damage in PWO-II Crystals

A Study on Radiation Damage in PWO-II Crystals 2336 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 3, JUNE 2013 A Study on Radiation Damage in PWO-II Crystals Fan Yang, Member, IEEE, Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-yuan

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator

SCI-O11. Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator 88 The 1 st NPRU Academic Conference SCI-O11 Design of a Compton Spectrometer Experiment for Studying Electron Response of a Scintillator P. Limkitjaroenporn and W.Chewpraditkul Radiation Physics Laboratory,

More information

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector C. Fiorini, member, IEEE, A. Gola, M. Zanchi, A. Longoni, P. Lechner, H. Soltau, L. Strüder Abstract In this work

More information

IN the last decade, cerium doped silicate based heavy

IN the last decade, cerium doped silicate based heavy Large Size LYSO Crystals for Future High Energy Physics Experiments Jiaming Chen, Liyuan Zhang Member, IEEE and Ren-yuan Zhu Senior Member, IEEE Abstract Because of high stopping power and fast bright

More information

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce F.C.L. Crespi 1,2, F.Camera 1,2, N. Blasi 2, A.Bracco 1,2, S. Brambilla 2, B. Million 2, R. Nicolini 1,2, L.Pellegri 1, S. Riboldi

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Timing and Energy Response of Six Prototype Scintillators

Timing and Energy Response of Six Prototype Scintillators Timing and Energy Response of Six Prototype Scintillators CCM Kyba 1, J Glodo 2, EVD van Loef 2, JS Karp 1, KS Shah 2 1 University of Pennsylvania 2 Radiation Monitoring Devices SCINT 2007 June 7, 2007

More information

arxiv: v2 [physics.ins-det] 8 Feb 2013

arxiv: v2 [physics.ins-det] 8 Feb 2013 Preprint typeset in JINST style - HYPER VERSION arxiv:1302.0278v2 [physics.ins-det] 8 Feb 2013 Investigation of gamma ray detection performance of thin LFS scintillator with MAPD readout E.Guliyev a, F.Ahmadov

More information

Precision Crystal Calorimetry in High Energy Physics: Past, Present and Future

Precision Crystal Calorimetry in High Energy Physics: Past, Present and Future December 6, 2005 PANDA Collaboration Meeting at GSI, Darmstadt, Germany 1 Precision Crystal Calorimetry in High Energy Physics: Past, Present and Future Ren-Yuan Zhu California Institute of Technology

More information

Scintillators General Characteristics

Scintillators General Characteristics Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ] Main Features: Sensitivity to energy Fast time response

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Recent advances and future perspectives of gamma imagers for scintimammography

Recent advances and future perspectives of gamma imagers for scintimammography 3rd International Conference on Imaging Technologies in Biomedical Sciences: ITBS2005 Innovation in Nuclear and Radiological Imaging: From Basic Research to Clinical Application Milos Conference Center,

More information

Fast Crystal Scintillators for Future HEP Experiments

Fast Crystal Scintillators for Future HEP Experiments Fast Crystal Scintillators for Future HEP Experiments Ren-Yuan Zhu California Institute of Technology October 3, 2013 Physics/Theory Colloquium at Los Alamos Laboratory Why Crystal Calorimeter in HEP?

More information

Preparatory experiments for cold-neutron induced fission studies at IKI

Preparatory experiments for cold-neutron induced fission studies at IKI Preparatory experiments for cold-neutron induced fission studies at IKI A. Oberstedt 1, S. Oberstedt 2, R. Billnert 1, J. Karlsson 1, X. Ledoux 3, J.-G. Marmouget 3 and F.-J. Hambsch 2 1 School of Science

More information

Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation crystals

Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation crystals Available online at www.sciencedirect.com Procedia Engineering 32 (2012) 765 771 I-SEEC2011 Light yield non-proportionality and energy resolution of Lu 1.95 Y 0.05 SiO 5 :Ce and Lu 2 SiO 5 :Ce scintillation

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

A new timing model for calculating the intrinsic timing resolution of a scintillator detector

A new timing model for calculating the intrinsic timing resolution of a scintillator detector INSTITUTE OF PHYSICS PUBLISHING Phys. Med. Biol. 5 (7) 3 7 PHYSICS IN MEDICINE AND BIOLOGY doi:.88/3-955/5/4/6 A new timing model for calculating the intrinsic timing resolution of a scintillator detector

More information

Influence of defects and traps in the scintillation process. Anna Vedda University of Milano Bicocca, Italy

Influence of defects and traps in the scintillation process. Anna Vedda University of Milano Bicocca, Italy Influence of defects and traps in the scintillation process Anna Vedda University of Milano Bicocca, Italy LUMDETR 2009 July 15th, 2009 Outline Trapping processes during ionizing irradiation De trapping

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

Non-proportional response and energy resolution of pure SrI 2 and SrI 2 :5%Eu scintillators

Non-proportional response and energy resolution of pure SrI 2 and SrI 2 :5%Eu scintillators Non-proportional response and energy resolution of pure SrI 2 and SrI 2 :5%Eu scintillators Mikhail S. Alekhin, Ivan V. Khodyuk, Johan T.M. de Haas, Pieter Dorenbos, Member, IEEE Abstract - Non-proportional

More information

Optical transmission radiation damage and recovery stimulation of DSB:Ce 3+ inorganic scintillation material

Optical transmission radiation damage and recovery stimulation of DSB:Ce 3+ inorganic scintillation material Optical transmission radiation damage and recovery stimulation of DSB:Ce 3+ inorganic scintillation material V. Dormenev a, A. Borisevich b,v. Mechinsky b, M. Korjik b, D. Kozlov b, R.W. Novotny a a II.

More information

Calorimetry I Electromagnetic Calorimeters

Calorimetry I Electromagnetic Calorimeters Calorimetry I Electromagnetic Calorimeters Introduction Calorimeter: Detector for energy measurement via total absorption of particles... Also: most calorimeters are position sensitive to measure energy

More information

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT Dr. Andrea Fabbri, University of Rome Roma Tre I.N.F.N. (National Institue of Nuclear Physics) γ-ray imaging with scintillator and PSPMT γ-ray

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

Studies of Hadron Calorimeter

Studies of Hadron Calorimeter Studies of Hadron Calorimeter Zhigang Wang Institute of High Energy Physics 2012.10.17 in IHEP Outline 1,The Dark Matter Calorimeter 2,The Hadron Calorimeter(HCAL) 3, Summary 1,Dark Matter Calorimeter

More information

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2 Photons Produced in PbF 2 R. Dolenec a, S. Korpar b,a, P. Križan c,a, R. Pestotnik a, A. Stanovnik d,a a, Ljubljana, Slovenia b Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

More information

arxiv: v1 [physics.ins-det] 29 Jun 2011

arxiv: v1 [physics.ins-det] 29 Jun 2011 Investigation of Large LGB Detectors for Antineutrino Detection P. Nelson a,, N. S. Bowden b, a Department of Physics, Naval Postgraduate School, Monterey, CA 99, USA b Lawrence Livermore National Laboratory,

More information

ISPA-Tubes with YAP:Ce Active Windows for X and Gamma Ray Imaging.

ISPA-Tubes with YAP:Ce Active Windows for X and Gamma Ray Imaging. PIXEL 2000 International Workshop on Semiconductor Pixel Detectors for Particles and X-Rays Genova - Porto Antico - Magazzini del Cotone (Sala Libeccio) June 5-8, 2000 ISPA-Tubes with YAP:Ce Active Windows

More information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 3, JUNE 2009 1 Comparison of Fast Scintillators With TOF PET Potential Maurizio Conti, Member, IEEE, Lars Eriksson, Senior Member, IEEE, Harold Rothfuss,

More information

The fast light of CsI(Na) crystals

The fast light of CsI(Na) crystals CPC (HEP & NP), 2011, xx(x): 1-5 Chinese Physics C Vol. xx, No. X, Xxx, 2011 The fast light of CsI(Na) crystals Xilei Sun 1;1) Junguang Lu 1 Tao Hu 1 Li Zhou 1 Jun Cao 1 Yifang Wang 1 Liang Zhan 1 Boxiang

More information

Scintillation detectors

Scintillation detectors 25 de dx Scintillation detectors excitation L25.pdf P627 YK 3/14/2012 detectable photons also by UV, or molecular collisions, chem. reactions, bubbles. etc. Detector building requirements (sometimes controversial):

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra 22.101 Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967),

More information

Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K

Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K Improved scintillation proportionality and energy resolution of LaBr 3 :Ce at 80K Ivan V. Khodyuk, Mikhail S. Alekhin, Johan T.M. de Haas, and Pieter Dorenbos Luminescence Materials Research Group, Faculty

More information

Photonics applications II. Ion-doped ChGs

Photonics applications II. Ion-doped ChGs Photonics applications II Ion-doped ChGs 1 ChG as a host for doping; pros and cons - Important - Condensed summary Low phonon energy; Enabling emission at longer wavelengths Reduced nonradiative multiphonon

More information

Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy. References: Objectives: Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

More information

Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging

Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging Pulse height non-linearity in LaBr 3 :Ce crystal for gamma ray spectrometry and imaging P A O L O B E N N A T I I N F N R O M A T R E E D E M O M P H D S C H O O L, R O M A T R E U N I V E R S I T Y P

More information

A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring

A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring A Prototype of LaBr3:Ce in situ Gamma-Ray Spectrometer for Marine Environmental Monitoring 1 Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education Department of Engineering

More information

REVIEW OF CRYSTAL CALORIMETERS

REVIEW OF CRYSTAL CALORIMETERS REVIEW OF CRYSTAL CALORIMETERS V.B.Golubev, Budker Institute of Nuclear Physics, Novosibirsk, Russia Crystal Ball Detector The first large-scale crystal calorimeter in high energy physics was the NaI(Tl)

More information

Resolution Studies of inorganic Scintillation Screens for high energetic and high brilliant Electron Beams

Resolution Studies of inorganic Scintillation Screens for high energetic and high brilliant Electron Beams Resolution Studies of inorganic Scintillation Screens for high energetic and high brilliant Electron Beams Gero Kube, Christopher Behrens (DESY), Werner Lauth (IKP, Mainz) gero.kube@desy.de Introduction

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

Sven Schumann. DPG Spring Meeting

Sven Schumann. DPG Spring Meeting Radiative 0 photoproduction with CB / TAPS Overview: Motivation Magnetic dipole moments of baryons (1232) resonance in p p 0 ' reactions Experimental set-up Energy-tagged photon beam Crystal Ball / TAPS

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

The Characterization of new Eu 2+ doped TlSr2I5 Scintillator Crystals

The Characterization of new Eu 2+ doped TlSr2I5 Scintillator Crystals The Characterization of new Eu 2+ doped TlSr2I5 Scintillator Crystals H. J. Kim a*, Gul Rooh b, Arshad Khan a, H. Park a, Sunghwan Kim c a Department of Physics, Kyungpook National University, Daegu 41566,

More information

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS L. E. PRICE Bldg 362, Argonne National Laboratory, Argonne, IL 60439, USA E-mail: lprice@anl.gov (For the ATLAS Tile Calorimeter Collaboration)

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

An idea for the future proton detection of (p,2p) reactions with the R 3 B set-up at FAIR

An idea for the future proton detection of (p,2p) reactions with the R 3 B set-up at FAIR Journal of Physics: Conference Series PAPER OPEN ACCESS An idea for the future proton detection of (p,2p) reactions with the R 3 B set-up at FAIR To cite this article: G Ribeiro et al 2015 J. Phys.: Conf.

More information

Synchrotron radiation in spectroscopy

Synchrotron radiation in spectroscopy Synchrotron radiation in spectroscopy V.V.Mikhailin Optics and Spectroscopy Department, Physics Faculty, M.V.Lomonosov Moscow State University, Leninskie Gory, 119991, Moscow, Russia Synchrotron radiation

More information

Scintillators: new ways to fast emission

Scintillators: new ways to fast emission Scintillators: new ways to fast emission for Medical and High Energy Physics Applications Rosana Martinez Turtós Tutor: Marco Paganoni Co-tutor: Alessio Ghezzi Submitted for the degree of Doctor of Physics

More information

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection R. Kreuger, C. W. E. van Eijk, Member, IEEE, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, Member, IEEE, L. M.

More information

Improvement of -ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping

Improvement of -ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping Improvement of -ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping M. S. Alekhin, J. T. M. de Haas, I. V. Khodyuk, K. W. Krämer, P. R. Menge, V. Ouspenski, and P. Dorenbos

More information

THE main physics motivation for building the Compact

THE main physics motivation for building the Compact 1560 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 Precision Lead Tungstate Crystal Calorimeter for CMS at LHC Ren-Yuan Zhu, Senior Member, IEEE Abstract A precision lead tungstate

More information

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09 Experimental production of many- positron systems: L2, techniques David B. Cassidy Department of Physics and Astronomy, University of California, Riverside, USA cassidy@physics.ucr.edu Varenna, July 09

More information

Future gamma-ray spectroscopic experiment (J-PARC E63) on 4 ΛH

Future gamma-ray spectroscopic experiment (J-PARC E63) on 4 ΛH Future gamma-ray spectroscopic experiment (J-PARC E63) on ΛH 2018/6/26 T. O. Yamamoto KEK IPNS (Japan) for the E63 collaboration Contents CSB in s-shell hypernuclear system studied via γ-ray spectroscopy

More information

Scintillation Products Technical Note

Scintillation Products Technical Note Scintillation Products Technical Note BrilLanCe TM Scintillators Performance Summary (Revision: January, 29) 1 INTRODUCTION Since the discovery of LaCl 3 :Ce and LaBr 3 :Ce as scintillators by Delft and

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

The Next Generation of Crystal Detectors

The Next Generation of Crystal Detectors The Next Generation of Crystal Detectors Ren-Yuan Zhu California Institute of Technology May 29, 2015 FRONTIER DETECTORS FOR FRONTIER PHYSICS:13th Pisa Meeting on Advanced Detectors Why Crystal Calorimeter

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Design and production of Scintillation Detectors

Design and production of Scintillation Detectors Design and production of Scintillation Detectors Components for nuclear radiation detectors Fields of application: * Medicine * Industry * Science * Security Scintillation Detectors : Instruments using

More information

Europium-doped barium halide scintillators for x-ray and -ray detections

Europium-doped barium halide scintillators for x-ray and -ray detections JOURNAL OF APPLIED PHYSICS 101, 034901 2007 Europium-doped barium halide scintillators for x-ray and -ray detections J. Selling Department of Physics, Faculty of Science, University of Paderborn, D-33095

More information

Enhanced α-γ Discrimination in Co-doped LaBr 3 :Ce

Enhanced α-γ Discrimination in Co-doped LaBr 3 :Ce Enhanced α-γ Discrimination in Co-doped LaBr 3 :Ce Kan Yang and Peter R. Menge Saint-Gobain Crystals Hiram Ohio, USA Vladimir Ouspenski Saint-Gobain Recherche Aubervilliers, France IEEE Nuclear Science

More information

Neutron Response of LaBr 3 :Ce and CsI:Na Phoswich Crystal Scintillators for PARIS

Neutron Response of LaBr 3 :Ce and CsI:Na Phoswich Crystal Scintillators for PARIS Neutron Response of LaBr 3 :Ce and CsI:Na Phoswich Crystal Scintillators for PARIS O. J. Roberts a,, P. Joshi a, D. G. Jenkins a, O. Dorvaux b, C. Finck b, M. Rousseau b a Department of Physics, University

More information

Upgrade of the CMS Forward Calorimetry

Upgrade of the CMS Forward Calorimetry Upgrade of the CMS Forward Calorimetry Riccardo Paramatti Cern & INFN Roma IPMLHC2013 Tehran 9 th October Credits to Francesca Cavallari and Pawel de Barbaro Outline Radiation damage at HL-LHC ECAL and

More information