Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

Size: px
Start display at page:

Download "Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?"

Transcription

1 CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat? How Can Energy Be Transferred? In the morning, you might turn on the shower and wait for the water to warm up. Outside your home, the dew on the grass evaporates when sunlight hits it. In your freezer, the water in ice trays becomes solid after the water cools to 0 ºC. None of these things could happen without energy transfer. There are three different ways that energy can be transferred between objects: conduction, convection, and radiation. The figure below shows an example of a situation in which all three kinds of energy transfer are occurring. Heat moves through the metal wire in the girl s hand by conduction. Convection in the air carries heat away from the fire. The light from the flames moves by radiation. READING TOOLBOX Compare As you read this section, make a table comparing convection, conduction, and radiation. In the table, define each term and give examples of it. 1. Identify What are the three ways that energy can be transferred? Energy moves through the wire by conduction. Heated air carries energy away from the fire during convection. The fire gives off visible light through radiation. 2. Identify How is visible light transferred from the fire? Interactive Reader 307 Heat and Temperature

2 3. Describe How is energy transferred during thermal conduction? 4. Apply Concepts Could conduction happen between two objects that were not touching? Explain your answer. ENERGY TRANSFER BY CONDUCTION One way that energy transfers between objects is by conduction. Thermal conduction is the transfer of energy through the collisions of particles. Heat can move by conduction between two objects that are touching one another. Conduction also happens within the particles of a substance. Imagine that you put a marshmallow on one end of a metal coat hanger. Then, you hold the marshmallow over a campfire flame. The wire absorbs heat from the fire and warms up. Then, the end of the wire that you are holding gets warmer. Energy moves from the wire to your hand as heat. This energy transfer through the wire and from the wire to your hand are examples of thermal conduction. Conduction happens when particles collide with one another. For example, the wire nearest the flame is warmer than the wire farther away. Therefore, the particles in the wire near the flame are moving quickly. They collide with other particles further from the flame. Energy moves from the fast-moving particles to the slower-moving particles. The slower particles begin to move faster. In this way, heat moves from one end of the wire to the other. Before the wire is near a flame, it is the same temperature everywhere. Therefore, all the particles in the wire have the same average kinetic energy. 5. Infer In the bottom image, which side of the wire is hottest? Heat flows from the fire into the end of the wire. The particles in the wire near the fire move more quickly. They collide with other particles in the wire. This transfers energy from the warmer parts of the wire to the cooler parts. Interactive Reader 308 Heat and Temperature

3 ENERGY TRANSFER BY CONVECTION Above a campfire, hot air expands and moves upward, carrying energy with it. This movement of energy through the movement of matter is called convection. Convection is possible only in fluids. Most fluids are liquids or gases. During convection, the density of a portion of a fluid changes. In most cases, a fluid s density changes because its temperature changes. The denser fluid sinks below the less dense fluid. Convecting fluids often form convection currents. A convection current forms when density differences cause a fluid to flow along a circular path. Convection currents can form in any fluid that is not the same density everywhere. An example of how convection currents form in air is shown in the figure below. 6. Define What is convection? Cool air Cool air Convection currents Warm air Convection currents 7. Explain Why does the air directly above the flame rise? ENERGY TRANSFER BY RADIATION If you stand next to a campfire, you may feel its warmth. The fire gives off energy in the form of electromagnetic waves. These include infrared radiation, visible light, and ultraviolet rays. Radiation is energy that is transferred as electromagnetic waves. Radiation is different from conduction and convection because it can transfer energy through a vacuum such as outer space. Almost all of the energy that we get from the sun is transferred by radiation. 8. Compare How is radiation different from convection or conduction? Interactive Reader 309 Heat and Temperature

4 9. Describe Why does metal get hot quickly when it is placed near a heat source? What Are Conductors and Insulators? If you toast a marshmallow using a metal wire, the wire gets hot quickly. If you used a wooden stick instead, it would not heat up as fast. This is because metal is a good conductor of heat, but wood is not. A conductor is a type of material through which heat can move easily. Most cooking pans are made of metal because most metals are good conductors. Heat does not move through the wooden stick very easily because wood is an insulator. An insulator is a material that transfers energy poorly. Insulation is often used in attics and walls of houses to keep heat from leaving the house. Insulation can also be part of clothing. 10. Identify What is the main way that energy moves through a substance? CHARACTERISTICS OF CONDUCTORS Energy moves through a substance mainly by conduction. For energy to move through conduction, the particles in the substance must collide with each other. The closer the particles are to each other, the more likely they are to collide. Therefore, materials with particles that are close together are generally better conductors than materials with particles that are far apart. Remember that density is a measure of how closely packed the particles in a substance are. The particles in a dense material are more closely packed than those in a lower-density material, as shown below. Metals tend to be good conductors because most metals have high densities. Most gases are poor conductors. This is because the particles in a gas are much farther apart than the particles in a solid or liquid. The particles in a gas do not collide with each other very often. Dense material: particles close together Less-dense material: particles far apart 11. Infer Which of the two materials in the figure is most likely a gas? Explain your answer. Interactive Reader 310 Heat and Temperature

5 What Is Specific Heat? If you place a metal spoon into a cup of hot tea, the spoon will become warm. The tea will become cooler, because the spoon absorbs heat from the tea. How much will the temperatures of the tea and the spoon change? That depends on three things: the mass of the tea and of the spoon the temperature of the tea and of the spoon the specific heat of the tea and of the spoon 12. Apply Concepts If the spoon was the same temperature as the tea, would the spoon heat up when it was placed in the tea? Explain your answer. Specific heat (c) describes how much heat a substance must absorb in order for its temperature to change by a certain amount. Specifically, it is the amount of heat required to increase the temperature of 1 kg of the substance by 1 K. The higher a substance s specific heat, the more energy it must absorb before its temperature will change. The specific heat of a substance does not depend on how much of the substance is present. For example, 100 kg of water has the same specific heat as 1 kg of water: 4,186 J/kg K. The tables below give the specific heats of different substances at 25 C. Substance Specific heat at 25 C (J/kg K) Substance Liquid water 4,186 Solid copper 385 Specific heat at 25 C (J/kg K) Liquid ethanol Gaseous ammonia Gaseous water vapor Solid aluminum Solid carbon (graphite) 2,440 Solid iron 449 2,060 Solid silver 234 1,870 Liquid mercury Solid gold Solid lead Identify Which substance would require the most heat to produce a temperature change: liquid water or gaseous water vapor? Different substances have different specific heats. The particles in some substances need to absorb only a small amount of energy in order to move faster. The particles in other substances must absorb much more energy before they can move that fast. A substance with a high specific heat must absorb more heat than a substance with a lower specific heat before its particles begin to move faster. Interactive Reader 311 Heat and Temperature

6 Math Skills 14. Describe Relationships How is mass related to the amount of energy needed to raise a substance s temperature? USING SPECIFIC HEAT It takes 4,186 J of energy to raise the temperature of 1 kg of water by 1 K. If you had 2 kg of water, it would take twice as much energy to raise the temperature by 1 K. It would also take twice as much energy to raise the temperature of 1 kg of water by 2 K. The equation below shows how to use specific heat to relate mass, temperature change, and energy: energy = specific heat mass temperature change energy = cm T In this equation, the delta symbol ( ) represents change in. To calculate the change in temperature of a substance, use the following equation: T = final temperature initial temperature T = T f T i Now, let s look at an example of how to use specific heat to solve problems involving heat and temperature. How much energy is required to increase the temperature of 200 kg of water from 25 ºC to 37 ºC? Step 1: List the known and unknown values. Known: mass of water, m = 200 kg initial temperature of water, T i = 25 ºC final temperature of water, T f = 37 ºC specific heat of water, c = 4,186 J/kg K Unknown: energy Math Skills 15. Calculate How much energy is required to raise the temperature of 755 g of solid iron from 283 K to 403 K? Show your work. (Hint: Use the information in the table on the previous page.) Step 2: Write the equations. Step 3: Insert the known values and solve for the unknown values. Remember to convert all measurements to proper units. T K = T C energy = cm T T = T f T i T i = 25 ºC T i = K T f = 37 ºC T f = K T = 12 K energy = (4,186 J/kg K) (200 kg) (12 K) energy = 10,000,000 J = kj So, it takes about kj of energy to increase the water s temperature. Interactive Reader 312 Heat and Temperature

7 What Can Happen When a Substance Absorbs Heat? Imagine placing a pot of cold water on a hot stove burner. The water absorbs heat from the burner. If you put a thermometer in the water, you would see the temperature of the water increase. When the water s temperature reached 100 ºC, the water would start to boil. Many people think that the temperature of the water continues to rise as it boils. However, this is not the case. If you watched the thermometer in the boiling water, you would see that the water s temperature would not rise. To understand why this is, you need to know what can happen to a substance when it absorbs heat. Heat moving into a substance can cause the particles in the substance to move faster. If the particles move faster, the substance s temperature increases. This happens if the substance is far from its melting or boiling point. If the substance is at its melting or boiling point, however, the absorbed energy causes the substance to change in state. When a substance is near its boiling point, it still absorbs energy. However, none of the energy is used to increase the kinetic energy of its particles. The energy is used to change the substance from a liquid to a gas. The same is true for a substance near its melting point. The energy it absorbs makes it change from a solid to a liquid. The graph below shows an example of how temperature changes when energy is added to a substance. Notice that absorbing energy can cause the substance s temperature to increase, or it can cause the substance to change state. However, absorbing heat cannot cause both a temperature change and a change in state. 16. Apply Concepts What type of energy transfer causes heat to move from the side of a metal pan into the water inside the pan? What kind of energy transfer occurs when the heated water rises toward the top of the pan? Boiling point GAS Temperature Melting point SOLID LIQUID 17. Interpret What is happening during the times that the temperature of the substance doesn t change? Added Energy Interactive Reader 313 Heat and Temperature

8 Section 2 Review Section Vocabulary convection the movement of matter due to differences in density that are caused by temperature variations; can result in the transfer of energy as heat convection current any movement of matter that results from differences in density; may be vertical, circular, or cyclical radiation the energy that is transferred as electromagnetic waves, such as visible light and infrared waves specific heat the quantity of heat required to raise a unit mass of homogeneous material 1 K or 1 ºC in a specified way given constant pressure and volume thermal conduction the transfer of energy as heat through a material 1. Explain Why are most cooking pots and pans made from metal? 2. Identify Fill in the blanks in the table below. Example The moon s surface has a higher temperature on the side facing the sun. When cold water is poured into a glass, the glass becomes colder. Warm ocean water carries heat from the equator toward the poles. The pavement in a parking lot becomes hot on a sunny day. Type of energy transfer radiation 3. Draw Conclusions Convection occurs within the rock in Earth s mantle. What can you conclude about the rock in the mantle based on this information? (Hint: In what kind of matter can convection occur?) 4. Infer Why can energy move through outer space by radiation, but not by convection or conduction? 5. Calculate A container holds 2.0 kg of liquid water. The water absorbs 477 kj of energy. If the water s initial temperature was 298 K, what is its final temperature? Show your work. (Hint: Rearrange the energy equation to solve for DT.) Interactive Reader 314 Heat and Temperature

Name Class Date. How are temperature and energy related? What are the three common temperature scales? Why do objects feel hot or cold?

Name Class Date. How are temperature and energy related? What are the three common temperature scales? Why do objects feel hot or cold? CHAPTER 14 SECTION Heat and Temperature 1 Temperature KEY IDEAS As you read this section, keep these questions in mind: How are temperature and energy related? What are the three common temperature scales?

More information

Conduction is the transfer of heat by the direct contact of particles of matter.

Conduction is the transfer of heat by the direct contact of particles of matter. Matter and Energy Chapter 9 energy flows from a material at a higher temperature to a material at a lower temperature. This process is called heat transfer. How is heat transferred from material to material,

More information

Heat and Temperature

Heat and Temperature Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

More information

8th Grade. Thermal Energy Study Guide.

8th Grade. Thermal Energy Study Guide. 1 8th Grade Thermal Energy Study Guide 2015 10 09 www.njctl.org 2 Thermal Energy Study Guide www.njctl.org 3 Part 1 Define the following terms and/or concepts 4 1 Temperature 5 2 Kinetic Energy 6 3 Thermal

More information

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide.

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide. Slide 1 / 67 Slide 2 / 67 8th Grade Thermal Energy Study Guide 2015-10-09 www.njctl.org Slide 3 / 67 Thermal Energy Study Guide www.njctl.org Slide 4 / 67 Part 1 Define the following terms and/or concepts

More information

2,000-gram mass of water compared to a 1,000-gram mass.

2,000-gram mass of water compared to a 1,000-gram mass. 11.2 Heat To change the temperature, you usually need to add or subtract energy. For example, when it s cold outside, you turn up the heat in your house or apartment and the temperature goes up. You know

More information

What Is Air Temperature?

What Is Air Temperature? 2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

More information

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

More information

heat By cillian bryan and scott doyle

heat By cillian bryan and scott doyle heat By cillian bryan and scott doyle What is heat Heat energy is the result of the movement of tiny particles called atoms molecules or ions in solids, liquids and gases. Heat energy can be transferred

More information

Thermal Energy. Practice Quiz Solutions

Thermal Energy. Practice Quiz Solutions Thermal Energy Practice Quiz Solutions What is thermal energy? What is thermal energy? Thermal energy is the energy that comes from heat. This heat is generated by the movement of tiny particles within

More information

Thermal Energy. Chapter 6 2 Transferring Thermal Energy

Thermal Energy. Chapter 6 2 Transferring Thermal Energy Thermal Energy Chapter 6 2 Transferring Thermal Energy Objectives Compare and contrast conduction, convection, and radiation. Compare and contrast conductors and insulators. CLE 3202.2.3 Examine the applications

More information

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature Temperature CHAPTER 14 Heat and Temperature The temperature of a substance is proportional to the average kinetic energy of the substance s particles. As the average kinetic energy of the particles in

More information

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis 1 Thermal Energy Vocabulary for Chapter 6 Thermal Energy Broughton High School Physical Science Vocabulary No.# Term Page # Definition 2 1. Degrees 2. Higher Specific Heat 3. Heat of Vaporization 4. Radiation

More information

Science 7 Unit C: Heat and Temperature. Topic 6. Transferring Energy. pp WORKBOOK. Name:

Science 7 Unit C: Heat and Temperature. Topic 6. Transferring Energy. pp WORKBOOK. Name: Science 7 Unit C: Heat and Temperature Topic 6 Transferring Energy pp. 226-236 WORKBOOK Name: 0 Read pp. 226-227 object or material that can transfer energy to other objects Example: light bulb, the Sun

More information

Conduction, Convection, and Radiation

Conduction, Convection, and Radiation Conduction Thermal energy is transferred from place to place by conduction, convection, and radiation. Conduction is the transfer of thermal energy by collisions between particles in matter. Conduction

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

More information

Energy Transfer Subtitle

Energy Transfer Subtitle Energy Transfer Subtitle Objectives Review Earth System Review the Water cycle Go over heat transfer through conduction, convection, and radiation Review Greenhouse Effect 2 July 22, 2012 Footer text here

More information

Thermal Energy. Thermal Energy Transfers

Thermal Energy. Thermal Energy Transfers Thermal Energy Thermal Energy Transfers Key Concepts What is the effect of having a small specific heat? What happens to a material when it is heated? In what ways can thermal energy be transferred? What

More information

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules.

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Thermal energy Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Heat is the transfer of thermal energy between substances. Until the

More information

Temperature, Thermal Energy, and Heat

Temperature, Thermal Energy, and Heat Temperature, Thermal Energy, and Heat Textbook pages 424 435 Section 10.1 Summary Before You Read We often use the terms heat and temperature interchangeably. Do you think they mean the same thing? Explain

More information

Conducting Energy and Heat. Energy Likes to Move. Radiating Energy

Conducting Energy and Heat. Energy Likes to Move. Radiating Energy Energy Likes to Move If there is a temperature difference in a system, heat will naturally move from high to low temperatures. The place you find the higher temperature is the heat source. The area where

More information

Heat and Temperature

Heat and Temperature Chapter 4 Heat Heat and Temperature Heat is a form of energy Heat is the energy of random motion of molecules constituting the body. It flows from a hot body to a cold body. Unit of heat is joule (J) and

More information

Topic 2: Heat Affects Matter in Different Ways

Topic 2: Heat Affects Matter in Different Ways Topic 2: Heat Affects Matter in Different Ways 1 2.1 States of Matter and the Particle Model of Matter A. States of 1. Matter is made up of tiny particles and exist in 3 states:, and. 2. Matter can change

More information

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy * Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

More information

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed.

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed. Physics 111 Lecture 36 (Walker: 16.4-6) Heat Capacity & Specific Heat Heat Transfer May 1, 2009 Quiz (Chaps. 14 & 16) on Wed. May 6 Lecture 36 1/26 Heat Capacity (C) The heat capacity C of an object is

More information

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m Bell Ringer What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m F= N M= kg A= m/s^2 What did we learn about the acceleration rate and gravitational

More information

Unit 3: States of Matter, Heat and Gas Laws

Unit 3: States of Matter, Heat and Gas Laws Unit 3 - Stevens 1 Unit 3: States of Matter, Heat and Gas Laws Vocabulary: Solid Term Definition Example Liquid Gas No definite shape, but definite volume; Particles close together, but can move around

More information

Thermodynamics - Heat Transfer June 04, 2013

Thermodynamics - Heat Transfer June 04, 2013 THERMODYNAMICS - Heat and Heat Transfer: Heat (Q) is a form of Energy that is transferred between an object and another object or its surrounding environment due to a difference in Temperature. Heat is

More information

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature

Heat Transfer. Conduction, Convection, and Radiation. Review: Temperature Heat Transfer Conduction, Convection, and Radiation Review: Temperature! Temperature is:! The quantity that tells how hot or cold something is compared with a standard! A measure of the average kinetic

More information

Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection.

Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection. Section 2 Atmospheric Heating Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection. What You Will Learn Solar energy travels through space as radiation and passes

More information

Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity

Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity Name: Block: Date: IP 614 Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity All these questions are real MCAS questions! 1. In a copper wire, a temperature increase is the result of which

More information

Work by Friction. A box slides 10 m across a surface. A frictional force of 20 N is acting on the box.

Work by Friction. A box slides 10 m across a surface. A frictional force of 20 N is acting on the box. Work by Friction A box slides 10 m across a surface. A frictional force of 20 N is acting on the box. What is the work done by friction? What happened to this energy? Work by Friction A box slides 10 m

More information

Part I- Review how the molecules for a solid, liquid and gas differ at a constant temperature.

Part I- Review how the molecules for a solid, liquid and gas differ at a constant temperature. Temperature and Kinetic Energy Web Quest 8 th Grade PSI Science Classwork 1 Name Part I- Review how the molecules for a solid, liquid and gas differ at a constant temperature. 1. Follow this link: http://www.middleschoolchemistry.com/multimedia/chapter1/lesson5.

More information

HEAT How is thermal energy transferred?

HEAT How is thermal energy transferred? HEAT How is thermal energy transferred? Give an example of conduction? What is a convection current? Explain radiant energy? 1/3/2017 Heat Notes 1 1/3/2017 Heat Notes 2 NEED TO KNOW VOCABULARY: Conduction

More information

Chapter: Heat and States

Chapter: Heat and States Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

More information

Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures.

Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. Thermal Energy Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures. And remember: heat will always transfer from a warm object to a cold object. HEAT

More information

Chapter 6. Heat is transferred from one place to another by three different processes

Chapter 6. Heat is transferred from one place to another by three different processes Chapter 6 Heat is transferred from one place to another by three different processes 6.1 How Heat is Transferred I. Conduction P Conduction is the transfer of energy through matter from particle to particle.

More information

Chapter 1 Heating Processes

Chapter 1 Heating Processes Chapter 1 Heating Processes Section 1.1 Heat and temperature Worked example: Try yourself 1.1.1 CALCULATING THE CHANGE IN INTERNAL ENERGY A student places a heating element and a paddle wheel apparatus

More information

Unit 11: Temperature and heat

Unit 11: Temperature and heat Unit 11: Temperature and heat 1. Thermal energy 2. Temperature 3. Heat and thermal equlibrium 4. Effects of heat 5. Transference of heat 6. Conductors and insulators Think and answer a. Is it the same

More information

Thermal Effects. IGCSE Physics

Thermal Effects. IGCSE Physics Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Topic 5 Practice Test

Topic 5 Practice Test Base your answers to questions 1 and 2 on the diagram below, which represents the greenhouse effect in which heat energy is trapped in Earth's atmosphere 1. The Earth surface that best absorbs short-wave

More information

Conduction, Convection, & Radiation

Conduction, Convection, & Radiation Conduction, Convection, & Radiation Vanderbilt Student Volunteers for Science 2018-2019 VINSE/VSVS Rural I. Introduction- What is temperature? What is heat? Ask: what is temperature? scientific measure

More information

Thermal Energy and Heat Notes. Ch. 14

Thermal Energy and Heat Notes. Ch. 14 Thermal Energy and Heat Notes Ch. 14 Temperature When scien

More information

Temperature and Heat. Chapter 10. Table of Contents. Chapter 10. Chapter 10. Bellringer. Objectives. Chapter 10. Chapter 10

Temperature and Heat. Chapter 10. Table of Contents. Chapter 10. Chapter 10. Bellringer. Objectives. Chapter 10. Chapter 10 Heat and Heat Technology Table of Contents Temperature and Heat Section 3 Matter and Heat Bellringer Objectives The temperature of boiling water is 100 on the Celsius scale and 212 on the Fahrenheit scale.

More information

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

More information

Heat Transfer Lesson Plan

Heat Transfer Lesson Plan Heat Transfer Lesson Plan I. Benchmarks: P.EN.M.4 Energy Transfer- Energy is transferred from a source to a receiver by radiation, conduction, and convection. When energy is transferred from one system

More information

Temperature and Heat

Temperature and Heat LESSON 2 Temperature and Heat Even when the temperature is very cold outside, an insulated coat can keep you warm. By the end of this lesson... you will be able to explain the relationships between temperature,

More information

CIE Physics IGCSE. Topic 2: Thermal Physics

CIE Physics IGCSE. Topic 2: Thermal Physics CIE Physics IGCSE Topic 2: Thermal Physics Summary Notes Simple kinetic molecular model of matter Molecular model Solids Molecules close together in regular pattern Strong intermolecular forces of attraction

More information

OK, you ve probably seen the Bill Nye video and have learned that matter is everything and all stuff. That s right. Everything around you is matter.

OK, you ve probably seen the Bill Nye video and have learned that matter is everything and all stuff. That s right. Everything around you is matter. Matter & Chemistry OK, you ve probably seen the Bill Nye video and have learned that matter is everything and all stuff. That s right. Everything around you is matter. In fact, anything that has weight

More information

kinetic molecular theory thermal energy.

kinetic molecular theory thermal energy. Thermal Physics 1 Thermal Energy The kinetic molecular theory is based on the assumption that matter is made up of tiny particles that are always in motion. In a hot object the particles are moving faster

More information

There are four phases of matter: Phases of Matter

There are four phases of matter: Phases of Matter HEAT SCIENCE There are four phases of matter: Phases of Matter There are four phases of matter: Phases of Matter Animation States of Matter Solids Solids: Are rigid, crystalline Hold their shape Have little

More information

HEAT AND HEAT TRANSFER

HEAT AND HEAT TRANSFER HEAT AND HEAT TRANSFER What is the difference between temperature and heat? Temperature is a measure of the average kinetic energy of atoms. This means: the higher the temperature, the faster the atoms

More information

Introduction of Heat Transfer. Prepared by: Nimesh Gajjar GIT-MED

Introduction of Heat Transfer. Prepared by: Nimesh Gajjar GIT-MED Introduction of Heat Transfer Prepared by: Nimesh Gajjar GIT-MED Difference between heat and temperature Temperature is a measure of the amount of energy possessed by the molecules of a substance. It manifests

More information

Lecture 6. Temperature and Heat 27 September 2018

Lecture 6. Temperature and Heat 27 September 2018 Lecture 6. Temperature and Heat 27 September 2018 Wannapong Triampo, Ph.D. Korey Stringer 7-31-01 27 Yrs Old 6 3 335 lbs Eraste Autin 7-25-01 18 Yrs Old 6 2 250 lbs Preston Birdsong 8-13-00 18 Yrs Old

More information

ì<(sk$m)=beacbd< +^-Ä-U-Ä-U

ì<(sk$m)=beacbd< +^-Ä-U-Ä-U Physical Science Genre Comprehension Skill Text Features Science Content Nonfiction Compare and Contrast Captions Labels Light and Heat Diagrams Glossary Scott Foresman Science 6.18 ì

More information

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall Physics 231 Topic 13: Heat Alex Brown Dec 1, 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept test timed (50 min))

More information

EngrTEAMS 12/13/2017. Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page.

EngrTEAMS 12/13/2017. Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page. TABLE OF CONTENTS EngrTEAMS Ecuadorian Fishermen Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page. VOCABULARY On the next to last page, write Vocabulary across the top of

More information

Demonstrate understanding of aspects of heat

Demonstrate understanding of aspects of heat Demonstrate understanding of aspects of heat Heat Transfer Temperature - temperature is a measure of the average kinetic energy of the particles making up an object (measured in C or K) 0 K = -273 o C

More information

1. How much heat was needed to raise the bullet to its final temperature?

1. How much heat was needed to raise the bullet to its final temperature? Name: Date: Use the following to answer question 1: A 0.0500-kg lead bullet of volume 5.00 10 6 m 3 at 20.0 C hits a block that is made of an ideal thermal insulator and comes to rest at its center. At

More information

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface. CHAPTER 11 LESSON 2 Earth s Atmosphere Energy Transfer in the Atmosphere Key Concepts How does energy transfer from the Sun to Earth and to the atmosphere? How are air circulation patterns within the atmosphere

More information

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

More information

Section 1: The Science of Energy¹

Section 1: The Science of Energy¹ SECTION1: THE SCIENCE OF ENERGY Section 1: The Science of Energy¹ What Is Energy? Energy is the ability to do work or the ability to make a change. Everything that happens in the world involves the exchange

More information

Study Guide Unit 3 Chapter 6 DRAFT

Study Guide Unit 3 Chapter 6 DRAFT Study Guide Unit 3 Chapter 6 DRAFT Unit 3 BIG IDEAS Energy can be transformed from one type into another. Energy transformation systems often involve thermal energy losses and are never 100 % efficient.

More information

Title: Thermodynamics I. Systems A system is a group of interacting parts, including energy and matter, forming a complex whole with a common

Title: Thermodynamics I. Systems A system is a group of interacting parts, including energy and matter, forming a complex whole with a common Title: Thermodynamics I. Systems A system is a group of interacting parts, including energy and matter, forming a complex whole with a common purpose. 1. Open System Definition Allows energy and matter

More information

matter/index.html

matter/index.html http://www.colorado.edu/physics/2000/index.pl http://www.harcourtschool.com/activity/states_of_ matter/index.html Thermal Energy Ch 6-1 Temperature and Heat Objectives Explain the kinetic theory of matter

More information

Quest Chapter 23a. More heat energy means more of what type of energy?

Quest Chapter 23a. More heat energy means more of what type of energy? 1 When a container of gas is heated, what happens to the average speed of its molecules? 1. Additional information is needed. 2. increases 3. doesn t change 4. decreases 2 (part 1 of 3) Two glasses of

More information

Station 1: Temperature

Station 1: Temperature Station 1: Temperature Temperature is the measure of kinetic energy of the particles in a substance. The movement of particles is actually what we measure as temperature. As we heat up substances, the

More information

Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor?

Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor? Exercises 22.1 Conduction (pages 431 432) 1. Define conduction. 2. What is a conductor? 3. are the best conductors. 4. In conduction, between particles transfer thermal energy. 5. Is the following sentence

More information

CERT Educational Series Heat Transfer

CERT Educational Series Heat Transfer Student Lab Sheet Answer Key CERT Educational Series Heat Transfer Name Date: Are HEAT and TEMPERATURE the same thing? YES NO Heat and Temperature are not the same thing. They have different units. Heat

More information

Section 16.3 Phase Changes

Section 16.3 Phase Changes Section 16.3 Phase Changes Solid Liquid Gas 3 Phases of Matter Density of Matter How packed matter is (The amount of matter in a given space) Solid: Liquid: Gas: High Density Medium Density Low Density

More information

Topic 6: Transferring Energy

Topic 6: Transferring Energy Topic 6: Transferring Energy Transferring Energy Thermal energy can be transferred 3 ways: 1) Radiation 2) Conduction 3) Convection 1) RADIATIONTRANSFERS ENERGY Use p. 226 to answer the following questions

More information

Name: Grade 6 Date: REVISION BOOKLET

Name: Grade 6 Date: REVISION BOOKLET REVISION BOOKLET science 1 Chapter # 16 MACHINES QA: Read each question and choose the best answer. Then fill in the circle next to the correct answer. 1. Dan and Paul push a box 4 meters with a force

More information

Physical Science. Thermal Energy & Heat

Physical Science. Thermal Energy & Heat Physical Science Thermal Energy & Heat Sometimes called internal energy Depends on the object's mass, temperature, and phase (solid, liquid, gas) TOTAL potential and kinetic energy of all the particles

More information

Practice Packet Unit 7: Heat

Practice Packet Unit 7: Heat Regents Chemistry: Mr. Palermo Practice Packet Unit 7: Heat Review (Things you need to know in order to understand the new stuff ) Particle Diagrams Draw a particle diagram of a compound of CaCl2, using

More information

2 Changes of State KEY IDEAS READING TOOLBOX ADDING AND REMOVING ENERGY. States of Matter. As you read this section, keep these questions in mind:

2 Changes of State KEY IDEAS READING TOOLBOX ADDING AND REMOVING ENERGY. States of Matter. As you read this section, keep these questions in mind: CHAPTER 3 States of Matter 2 Changes of State SECTION KEY IDEAS As you read this section, keep these questions in mind: What happens when a substance changes from one state of matter to another? What happens

More information

Chapter 14: Temperature and Heat

Chapter 14: Temperature and Heat Chapter 14 Lecture Chapter 14: Temperature and Heat Goals for Chapter 14 To study temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving

More information

How Does the Sun s Energy Cause Rain?

How Does the Sun s Energy Cause Rain? 1.2 Investigate 3.3 Read How Does the Sun s Energy Cause Rain? In the water-cycle simulation, you observed water change from a liquid to a gas, and then back to a liquid falling to the bottom of the container.

More information

All matter is made of moving particles

All matter is made of moving particles All matter is made of moving particles I. Kinetic Theory of matter all particles in matter are constantly in motion a. Kinetic Energy is motion energy b. Therefore all particles in solids, liquids and

More information

Assess why particular characteristics are necessary for effective conduction KEY POINTS

Assess why particular characteristics are necessary for effective conduction KEY POINTS Conduction LEARNING OBJECTIVES Assess why particular characteristics are necessary for effective conduction KEY POINTS On a microscopic scale, conduction occurs as rapidly moving or vibrating atoms and

More information

Heat Transfer. Conduction Radiation Convection

Heat Transfer. Conduction Radiation Convection Heat Transfer Conduction Radiation Convection Real World Experience We are going outside to experiences heat transfer. Instructions: while outside place hand on the concrete. Note whether it feels cold

More information

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Heat & Temperature. Grade 7 Science - Unit 2 Pgs

Heat & Temperature. Grade 7 Science - Unit 2 Pgs Heat & Temperature Grade 7 Science - Unit 2 Pgs 104-225 Temperature P Temperature is the measure of how much heat is in a substance. P Temperature is measured in degrees Celcius ( C) P It is difficult

More information

Name Class Date. What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy?

Name Class Date. What is a change of state? What happens during a change of state? What can happen when a substance loses or gains energy? CHAPTER 2 3 Changes of State SECTION States of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a change of state? What happens during a change

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 Fig. 1.1 shows the arrangement of atoms in a solid block. Fig. 1.1 (a) End X of the block is heated. Energy is conducted to end Y, which becomes warm. (i) Explain how heat is

More information

JSUNIL TUTORIAL,SAMASTIPUR PH: CBSE Class-7 Science Heat and temperature solve questions and Notes

JSUNIL TUTORIAL,SAMASTIPUR PH: CBSE Class-7 Science Heat and temperature solve questions and Notes CBSE Class-7 Science Heat and temperature solve questions and Notes Fill in the blanks : (a) The hotness of an object is determined by its temperature. (b) Temperature of boiling water cannot be measured

More information

Chapter 12 Thermal Energy

Chapter 12 Thermal Energy Chapter 12 Thermal Energy Chapter 12 In this chapter you will: Learn how temperature relates to the potential and kinetic energies of atoms and molecules. Distinguish heat from work. Calculate heat transfer

More information

The Atmosphere. Composition of the Atmosphere. Section 2

The Atmosphere. Composition of the Atmosphere. Section 2 The Atmosphere Earth is surrounded by a mixture of gases known as the Nitrogen, oxygen, carbon dioxide, and other gases are all parts of this mixture. Earth s atmosphere changes constantly as these gases

More information

States of Matter. Changes in State

States of Matter. Changes in State CHAPTER 8 States of Matter LESSON 2 Changes in State What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

Unit C REVIEW Heat and Temperature

Unit C REVIEW Heat and Temperature Science 7 Name: Date: Unit C REVIEW Heat and Temperature 1. Read each sentence and circle the correct bold word. Scientists explain changes in state using the particle model of substances / matter. This

More information

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery Directed Reading for Content Mastery Overview Atmosphere Directions: Complete the concept map using the terms in the list below. weather exosphere coldest air temperature ionosphere stratosphere 1. which

More information

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration 1. Light and other forms of electromagnetic radiation are given off by stars using energy released during A) nuclear fusion B) conduction C) convection D) radioactive decay 2. At which temperature would

More information

Heat can be transferred by. and by radiation Conduction

Heat can be transferred by. and by radiation Conduction Heat can be transferred by conduction, by convection, and by radiation. The spontaneous transfer of heat is always from warmer objects to cooler objects. If several objects near one another have different

More information

The sun s energy is transferred to the Earth with a wide range of wave lengths consisting of visible light, infrared, and ultraviolet.

The sun s energy is transferred to the Earth with a wide range of wave lengths consisting of visible light, infrared, and ultraviolet. TEACHING LEARNING COLLABORATIVE (TLC) EARTH SCIENCE Heat Moves Grade 6 Created by: Sandra Cornell (Terrace Middle School); Sue Cascio (Coyote Valley Elementary School); and Stacy Holland (Terrace Middle

More information

GraspIT AQA Particle Model Questions

GraspIT AQA Particle Model Questions A. Particle model of matter Density of materials and changes of state 1. A 45 g piece of plasticine is placed in water and 30 cm 3 of water was displaced. Calculate the density of the plasticine in kg/m

More information

PHYSICAL SCIENCE SPRING FINAL REVIEW GUIDE

PHYSICAL SCIENCE SPRING FINAL REVIEW GUIDE PHYSICAL SCIENCE SPRING FINAL REVIEW GUIDE 1. Draw a diagram to show the position of the Earth (include axis) and sun during the N. Hemisphere: a. Winter b. Spring 2. What times of year do the Sun s rays

More information