Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Size: px
Start display at page:

Download "Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy"

Transcription

1 arxiv:cond-mat/ v1 [cond-mat.stat-mech] 7 Apr 2003 Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy Qiuping A. Wang Institut Supérieur des Matériaux du Mans, 44, Avenue F.A. Bartholdi, Le Mans, France Abstract Using Rényi entropy, an alternative statistics to Tsallis one for nonextensive systems at equilibrium is discussed. We show that it is possible to have the q-exponential distribution function for equilibrium nonextensive systems having nonadditive energy but additive entropy. PACS : r, y, d, a 1 Introduction In the last decade, one of the important debates in statistics is about whether or not Boltzmann-Gibbs statistics (BGS) can be applied to nonextensive or nonadditive systems 1 with finite size or long range interaction, and whether there are alternatives to BGS for these systems. Polemics even take place within the Tsallis nonextensive statistical mechanics (NSM) to decide whether or not one should use nonadditive energy with nonadditive entropy. The reader can find a short comment on this problem in reference [1]. Rényi entropy[2] S R = ln i p q i 1 q, q 0 (1) is often associated with the study of multi-fractal and chaotic systems[3], where p i is the probability that the system is at the state labelled by i 1 A detailed discussion of these two concepts is given in [4] 1

2 (Boltzmann constant k=1). It is sometimes compared to Tsallis entropy[5] S T i = pq i 1, associated with a q-exponential distribution exp 1 q q (x) = [1 + (1 q)x] 1/(1 q), in the discussions of possible nonextensive statistics and the relative fundamental problem such as thermodynamic stability[6, 7, 8, 9]. Recently, Tsallis entropy is shown to be equivalent to Rényi one for systems at equilibrium[10, 11] (which is of course an open question[1]). Note that there is a monotonic relationship between these two entropies : S R = ln[1 + (1 q)st ] 1 q or S T 1 = e(1 q)sr, (2) 1 q and that, for complete probability distribution ( w i=1 p i = 1) in microcanonical ensemble, S R is identical to the Boltzmann entropy S : S R = S = ln w (3) since w i=1 p q i = w 1 q where w is the total number of states of the system. For other properties of S R, see [2, 3, 6]. Figure 1 shows the concavity of S R q= q=1 S R (x) 0.4 q= x Figure 1: The concavity of Rényi entropy S R for q > 0. 2

3 1 0.9 q= q=1 0.6 S T q= x Figure 2: The concavity of Tsallis entropy S T for q > 0. Due to the fact that S R is a monotonically increasing function of S T 2, they will reach the extremum together. One can hope that the maximum entropy (for q > 0[6]) will give same results with same constraints. Indeed, Rényi entropy has been used to derive, by maximum entropy method, the Tsallis q- exponential distribution within an additive energy formalism[12, 13]. Except for its extensive nature, this Rényi statistics is in some sense equivalent to the third version of Tsallis nonextensive statistics[14] with escort probability and presents the same problematics of the latter due to additive energy[1, 15]. Although 20 years ago Lesche[16] (and other authors recently[7, 17]) shown that Rényi entropy was not stable using special non-equilibrium probability distributions[18] and additive energy[7], in view of its importance in the study of chaos and fractal systems which are unusual in the sense that there is inhomogeneous space-time geometry, it would be interesting to see its behavior with nonadditive energy which, it should be noted, is consistent with the q-exponential distribution. 2 This can be illustrated by the following relationship : ds R ds = T 1+(1 q)s = dst T i pq i where i pq i is always positive. This fact should be taken into account in the study of thermodynamic stability. 3

4 In this paper, I will present a formal Rényi thermo-statistics for equilibrium systems with nonadditive energy required by the existence of thermodynamic equilibrium[19]. This formalism may be helpful for understanding the possible alternatives to BGS and to NSM for canonical systems with additive entropy but nonadditive energy[20] (as mentioned above, for microcanonical ensemble, S R = S, so that one should use Boltzmann statistics if entropy is additive). 2 Canonical distribution We suppose complete distribution w i=1 p i = 1 and U = w i=1 p i E i where U is the internal energy and E i the energy of the system at the state i. We will maximize as usual the following functional : We get F = ln i p q i w 1 q + α p i γ i=1 w p i E i. (4) i=1 p i [α γe i ] 1/(q 1). (5) Since S R recovers Boltzmann-Gibbs entropy S = w i=1 p i ln p i when q = 1, it is logical for us to require that Eq.(5) recovers the conventional exponential distribution for q = 1. This leads to p i = 1 Z [1 (q 1)βE i] 1/(q 1). (6) where (q 1)β = γ/α and Z = w i=1 [1 (q 1)βE i ] 1/(q 1). We will show the physical meaning of β later. Note that the second derivative d2 F = qp q 2 dp 2 i 0 for q 0. So the i stable maximum entropy is ensured for all equilibrium distributions. 3 Mixte character : nonadditive energy and additive entropy It has been shown[19] that, for thermal equilibrium to take place in nonextensive systems, the internal energy of the composite system must satisfy U(A + B) = U(A) + U(B) + λu(b)u(b) (7) 4

5 which means E ij (A + B) = E i (A) + E j (B) + λe i (B)E j (B) (8) where λ is a constant. Applying Eq.(8) to Eq.(6), we straightforwardly get the product joint probability for two subsystems A and B composing A + B : p ij (A + B) = p i (A)p j (B) (9) and the additivity of S R : S R (A + B) = S R (A) + S R (B). (10) If λ = (1 q)β. So S R is essentially different from S T, because in this case S T is nonadditive with S T (A + B) = S T (A) + S T (B) + (1 q)s T (A)S T (B). Note that we do not need independent or noninteracting or weakly interacting subsystems for establishing the additivity of S R or the nonadditivity of S T, as discussed in [19, 21, 22]). So in this formalism, we can deal with interacting systems with nonadditive energy but additive entropy. 4 Zeroth law and temperature It is easy to show that So we have or S R = ln Z + ln[1 + (1 q)βu]/(1 q). (11) β = [1 + (1 q)βu] SR U (12) 1 β = U (1 q)u. (13) SR Since [1 + (1 q)βu] is always positive (q-exponential probability cutoff), β has always the same sign as SR. β can be proved to be the effective inverse U temperature if we consider the zeroth law of thermodynamics. Let δs R be a small change of S R of the isolated composite system A + B. Equilibrium means δs R = 0. From Eq.(10), we have δs R (A) = δs R (B). However, 5

6 1 from Eq.(7), the energy conservation of A + B gives δu(a) = [1+(1 q)βu(a)] 1 δu(b). That leads to [1+(1 q)βu(b)] [1 + (1 q)βu(a)] SR (A) U(A) = [1 + (1 (B) q)βu(b)] SR U(B) (14) or β(a) = β(b) which characterizes the thermal equilibrium. 5 Some additive thermodynamic relations Due to the mixte character of this formalism with additive entropy and nonadditive energy, all the thermodynamic relations become nonlinear. In what follows, we will try to simplify this formal system and to give a linear form to this nonlinearity. Using the same machinery as in [22] which gives an extensive form to the nonextensive Tsallis statistics, we define an additive deformed energy E as follows : E = ln[1 + (1 q)βu]/(1 q)β (15) which is identical to U whenever q = 1. Note that E(A+B) = E(A)+E(B). In this way, Eq.(11) can be recast into So that β = SR. The first law can be written as E S R = ln Z + βe. (16) δe = TδS R + Y δx (17) where Y is the deformed pressure and X the coordinates (volume, surface...) and T = 1/β. The deformed free energy can be defined by F = E TS R = T ln Z, (18) so that Y = F X. The real pressure is Y R = [1 + (1 q)βu]y and the work is δw = Y R δx. The deformed heat is δq = TδS R and the real heat is δq R = [1 + (1 q)βu]δq 6

7 6 Grand-canonical distributions It is easy to get the grand-canonical ensemble distribution given by which gives p i = 1 Z [1 (q 1)β(E i µn i )] 1/(q 1), (19) S R = ln Z + ln[1 + (1 q)βu]/(1 q) + ln[1 (1 q)βωn]/(1 q). (20) Let M be the deformed particle number : M = ln[1 (1 q)βωn]/(1 q)βω, Eq.(20) becomes S R = ln Z + βe + βωm. (21) M must be additive, so that N is nonadditive satisfying N(A + B) = N(A) + N(B) + (1 q)βωn(a)n(b) (22) Due to the distribution function of Eq.(19), the quantum distributions will be identical to those in NSM[23]. 7 Conclusion In summary, the additive Rényi entropy is associated with a nonadditive energy to give an nonextensive statistics characterized by q-exponential distributions which are proved to be useful for many systems showing non Gaussian and power law distributions[24]. This formalism would be helpful as an alternative to Tsallis NSM for interacting nonextensive systems with additive information and entropy. I would like to emphasize in passing that the problem of the stability and observability of Rényi entropy must be considered seriously for systems at equilibrium and with nonadditive energy which is consistent with the distribution functions this entropy yields. A important point should be underlined following the result of the present work. Rényi entropy is identical to Boltzmann one for microcanonical ensemble. So, theoretically, its applicability to systems with nonadditive energy means that Boltzmann entropy may also be applied to nonextensive microcanonical systems as indicated by Gross[20]. Obviously, to the best of our knowledge, this cannot be true for canonical ensemble. 7

8 Acknowledgement The author thanks with great pleasure Professors S. Abe, D.H.E. Gross for valuable discussions on some points of this work and for bringing my attention to important references. References [1] Q.A. Wang, When is a quantity additive and when is it extensive, cond-mat/ [2] A. Rényi, Calcul de probabilité,(paris, Dunod, 1966)P522. A. Wehrl, Rev. Mod. Phys., 50(1978)221 [3] C. Beck, Thermodynamics of chaotic systems(cambridge University Press, 1993) [4] H. Touchette, When is a quantity additive and when is it extensive, Physica A, 305(2002)84-88 [5] C. Tsallis, J. Stat. Phys., 52(1988)479 [6] E.M.F. Curado, and C. Tsallis, J. Phys. A: Math. Gen.24(1991)L69 [7] J.D. Ramshaw, Physics Letters A,198(1995)119 [8] G.R. Guerberoff, and G.A. Raggio, Phys. Lett. A, 214(1996)313 [9] T. Wada, Phys. Lett. A, 297(2002)334 [10] S. Abe, Physica A, 305(2002)62-68 [11] C. Tsallis and A.M.C. Souza, Constructing a statistical mechanics for Beck-Cohen superstatistics, cond-mat/ [12] E.L. Lenzi, R.S. Mendes and L.R. da Silva, Physica A, 280(2000)337 [13] A.G. Bashkirov and A.V. Vityazev, Physica A, 277(2000)136 8

9 [14] F. Pennini, A.R. Plastino and A. Plastino, Physica A, 258(1998)446 C. Tsallis, R.S. Mendes and A.R. Plastino, Physica A, 261(1999)534; Silvio R.A. Salinas and C. Tsallis, Brazilian Journal of Physics(special issue: Nonadditive Statistical Mechanics and Thermodynamics), 29(1999). [15] Q.A. WANG, Euro. Phys. J. B, 26(2002)357 [16] B. Lesche, J. Stat. Phys., 27(1982)419 [17] S. Abe, Phys. Rev. E, 66(2002) [18] S. Abe, private communication [19] Q.A. WANG, L. Nivanen, A. Le Méhauté and M. Pezeril, J. Phys. A, 35(2002)7003 [20] D.H.E Gross, Nonextensive hamiltonian systems follow Boltzmann s principle not Tsallis statistics-phase transition, second law of thermodynamics, Physica A, 305(2002) D.H.E Gross, Micro-canonical statistical mechanics of some nonextensive systems, Chaos, Solitons & Fractals, 13(2002) [21] Q.A. WANG, Phys. Lett. A, 300(2002)169 [22] Q.A. WANG and A. Le Méhauté, J. Math. Phys, 43(2002)5079 [23] Q.A. WANG, Quantum gas distributions prescribed by factorisation hypothesis of probability, Chaos, Solitons & Fractals, 14(2002)765 [24] Updated references concerning NSM can be found at 9

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy

Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy arxiv:cond-mat/030446v5 [cond-mat.stat-mech] 0 May 2003 Power law distribution of Rényi entropy for equilibrium systems having nonadditive energy Qiuping A. Wang Institut Supérieur des Matériaux du Mans,

More information

arxiv:cond-mat/ v1 10 Aug 2002

arxiv:cond-mat/ v1 10 Aug 2002 Model-free derivations of the Tsallis factor: constant heat capacity derivation arxiv:cond-mat/0208205 v1 10 Aug 2002 Abstract Wada Tatsuaki Department of Electrical and Electronic Engineering, Ibaraki

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 27 Feb 2006

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 27 Feb 2006 arxiv:cond-mat/060263v [cond-mat.stat-mech] 27 Feb 2006 Thermal and mechanical equilibrium among weakly interacting systems in generalized thermostatistics framework A.M. carfone Istituto Nazionale di

More information

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014)

How the Nonextensivity Parameter Affects Energy Fluctuations. (Received 10 October 2013, Accepted 7 February 2014) Regular Article PHYSICAL CHEMISTRY RESEARCH Published by the Iranian Chemical Society www.physchemres.org info@physchemres.org Phys. Chem. Res., Vol. 2, No. 2, 37-45, December 204. How the Nonextensivity

More information

Property of Tsallis entropy and principle of entropy increase

Property of Tsallis entropy and principle of entropy increase Bull. Astr. Soc. India (2007) 35, 691 696 Property of Tsallis entropy and principle of entropy increase Du Jiulin Department of Physics, School of Science, Tianjin University, Tianjin 300072, China Abstract.

More information

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2007

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2007 A General Nonlinear Fokker-Planck Equation and its Associated Entropy Veit Schwämmle, Evaldo M. F. Curado, Fernando D. Nobre arxiv:0704.0465v1 [cond-mat.stat-mech] 3 Apr 2007 Centro Brasileiro de Pesquisas

More information

A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B

A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B EJTP 9, No. 26 (2012) 87 92 Electronic Journal of Theoretical Physics A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B F. A R Navarro Universidad Nacional

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Jul 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 25 Jul 2003 APS/123-QED Statistical Mechanics in the Extended Gaussian Ensemble Ramandeep S. Johal, Antoni Planes, and Eduard Vives Departament d Estructura i Constituents de la Matèria, Universitat de Barcelona Diagonal

More information

arxiv: v3 [cond-mat.stat-mech] 19 Mar 2015

arxiv: v3 [cond-mat.stat-mech] 19 Mar 2015 Canonical Ensemble in Non-extensive Statistical Mechanics Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 2, LT-008 Vilnius, Lithuania arxiv:503.03778v3

More information

The q-exponential family in statistical physics

The q-exponential family in statistical physics Journal of Physics: Conference Series The q-exponential family in statistical physics To cite this article: Jan Naudts 00 J. Phys.: Conf. Ser. 0 0003 View the article online for updates and enhancements.

More information

arxiv: v1 [gr-qc] 17 Nov 2017

arxiv: v1 [gr-qc] 17 Nov 2017 Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition law arxiv:1711.06513v1 [gr-qc] 17 Nov 2017 Everton M. C. Abreu, 1,2, Jorge Ananias Neto, 2, Albert C. R. Mendes,

More information

Study of energy fluctuation effect on the statistical mechanics of equilibrium systems

Study of energy fluctuation effect on the statistical mechanics of equilibrium systems Journal of Physics: Conference Series Study of energy fluctuation effect on the statistical mechanics of equilibrium systems To cite this article: Yu V Lysogorskiy et al 2012 J. Phys.: Conf. Ser. 394 012006

More information

Thermostatistics based on Kolmogorov Nagumo averages: unifying framework for extensive and nonextensive generalizations

Thermostatistics based on Kolmogorov Nagumo averages: unifying framework for extensive and nonextensive generalizations 7 June 2002 Physics Letters A 298 (2002 369 374 wwwelseviercom/locate/pla Thermostatistics based on Kolmogorov Nagumo averages: unifying framewor for extensive and nonextensive generalizations Mare Czachor

More information

Generalized Entropy Composition with Different q Indices: A Trial

Generalized Entropy Composition with Different q Indices: A Trial arxiv:cond-mat/000458v Apr 2000 Generalized Entropy Composition with Different q Indices: A Trial in International Workshop on Classical and Quantum Complexity and Nonextensive Thermodynamics (Denton-Texas,

More information

ISSN Article. Tsallis Entropy, Escort Probability and the Incomplete Information Theory

ISSN Article. Tsallis Entropy, Escort Probability and the Incomplete Information Theory Entropy 2010, 12, 2497-2503; doi:10.3390/e12122497 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Tsallis Entropy, Escort Probability and the Incomplete Information Theory Amir

More information

arxiv: v1 [cond-mat.stat-mech] 17 Jul 2015

arxiv: v1 [cond-mat.stat-mech] 17 Jul 2015 A new entropy based on a group-theoretical structure Evaldo M. F. Curado arxiv:1507.05058v1 [cond-mat.stat-mech] 17 Jul 2015 Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and

More information

From time series to superstatistics

From time series to superstatistics From time series to superstatistics Christian Beck School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E 4NS, United Kingdom Ezechiel G. D. Cohen The Rockefeller University,

More information

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions

Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for q-exponential distributions PHYSICAL REVIE E 66, 4634 22 Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: A basis for -exponential distributions Sumiyoshi Abe Institute of Physics, University

More information

Superstatistics: theory and applications

Superstatistics: theory and applications Continuum Mech. Thermodyn. (24) 6: 293 34 Digital Object Identifier (DOI).7/s6-3-45- Original article Superstatistics: theory and applications C. Beck School of Mathematical Sciences, Queen Mary, University

More information

arxiv:astro-ph/ v1 15 Mar 2002

arxiv:astro-ph/ v1 15 Mar 2002 Fluxes of cosmic rays: A delicately balanced anomalous thermal equilibrium Constantino Tsallis, 1 Joao C. Anjos, 1 Ernesto P. Borges 1,2 1 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 May 2000

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 May 2000 arxiv:cond-mat/0005408v1 [cond-mat.stat-mech] 24 May 2000 Non-extensive statistical mechanics approach to fully developed hydrodynamic turbulence Christian Beck School of Mathematical Sciences, Queen Mary

More information

Statistical mechanics in the extended Gaussian ensemble

Statistical mechanics in the extended Gaussian ensemble PHYSICAL REVIEW E 68, 563 23 Statistical mechanics in the extended Gaussian ensemble Ramandeep S. Johal,* Antoni Planes, and Eduard Vives Departament d Estructura i Constituents de la atèria, Facultat

More information

arxiv:cond-mat/ v1 8 Jan 2004

arxiv:cond-mat/ v1 8 Jan 2004 Multifractality and nonextensivity at the edge of chaos of unimodal maps E. Mayoral and A. Robledo arxiv:cond-mat/0401128 v1 8 Jan 2004 Instituto de Física, Universidad Nacional Autónoma de México, Apartado

More information

Solution to a Problem Found by Calculating the Magnetic Internal Energy Inside Nonextensive Statistical Mechanics

Solution to a Problem Found by Calculating the Magnetic Internal Energy Inside Nonextensive Statistical Mechanics EJTP 7, No. 24 (2010) 131 138 Electronic Journal of Theoretical Physics Solution to a Problem Found by Calculating the Magnetic Internal Energy Inside Nonextensive Statistical Mechanics Felipe A. Reyes

More information

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks

Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Nonextensive Aspects of Self- Organized Scale-Free Gas-Like Networks Stefan Thurner Constantino Tsallis SFI WORKING PAPER: 5-6-6 SFI Working Papers contain accounts of scientific work of the author(s)

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 18 Sep 2001

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 18 Sep 2001 Asymmetric unimodal maps at the edge of chaos arxiv:cond-mat/0109330v1 [cond-mat.stat-mech] 18 Sep 2001 Ugur Tirnakli 1, Constantino Tsallis 2 and Marcelo L. Lyra 3 1 Department of Physics, Faculty of

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Dec 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Dec 1996 Comparison of the Standard Statistical Thermodynamics (SST) arxiv:cond-mat/9612055v1 [cond-mat.stat-mech] 5 Dec 1996 with the Generalized Statistical Thermodynamics (GST) Results for the Ising Chain Uǧur

More information

On the q-deformed Thermodynamics and q-deformed Fermi Level in Intrinsic Semiconductor

On the q-deformed Thermodynamics and q-deformed Fermi Level in Intrinsic Semiconductor Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 5, 213-223 HIKARI Ltd, www.m-hikari.com htts://doi.org/10.12988/ast.2017.61138 On the q-deformed Thermodynamics and q-deformed Fermi Level in

More information

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 16 Feb 2007

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 16 Feb 2007 arxiv:cond-mat/71538v3 [cond-mat.stat-mech] 16 Feb 7 Thermodynamics with generalized ensembles: The class of dual orthodes Michele Campisi E-mail: campisi@unt.edu Department of Physics,University of North

More information

arxiv:math-ph/ v4 22 Mar 2005

arxiv:math-ph/ v4 22 Mar 2005 Nonextensive triangle euality and other properties of Tsallis relative-entropy minimization arxiv:math-ph/0501025v4 22 Mar 2005 Ambedkar Dukkipati, 1 M. Narasimha Murty,,2 Shalabh Bhatnagar 3 Department

More information

Brazilian Journal of Physics, vol. 29, no. 1, March, Ensemble and their Parameter Dierentiation. A. K. Rajagopal. Naval Research Laboratory,

Brazilian Journal of Physics, vol. 29, no. 1, March, Ensemble and their Parameter Dierentiation. A. K. Rajagopal. Naval Research Laboratory, Brazilian Journal of Pysics, vol. 29, no. 1, Marc, 1999 61 Fractional Powers of Operators of sallis Ensemble and teir Parameter Dierentiation A. K. Rajagopal Naval Researc Laboratory, Wasington D. C. 2375-532,

More information

arxiv: v1 [cond-mat.stat-mech] 19 Feb 2016

arxiv: v1 [cond-mat.stat-mech] 19 Feb 2016 Canonical ensemble in non-extensive statistical mechanics when > Julius Ruseckas Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 2, LT-008 Vilnius, Lithuania arxiv:602.0622v

More information

Ensemble equivalence for non-extensive thermostatistics

Ensemble equivalence for non-extensive thermostatistics Physica A 305 (2002) 52 57 www.elsevier.com/locate/physa Ensemble equivalence for non-extensive thermostatistics Raul Toral a;, Rafael Salazar b a Instituto Mediterraneo de Estudios Avanzados (IMEDEA),

More information

arxiv: v1 [nlin.cd] 22 Feb 2011

arxiv: v1 [nlin.cd] 22 Feb 2011 Generalising the logistic map through the q-product arxiv:1102.4609v1 [nlin.cd] 22 Feb 2011 R W S Pessoa, E P Borges Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis 2, Salvador,

More information

Temperature Fluctuations and Entropy Formulas

Temperature Fluctuations and Entropy Formulas Temperature Fluctuations and Entropy Formulas Does it or does not? T.S. Biró G.G. Barnaföldi P. Ván MTA Heavy Ion Research Group Research Centre for Physics, Budapest February 1, 2014 J.Uffink, J.van Lith:

More information

Relativistic treatment of Verlinde s emergent force in Tsallis statistics

Relativistic treatment of Verlinde s emergent force in Tsallis statistics arxiv:9.85v cond-mat.stat-mech] 9 Mar 9 Relativistic treatment of Verlinde s emergent force in Tsallis statistics L. Calderon,4, M. T. Martin,4, A. Plastino,4,5,6, M. C. Rocca,,4,5,V. Vampa Departamento

More information

On the entropic derivation of the r 2 Newtonian gravity force

On the entropic derivation of the r 2 Newtonian gravity force arxiv:804.0944v [gr-qc] 5 Apr 08 On the entropic derivation of the r Newtonian gravity force A. Plastino,3,4, M.C.Rocca,,3, Departamento de Física, Universidad Nacional de La Plata, Departamento de Matemática,

More information

144 Brazilian Journal of Physics, vol. 29, no. 1, March, Systems and Generalized Entropy. Departamento de Fsica,

144 Brazilian Journal of Physics, vol. 29, no. 1, March, Systems and Generalized Entropy. Departamento de Fsica, 144 Brazilian Journal of Physics, vol. 29, no. 1, March, 1999 Low-Dimensional Non-Linear Dynamical Systems and Generalized Entropy Crisogono R. da Silva, Heber R. da Cruz and Marcelo L. Lyra Departamento

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

Test of Nonextensive Statistical Mechanics by Solar Sound Speeds

Test of Nonextensive Statistical Mechanics by Solar Sound Speeds ArXiv: cond-mat/060111 5 Feb 006 Test of Nonextensive Statistical Mechanics by Solar Sound Speeds Du Jiulin * Department of Physics, School of Science, Tianjin University, Tianjin 30007, China To check

More information

Is There a World Behind Shannon? Entropies for Complex Systems

Is There a World Behind Shannon? Entropies for Complex Systems Is There a World Behind Shannon? Entropies for Complex Systems Stefan Thurner and Rudolf Hanel Abstract In their seminal works, Shannon and Khinchin showed that assuming four information theoretic axioms

More information

Multicanonical distribution and the origin of power laws. Abstract

Multicanonical distribution and the origin of power laws. Abstract Multicanonical distribution and the origin of power laws G. L. Vasconcelos and D. S. P. Salazar Departamento de Física, Universidade Federal de Pernambuco, Brazil. and arxiv:128.5624v1 [cond-mat.stat-mech]

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10 Contents EQUILIBRIUM STATISTICAL MECHANICS 1 The fundamental equation of equilibrium statistical mechanics 2 2 Conjugate representations 6 3 General overview on the method of ensembles 10 4 The relation

More information

Statistical physics models belonging to the generalised exponential family

Statistical physics models belonging to the generalised exponential family Statistical physics models belonging to the generalised exponential family Jan Naudts Universiteit Antwerpen 1. The generalized exponential family 6. The porous media equation 2. Theorem 7. The microcanonical

More information

IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

More information

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITY OF OSLO FCULTY OF MTHEMTICS ND NTURL SCIENCES Exam in: FYS430, Statistical Mechanics Day of exam: Jun.6. 203 Problem :. The relative fluctuations in an extensive quantity, like the energy, depends

More information

Least action principle and stochastic motion : a generic derivation of path probability

Least action principle and stochastic motion : a generic derivation of path probability Journal of Physics: Conference Series PAPER OPEN ACCESS Least action principle and stochastic motion : a generic derivation of path probability To cite this article: Aziz El Kaabouchi and Qiuping A Wang

More information

Nonuniqueness of canonical ensemble theory. arising from microcanonical basis

Nonuniqueness of canonical ensemble theory. arising from microcanonical basis onuniueness of canonical enseble theory arising fro icrocanonical basis arxiv:uant-ph/99097 v2 25 Oct 2000 Suiyoshi Abe and A. K. Rajagopal 2 College of Science and Technology, ihon University, Funabashi,

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000 technical note, cond-mat/0009244 arxiv:cond-mat/0009244v2 [cond-mat.stat-mech] 25 Sep 2000 Jarzynski Relations for Quantum Systems and Some Applications Hal Tasaki 1 1 Introduction In a series of papers

More information

Two-dimensional dissipative maps at chaos threshold:sensitivity to initial conditions and relaxation dynamics

Two-dimensional dissipative maps at chaos threshold:sensitivity to initial conditions and relaxation dynamics Physica A 340 (2004) 227 233 www.elsevier.com/locate/physa Two-dimensional dissipative maps at chaos threshold:sensitivity to initial conditions and relaxation dynamics Ernesto P. Borges a;b, Ugur Tirnakli

More information

Generalized Huberman-Rudnick scaling law and robustness of q-gaussian probability distributions. Abstract

Generalized Huberman-Rudnick scaling law and robustness of q-gaussian probability distributions. Abstract Generalized Huberman-Rudnick scaling law and robustness of q-gaussian probability distributions Ozgur Afsar 1, and Ugur Tirnakli 1,2, 1 Department of Physics, Faculty of Science, Ege University, 35100

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

arxiv: v1 [astro-ph.sr] 30 Mar 2019

arxiv: v1 [astro-ph.sr] 30 Mar 2019 epl draft arxiv:1904.00253v1 [astro-ph.sr] 30 Mar 2019 D. B. de Freitas 1, R. T. Eufrásio 2,3, M. M. F. Nepomuceno 4,5 and J. R. P. da Silva 5 1 Departamento de Física, Universidade Federal do Ceará, Caixa

More information

Gaussian fluctuations in an ideal bose-gas a simple model

Gaussian fluctuations in an ideal bose-gas a simple model Gaussian fluctuations in an ideal bose-gas a simple model A Petrova,, O Nedopekin, D Tayurskii and Q A Wang LUNAM Universite, ISMANS, Laboratoire de Physique Statistique et Systeme Complexes, 44, Avenue

More information

Nonlinear quantum equations: Classical field theory

Nonlinear quantum equations: Classical field theory JOURNAL OF MATHEMATICAL PHYSICS 54, 103302 (2013) Nonlinear quantum equations: Classical field theory M. A. Rego-Monteiro and F. D. Nobre a) Centro Brasileiro de Pesquisas Físicas and National Institute

More information

Maximum entropy generation in open systems: the Fourth Law?

Maximum entropy generation in open systems: the Fourth Law? arxiv:1011.3989v1 [physics.data-an] 17 Nov 2010 Maximum entropy generation in open systems: the Fourth Law? Umberto Lucia I.T.I.S. A. Volta, Spalto Marengo 42, 15121 Alessandria, Italy Abstract This paper

More information

On the average uncertainty for systems with nonlinear coupling

On the average uncertainty for systems with nonlinear coupling On the average uncertainty for systems with nonlinear coupling Kenric P. elson, Sabir Umarov, and Mark A. Kon Abstract The increased uncertainty and complexity of nonlinear systems have motivated investigators

More information

Challenges of finite systems stat. phys.

Challenges of finite systems stat. phys. Challenges of finite systems stat. phys. Ph. Chomaz, Caen France Connections to other chapters Finite systems Boundary condition problem Statistical descriptions Gibbs ensembles - Ergodicity Inequivalence,

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Sep 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Sep 2003 arxiv:cond-mat/0309093v1 [cond-mat.stat-mech] 4 Sep 2003 Introduction to Nonextensive Statistical Mechanics and Thermodynamics Constantino Tsallis a, Fulvio Baldovin a, Roberto Cerbino b and Paolo Pierobon

More information

Generalization of the Peres criterion for local realism through nonextensive entropy. Abstract

Generalization of the Peres criterion for local realism through nonextensive entropy. Abstract Generalization of the Peres criterion for local realism through nonextensive entropy Constantino Tsallis (a) Centro Brasileiro de Pesquisas Fisicas, Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil,

More information

Non-Gaussian equilibrium in a long-range Hamiltonian system

Non-Gaussian equilibrium in a long-range Hamiltonian system PHYSICAL REVIEW E, VOLUME 64, 056134 Non-Gaussian equilibrium in a long-range Hamiltonian system Vito Latora, 1,2, * Andrea Rapisarda, 1, and Constantino Tsallis 3, 1 Dipartimento di Fisica e Astronomia,

More information

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis, Generalized Canonical Ensembles 1 Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis Department of Mathematics and Statistics University

More information

A Brief Introduction to Statistical Mechanics

A Brief Introduction to Statistical Mechanics A Brief Introduction to Statistical Mechanics E. J. Maginn, J. K. Shah Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556 USA Monte Carlo Workshop Universidade

More information

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics Glenn Fredrickson Lecture 1 Reading: 3.1-3.5 Chandler, Chapters 1 and 2 McQuarrie This course builds on the elementary concepts of statistical

More information

Generalized Classical and Quantum Dynamics Within a Nonextensive Approach

Generalized Classical and Quantum Dynamics Within a Nonextensive Approach 56 Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005 Generalized Classical and Quantum Dynamics Within a Nonextensive Approach A. Lavagno Dipartimento di Fisica, Politecnico di Torino, I-029 Torino,

More information

Scale-free network of earthquakes

Scale-free network of earthquakes Scale-free network of earthquakes Sumiyoshi Abe 1 and Norikazu Suzuki 2 1 Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan 2 College of Science and Technology, Nihon University, Chiba

More information

arxiv: v2 [cond-mat.stat-mech] 1 Mar 2012

arxiv: v2 [cond-mat.stat-mech] 1 Mar 2012 Statistical mechanics of the vacuum arxiv:1112.1583v2 [cond-mat.stat-mech] 1 Mar 2012 Christian Beck Queen Mary University of London, School of Mathematical Sciences, Mile End Road, London E1 4NS, UK Abstract

More information

An Entropy depending only on the Probability (or the Density Matrix)

An Entropy depending only on the Probability (or the Density Matrix) An Entropy depending only on the Probability (or the Density Matrix) December, 2016 The Entropy and Superstatistics The Entropy and Superstatistics Boltzman-Gibbs (BG) statistics works perfectly well for

More information

Chapter 2 Learning with Boltzmann Gibbs Statistical Mechanics

Chapter 2 Learning with Boltzmann Gibbs Statistical Mechanics Chapter 2 Learning with Boltzmann Gibbs Statistical Mechanics o, o [78] Kleoboulos of Lindos (6th century B.C.) 2. Boltzmann Gibbs Entropy 2.. Entropic Forms The entropic forms (.) and (.3) that we have

More information

9.1 System in contact with a heat reservoir

9.1 System in contact with a heat reservoir Chapter 9 Canonical ensemble 9. System in contact with a heat reservoir We consider a small system A characterized by E, V and N in thermal interaction with a heat reservoir A 2 characterized by E 2, V

More information

From Einstein to generalized diffusion

From Einstein to generalized diffusion From Einstein to generalized diffusion Jean Pierre Boon and James F. Lutsko Physics Department CP 231, Universite Libre de Bruxelles, 1050 - Bruxelles, Belgium Abstract. We show that from a generalization

More information

Estimators, escort probabilities, and φ-exponential families in statistical physics

Estimators, escort probabilities, and φ-exponential families in statistical physics Estimators, escort probabilities, and φ-exponential families in statistical physics arxiv:math-ph/425v 4 Feb 24 Jan Naudts Departement Natuurkunde, Universiteit Antwerpen UIA, Universiteitsplein, 26 Antwerpen,

More information

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry 1 On the Asymptotic Convergence of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans Research School Of Chemistry Australian National University Canberra, ACT 0200 Australia

More information

Generalizing the Extensive Postulates

Generalizing the Extensive Postulates Generalizing the Extensive Postulates L. Velazquez Departamento de Física, Universidad de Pinar del Río Martí 270, esq. 27 de Noviembre, Pinar del Río, Cuba. arxiv:cond-mat/0107214v2 [cond-mat.stat-mech]

More information

A possible deformed algebra and calculus inspired in nonextensive thermostatistics

A possible deformed algebra and calculus inspired in nonextensive thermostatistics Physica A 340 (2004) 95 101 www.elsevier.com/locate/physa A possible deformed algebra and calculus inspired in nonextensive thermostatistics Ernesto P. Borges a;b; a Escola Politecnica, Universidade Federal

More information

Author to whom correspondence should be addressed;

Author to whom correspondence should be addressed; Entropy 2011, 13, 1928-1944; doi:10.3390/e13111928 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Classes of N-Dimensional Nonlinear Fokker-Planck Equations Associated to Tsallis

More information

arxiv: v1 [cond-mat.stat-mech] 15 Jan 2012

arxiv: v1 [cond-mat.stat-mech] 15 Jan 2012 arxiv:2.32v [cond-mat.stat-mech] 5 Jan 22 The nonextensive entropy approach versus the stochastic in describing subdiffusion Tadeusz Koszto lowicz Institute of Physics, Jan Kochanowski University, ul.

More information

Closer look at time averages of the logistic map at the edge of chaos

Closer look at time averages of the logistic map at the edge of chaos Closer look at time averages of the logistic map at the edge of chaos Ugur Tirnakli* Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey Constantino Tsallis Centro Brasileiro

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003 arxiv:cond-mat/0303262v1 [cond-mat.stat-mech] 13 Mar 2003 Quantum fluctuations and random matrix theory Maciej M. Duras Institute of Physics, Cracow University of Technology, ulica Podchor ażych 1, PL-30084

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning Chang Liu Tsinghua University June 1, 2016 1 / 22 What is covered What is Statistical mechanics developed for? What

More information

Possible Generalization of Boltzmann-Gibbs Statistics

Possible Generalization of Boltzmann-Gibbs Statistics Journal of Statistical Physics, Vol. 52, Nos. 1/2, 1988 Possible Generalization of Boltzmann-Gibbs Statistics Constantino Tsallis 1 Received November 12, 1987, revision received March 8, 1988 With the

More information

2m + U( q i), (IV.26) i=1

2m + U( q i), (IV.26) i=1 I.D The Ideal Gas As discussed in chapter II, micro-states of a gas of N particles correspond to points { p i, q i }, in the 6N-dimensional phase space. Ignoring the potential energy of interactions, the

More information

Fluctuations of intensive variables and non-equivalence of thermodynamic ensembles

Fluctuations of intensive variables and non-equivalence of thermodynamic ensembles Fluctuations of intensive variables and non-equivalence of thermodynamic ensembles A. Ya. Shul'man V.A. Kotel'nikov Institute of Radio Engineering and Electronics of the RAS, Moscow, Russia 7th International

More information

Power-law behaviors from the two-variable Langevin equation: Ito s and Stratonovich s Fokker-Planck equations. Guo Ran, Du Jiulin *

Power-law behaviors from the two-variable Langevin equation: Ito s and Stratonovich s Fokker-Planck equations. Guo Ran, Du Jiulin * arxiv:22.3980 Power-law behaviors from the two-variable Langevin equation: Ito s and Stratonovich s Fokker-Planck equations Guo Ran, Du Jiulin * Department of Physics, School of Science, Tianjin University,

More information

arxiv:astro-ph/ v2 19 Nov 2002

arxiv:astro-ph/ v2 19 Nov 2002 Astronomy & Astrophysics manuscript no. A AMRFF February, 8 (DOI: will be inserted by hand later) Jeans gravitational instability and nonextensive kinetic theory J. A. S. Lima, R. Silva, J. Santos Departamento

More information

arxiv: v1 [math-ph] 28 Jan 2009

arxiv: v1 [math-ph] 28 Jan 2009 Some properties of deformed q-numbers Thierry C. Petit Lobão Instituto de Matemática, Universidade Federal da Bahia Campus Universitário de Ondina, 4070-0 Salvador BA, Brazil Pedro G. S. Cardoso and Suani

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

Generalized canonical ensembles and ensemble equivalence

Generalized canonical ensembles and ensemble equivalence University of Massachusetts Amherst ScholarWorks@UMass Amherst Mathematics and Statistics Department Faculty Publication Series Mathematics and Statistics 2006 Generalized canonical ensembles and ensemble

More information

Thermodynamics, Statistical Mechanics and Entropy

Thermodynamics, Statistical Mechanics and Entropy entropy Article Thermodynamics, Statistical Mechanics and Entropy Robert H. Swendsen Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; swendsen@cmu.edu; Tel.: +1-412-268-5211 Received:

More information

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Talk presented at the 2012 Anacapa Society Meeting Hamline University, Saint Paul, Minnesota

More information

Exponential or Power Law? How to Select a Stable Distribution of Probability in a Physical System

Exponential or Power Law? How to Select a Stable Distribution of Probability in a Physical System proceedings Proceedings Exponential or Power Law? How to Select a Stable Distribution of Probability in a Physical System ndrea Di Vita D.I.C.C.., Università di Genova, Via Montallegro 1, 16145 Genova,

More information

Radial distribution function within the framework of the Tsallis statistical mechanics

Radial distribution function within the framework of the Tsallis statistical mechanics Accepted Manuscript Radial distribution function within the framework of the Tsallis statistical mechanics Seyed Mohammad Amin Tabatabaei Bafghi, Mohammad Kamalvand, Ali Morsali, Mohammad Reza Bozorgmehr

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Feb 2004

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Feb 2004 A statistical model with a standard Gamma distribution Marco Patriarca and Kimmo Kaski Laboratory of Computational Engineering, Helsinki University of Technology, P.O.Box 923, 25 HUT, Finland arxiv:cond-mat/422v

More information

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B Canonical ensemble (Two derivations) Determine the probability that a system S in contact with a reservoir 1 R to be in one particular microstate s with energy ɛ s. (If there is degeneracy we are picking

More information

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004

Microcanonical scaling in small systems arxiv:cond-mat/ v1 [cond-mat.stat-mech] 3 Jun 2004 Microcanonical scaling in small systems arxiv:cond-mat/0406080v1 [cond-mat.stat-mech] 3 Jun 2004 M. Pleimling a,1, H. Behringer a and A. Hüller a a Institut für Theoretische Physik 1, Universität Erlangen-Nürnberg,

More information

arxiv:nucl-th/ v2 26 Feb 2002

arxiv:nucl-th/ v2 26 Feb 2002 NEGAIVE SPECIFIC HEA IN OU-OF-EQUILIBRIUM NONEXENSIVE SYSEMS A. Rapisarda and V. Latora Dipartimento di Fisica e Astronomia, Università di Catania and INFN Sezione di Catania, Corso Italia 57, I-95129

More information