The Isovector Giant Dipole Resonance

Size: px
Start display at page:

Download "The Isovector Giant Dipole Resonance"

Transcription

1 Giant Resonances First Experiments: G.C.Baldwin and G.S. Klaiber, Phys.Rev. 71, 3 (1947) General Electric Research Laboratory, Schenectady, NY Theoretical Explanation: M. Goldhaber and E. Teller, Phys. Rev. 74, 146(1948) University of Illinois University of Chicago It is an oscillation of the neutrons against the protons! Think electric dipole Positive charge is the collection of protons. Negative charge is the collection of neutrons. The Isovector Giant Dipole Resonance (this E. Teller is Edward Teller think Hydrogen bomb)

2 4 Ca 2n 2p Isovector Giant Dipole Resonance Analogous to charge distributions Monopole L= Dipole L=1 Quadrupole L=2 Octupole L=3 Etc. There should be lots of Giant Resonances Isovector (n s and p s 18 o out of phase) Isoscalar (n s and p s in phase) Spin (spin up and down 18 o out of phase)

3 Shape Oscillations Giant Resonance 1. Many Nucleons involved in motion (~ 1 in 4 Ca). 2. Contains most of strength for that multipole.

4 Limit on strength for each multipole. Electromagnetic Operator Q L = i r i L Y LM (θ i ) Y LM is a spherical harmonic for multipole L, magnetic substate M. n E n <n Q L > 2 = S L Energy Weighted Sum Rule if there are no velocity dependent forces. E n is excitation energy of state > represents wave function of ground state <n represents wave function of excited state For L 2 S L = (ħ 2 L(2L+1)A)/2 m * < r 2L-2 > Giant Resonance Contains ~9-99% of this strength Rest of strength in low lying states of nucleus.

5 197: Only Dipole had been observed. Theorists: Came up with reasons why others weren t there! 1971: Graduate Student: Ranier Pitthan Advisor: Thomas Walcher Electron scattering off of Ce, La, Pr targets Darmstadt, Germany Electrons interact only with the protons (no nuclear force) Excite Isoscalar and Isovector states ~ same.

6

7 Texas A&M 1973

8

9 One in particular: Isoscalar Giant Monopole Resonance The breathing mode A 3 dimensional harmonic oscillator SHO: =(k/m) 1/2 and E= ħ Liquid drop model of nucleus: E GMR =( ħ/3roa 1/3 )*(KA/m) 1/2 ro is nuclear radius A is #(protons + neutrons) m is mass of nucleon KA is compressibility of nucleus Can get compressibility of nucleus from ISGMR IF WE CAN FIND IT!

10 Strength of Giant Resonances Light Blue is what you see (the sum of strengths). Red is the Isoscalar Giant Monopole Resonance (what you want to measure).6 Strength.4.2 Giant Resonances ISGMR LE ISGDR HE ISGDR ISGQR HEOR LEOR IVGDR IVGQR Total E x (MeV) How do you separate out the Monopole??

11 Use an alpha particle beam to excite them! Alpha particle (2p, 2n): excites Isoscalar states strongly. Isovector states weakly..6 Strength.4.2 Giant Resonances ISGMR LE ISGDR HE ISGDR ISGQR HEOR LEOR IVGDR IVGQR Total E x (MeV).5 Average Cross Section Excite with Alpha Particles E x (MeV) Need to do more! 4

12

13 Distorted Wave Born Approximation Calculation Inelastic scattering E α =24MeV 1 1 d /d (mb/sr) 1 1 L= L=1 L=2 L=3 116 Sn( ') E =24 MeV c.m. (deg) Measure at different scattering angles! Could separate Monopole from Quadrupole by measuring 1.5 o to 4 o

14 Monopole Enhanced at o..3 o Cross Section.2.1 Measure at o The Monopole! Ex(MeV).3 4 o Cross Seciton.2.1 Measure at 4 o The Quadrupole! E x (MeV)

15 At Small angles Beam would destroy detectors. Use Magnet to separate beam from inelastic scattering BUT! Beam must be transported without hitting anything! Nobody had done o inelastic scattering.

16 Measure over the minimum in the monopole.

17 later we succeeded at o. o BUT average angle ~2.

18

19 Built: New cyclotron - higher energy. New beam analysis/transport system - Clean beams. MDM spectrometer

20

21 Measuring only horizontal angle. Average over vertical angle.

22 Added measurement of vertical angle 9 Zr Spectrum 4 Counts/channel 2 9 Zr( ') c.m. =.4 o E x (MeV) Multipole Distributions Fraction E EWSR/MeV Fraction E1 EWSR/MeV E 1+-12% E % E x (MeV) tion E2 EWSR/MeV Frac Fraction E3 EWSR/MeV E % We can separate multipoles! E % E x (MeV)

23

24 E GMR =ħ(k A /m<r 2 >) 1/2 <r 2 >: mean square nuclear radius m: nucleon mass K A: compressibility of nucleus Compressibility of Nuclear Matter Simple Picture: Leptodermous Expansion K A =K NM + K Surf A -1/3 +K vs ((N-Z)/A) 2 +K Coul *Z 2 /A 4/3 K vs = K Sym + L(K /K v -6) Where K NM : curvature of E/A around o K Sym : curvature of symmetry energy Note that E GMR depends on K NM AND K Sym! The Right Way to get K NM Calculate E GMR using effective interactions (each results in a specific K NM ) Compare to experiment! Vretenar et al. PRC 68,2431(23). Agrawal et al. PRC 68,3134(23). Colò et al. PRC 7,2437(24). Role of K v and K Sym in Infinite nuclear matter.

25 Microscopic Calculations: Non_Relativistic: Skyrme, Gogny effective interactions. Relativistic: NL1, NL3, etc. parameter sets. 28 Compare calculated to experimental E K nm obtained by comparing GMR energies and RPA calculations with Gogny interaction. GMR Mg ) 4 Ca 9 Zr 144 Sm Knm = MeV Knm(MeV Pb Sn 28 Si dhy et al. PRL82,691 (1999) dhy et al. PRC8,64318 (29) A 24 Mg, 28 Si Péru,Goutte,Berger,NPA788, 44( 27) QuasiParticle RPA-HFB Gogny D1S K NM interaction dependent. Symmetry Energy dependence. Present: K NM ~ MeV

26 Nuclear Matter Equation of State A parametrization of the EOS to order 2 : (M. Farine et al. NPA 615,135(1997)) E/A= A v +(K NM /18) 2 + [( n - p )/ ] 2 {J+(L/3) + (K Sym /18) 2 +..}+.. Where =( - o )/ o and ( n - p )/ ~ (N-Z)/A Second derivative leaves K NM and K SYM. K SYM goes as (N-Z)/A) 2

27 To get K SYM : Change (N-Z)/A Sn Experiment Limits 1.3 Farine et al. NPA615,135(1997) Modified Skyrme Chossy & Stocker PRC56,22518(1997) RMF 112 Sn Sn GMR MeV ) 1.1 NLC 22 MeV 24 MeV E (.9 2 MeV 217 MeV SkM* 224 MeV 22 MeV.7 18 MeV K vs (MeV) K vs = K = K Sym + L(K /K v -6) K < -375 MeV 4 KNM(MeV) NL-SH NL-RA NL3 RMF Skyrme S3 SkA SkK24 NLC RATP K NM vs K Data: E GMR 112 Sn- 124 Sn : Lui et al. PRC7,14397(24). Agrees with TAMUdata Disagree withtamu data K NM =231 5 MeV 2 NL1 SkK22 SkKM SkM* K sat,2 = MeV Chen et al. PRC8, 14322(29) SkK2 NL-Z SkK K (MeV)

28 Present Research Increase (N-Z/A) for K sym Move away from stable nuclei D.H. Youngblood Y.-W.Lui Jonathon Button(thesis project) Will McGrew (REU) Yi Xu (post doc joins 8/3/12) Hanyu Li (undergrad joins 9/1/12) Use unstable nuclei as beams: upgraded Cyclotron facility. Inverse reactions Problem: Helium target Solution: Use 6 Li target X. Chen s Thesis: 24 MeV 6 Li on 24 Mg, 28 Si, 116 Sn. Prove 6 Li scattering good for GMR.

29 Inelastic Scattering to Giant Resonances MeV Li + Sn nts Cou Sn avg = E x (MeV) 6 7 d /d (mb/sr) Sn( 6 Li, 6 Li') E x =16.MeV L= L=1 T= L=2 L= (deg) cm

30 Multipole Distributions 116 Sn Fraction E EWSR/MeV Li E Fraction E2 EWSR/MeV E E x (MeV) E x (MeV) 28 Si GMR Si E EWSR/MeV Fraction E EWSR/MeV Li scattering alpha scattering E x (MeV) 6 Li, agree for GR s 116 Sn, 28 Si, 24 Mg. 35

31 To study GMR in 27 Si 6 Li Stops in target to decay detector 27 Si 6 Li 4.12s T a r g e t 27 Si* 1-2 s 23 Mg 11.32s to magnetic spectrometer

32 Decay detector Jonathan Button thesis Will McGrew: Analyzing data Test run Calibration Designing Faraday Cup/Beam Stop

33 Other Monopole Things Fraction E EWSR Zr E 16.9 MeV 84% 24.9 MeV 22% Fraction E EWSR M E 16.6 MeV 42% 23.9 MeV 65% E x (MeV) E x (MeV).16 Fraction E EWSR Zr E 16.5 MeV 62% 25.5 MeV 38% Fraction E EWSR M E 16.2 MeV 83% 23.8 MeV 2% E x (MeV) E x (MeV).16 m1/m 9 Zr MeV 92 M MeV Fraction E EWSR M E 15.5 MeV 97% 23.6 MeV 14% E x (MeV) E GMR 92 Mo should be below 9 Zr??

34 KA(MeV) K A for Mass 92 very different. K A from HF radii Zr Mo A 92 Mo K A 5 from expected value!

35 Nuclear equation of state influences many astrophysical processes Double pulsar rotation (astro-ph 56566) Binary mergers (astro-ph ) Neutron star formation: Life of a type II supernova Protonneutron star has about the same density as nuclei Stolen from : C. Hartnack and J. Aichelin Subatech/University of Nantes H. Oeschler Technical University of Darmstadt

36

PHYSICAL REVIEW C 70, (2004)

PHYSICAL REVIEW C 70, (2004) PHYSICAL REVIEW C 70, 014307 (2004) Giant resonances in 112 Sn and 124 Sn: Isotopic dependence of monopole resonance energies Y.-W. Lui, D. H. Youngblood, Y. Tokimoto, H. L. Clark, and B. John* Cyclotron

More information

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya University of Groningen Study of compression modes in 56Ni using an active target Bagchi, Soumya IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H.

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H. Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment J. Button, Y.-W. Lui, and D.H. Youngblood I. Introduction The Giant Monopole Resonance (GMR) is

More information

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear Matter Incompressibility and Giant Monopole Resonances Nuclear Matter Incompressibility and Giant Monopole Resonances C.A. Bertulani Department of Physics and Astronomy Texas A&M University-Commerce Collaborator: Paolo Avogadro 27th Texas Symposium on Relativistic

More information

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics 1. Incompressibility and Giant Resonances (ISGMR, ISGDR) 2. Charge exchange reactions 3. Photon Beams for (g,g

More information

Observation of the Giant monopole resonances in the Sn isotopes via (α,α ) reactions at 400 MeV at RCNP - Latest results and implications -

Observation of the Giant monopole resonances in the Sn isotopes via (α,α ) reactions at 400 MeV at RCNP - Latest results and implications - Observation of the Giant monopole resonances in the isotopes via (α,α ) reactions at 400 MeV at RCNP - Latest results and implications - Collaborators: S. Okumura, U. Garg, M. Fujiwara, P.V. Madhusudhana

More information

Dipole Polarizability and the neutron skin thickness

Dipole Polarizability and the neutron skin thickness Dipole Polarizability and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN MITP Scientific Program Neutron Skins of Nuclei May 17th-27th 2016. 1 Table of contents:

More information

Isoscalar E0 E3 strength in 116 Sn, 144 Sm, 154 Sm, and 208 Pb

Isoscalar E0 E3 strength in 116 Sn, 144 Sm, 154 Sm, and 208 Pb PHYSICAL REVIEW C 69, 034315 (2004) Isoscalar E0 E3 strength in 116 Sn, 144 Sm, 154 Sm, and 208 Pb D. H. Youngblood, Y.-W. Lui, H. L. Clark, B. John,* Y. Tokimoto, and X. Chen Cyclotron Institute, Texas

More information

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar Calcium Radius Experiment (CREX) Workshop at Jefferson Lab, March 17-19, 2013 Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations N. Paar Physics Department Faculty of Science

More information

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints Nuclear symmetry energy deduced from dipole excitations: a comparison with other constraints G. Colò June 15th, 2010 This work is part of a longer-term research plan. The goal is: understanding which are

More information

Compression mode resonances in 90 Zr

Compression mode resonances in 90 Zr PHYSICAL REVIEW C 69, 054312 (2004) Compression mode resonances in 90 Zr D. H. Youngblood, Y.-W. Lui, B. John,* Y. Tokimoto, H. L. Clark, and X. Chen Cyclotron Institute, Texas A&M University, College

More information

Investigation of the Giant Monopole Resonance in the Cd and Pb Isotopes: The Asymmetry Term in Nuclear Incompressibility and the MEM Effect

Investigation of the Giant Monopole Resonance in the Cd and Pb Isotopes: The Asymmetry Term in Nuclear Incompressibility and the MEM Effect 460 Progress of Theoretical Physics Supplement No. 196, 2012 Investigation of the Giant Monopole Resonance in the Cd and Pb Isotopes: The Asymmetry Term in Nuclear Incompressibility and the MEM Effect

More information

Systematic of Giant Monopole Energy and the Isotopic Dependence. D. H. Youngblood H. L. Clark Y. Tokimoto B.John

Systematic of Giant Monopole Energy and the Isotopic Dependence. D. H. Youngblood H. L. Clark Y. Tokimoto B.John ---~~~ ~ ~----- Systematic of Giant Monopole Energy and the sotopic Dependence Y. -We Lui D. H. Youngblood H. L. Clark Y. Tokimoto B.John Cyclotron nstitute Texas A&M University Nuclear matter compressibility

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Pygmy dipole resonances in stable and unstable nuclei

Pygmy dipole resonances in stable and unstable nuclei Pygmy dipole resonances in stable and unstable nuclei Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Collaborators: Giacomo Pozzi, Marco Brenna, Kazhuito Mizuyama and

More information

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017 Towards a universal nuclear structure model Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 217 1 Table of contents: Brief presentation of the group Motivation Model and selected

More information

Isoscalar dipole mode in relativistic random phase approximation

Isoscalar dipole mode in relativistic random phase approximation Isoscalar dipole mode in relativistic random phase approximation arxiv:nucl-th/0003041v1 20 Mar 2000 D. Vretenar 1,2, A. Wandelt 1, and P. Ring 1 1 Physik-Department der Technischen Universität München,

More information

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei

Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei 7 th International Symposium on Nuclear Symmetry Energy, GANIL (France) 4-7.9.2017 Constraining the symmetry energy based on relativistic point coupling interactions and excitations in finite nuclei N.

More information

Neutron Rich Nuclei in Heaven and Earth

Neutron Rich Nuclei in Heaven and Earth First Prev Next Last Go Back Neutron Rich Nuclei in Heaven and Earth Jorge Piekarewicz with Bonnie Todd-Rutel Tallahassee, Florida, USA Page 1 of 15 Cassiopeia A: Chandra 08/23/04 Workshop on Nuclear Incompressibility

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Gianluca Colò. Density Functional Theory for isovector observables: from nuclear excitations to neutron stars. Università degli Studi and INFN, MIlano

Gianluca Colò. Density Functional Theory for isovector observables: from nuclear excitations to neutron stars. Università degli Studi and INFN, MIlano Density Functional Theory for isovector observables: from nuclear excitations to neutron stars Gianluca Colò NSMAT2016, Tohoku University, Sendai 1 Outline Energy density functionals (EDFs): a short introduction

More information

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective D. V. Shetty, S. J. Yennello, and G. A. Souliotis The density dependence of the

More information

Discerning the symmetry energy and neutron star properties from nuclear collective excitations

Discerning the symmetry energy and neutron star properties from nuclear collective excitations International Workshop XLV on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 15-21, 2017 Discerning the symmetry energy and neutron star properties from

More information

Nuclear Equation of State from ground and collective excited state properties of nuclei

Nuclear Equation of State from ground and collective excited state properties of nuclei Nuclear Equation of State from ground and collective excited state properties of nuclei arxiv:1804.06256v1 [nucl-th] 17 Apr 2018 X. Roca-Maza 1 and N. Paar 2 1 Dipartimento di Fisica, Università degli

More information

Low-lying dipole response in stable and unstable nuclei

Low-lying dipole response in stable and unstable nuclei Low-lying dipole response in stable and unstable nuclei Marco Brenna Xavier Roca-Maza, Giacomo Pozzi Kazuhito Mizuyama, Gianluca Colò and Pier Francesco Bortignon X. Roca-Maza, G. Pozzi, M.B., K. Mizuyama,

More information

The asymmetry term in the nuclear matter incompressibility deduced from the isoscalar giant monopole resonance in the Sn and Cd isotopes.

The asymmetry term in the nuclear matter incompressibility deduced from the isoscalar giant monopole resonance in the Sn and Cd isotopes. The asymmetry term in the nuclear matter incompressibility deduced from the isoscalar giant monopole resonance in the Sn and Cd isotopes. Masatoshi Itoh Cyclotron and Radioisotope center, Tohoku University

More information

Giant Resonances Wavelets, Scales and Level Densities

Giant Resonances Wavelets, Scales and Level Densities Giant resonances Damping mechanisms, time and energy scales Fine structure Wavelets and characteristic scales Application: GQR TU DARMSTADT Many-body nuclear models and damping mechanisms Relevance of

More information

Nature of low-energy dipole states in exotic nuclei

Nature of low-energy dipole states in exotic nuclei Nature of low-energy dipole states in exotic nuclei Xavier Roca-Maza Università degli Studi di Milano, Via Celoria 16, I-133, Milano SPES One-day Workshop on "Collective Excitations of Exotic Nuclei" December

More information

Neutron Skins with α-clusters

Neutron Skins with α-clusters Neutron Skins with α-clusters GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute Hirschegg 2015 Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Dipole Polarizability and the neutron skin thickness

Dipole Polarizability and the neutron skin thickness Dipole Polarizability and the neutron skin thickness Xavier Roca-Maza Università degli Studi di Milano and INFN Joint LIA COLL-AGAIN, COPIGAL, and POLITA Workshop, April 26th-29th 2016. 1 Table of contents:

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

arxiv: v2 [nucl-th] 28 Aug 2014

arxiv: v2 [nucl-th] 28 Aug 2014 Pigmy resonance in monopole response of neutron-rich Ni isotopes? Ikuko Hamamoto 1,2 and Hiroyuki Sagawa 1,3 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, arxiv:1408.6007v2

More information

From few-body to many-body systems

From few-body to many-body systems From few-body to many-body systems Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen Few-Body Physics: Advances and Prospects in Theory and Experiment 614. WE-Heraeus-Seminar, Bad Honnef April

More information

Functional Orsay

Functional Orsay Functional «Theories» @ Orsay Researchers: M. Grasso, E. Khan, J. Libert, J. Margueron, P. Schuck. Emeritus: N. Van Giai. Post-doc: D. Pena-Arteaga. PhD: J.-P. Ebran, A. Fantina, H. Liang. Advantages of

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Tamara Nikšić University of Zagreb

Tamara Nikšić University of Zagreb CONFIGURATION MIXING WITH RELATIVISTIC SCMF MODELS Tamara Nikšić University of Zagreb Supported by the Croatian Foundation for Science Tamara Nikšić (UniZg) Primošten 11 9.6.11. 1 / 3 Contents Outline

More information

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics Thomas Aumann December 11 th 2013 27 th Texas Symposium on Relativistic Astrophysics Dallas, Texas Supported by the BMBF under contract

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Viñas a M. Centelles a M. Warda a,b X. Roca-Maza a,c a Departament d Estructura i Constituents

More information

Isospin asymmetry in stable and exotic nuclei

Isospin asymmetry in stable and exotic nuclei Isospin asymmetry in stable and exotic nuclei Xavier Roca Maza 6 May 2010 Advisors: Xavier Viñas i Gausí and Mario Centelles i Aixalà Motivation: Nuclear Chart Relative Neutron excess I (N Z )/(N + Z )

More information

Computational Advances in Nuclear and Hadron Physics, Kyoto, Constraining the Relativistic Nuclear Energy Density Functional

Computational Advances in Nuclear and Hadron Physics, Kyoto, Constraining the Relativistic Nuclear Energy Density Functional Computational Advances in Nuclear and Hadron Physics, Kyoto, 21.09.-30.10. 2015 Constraining the Relativistic Nuclear Energy Density Functional N. Paar Department of Physics, Faculty of Science, University

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,c X. Viñas a M. Centelles a M. Warda a,b a Departament d Estructura i Constituents

More information

An empirical approach combining nuclear physics and dense nucleonic matter

An empirical approach combining nuclear physics and dense nucleonic matter An empirical approach combining nuclear physics and dense nucleonic matter Univ Lyon, Université Lyon 1, IN2P3-CNRS, Institut de Physique Nucléaire de Lyon, F-69622 Villeurbanne, France E-mail: j.margueron@ipnl.in2p3.fr

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

The Giant Monopole Resonance in the Sn Isotopes: Why is Tin so Fluffy?

The Giant Monopole Resonance in the Sn Isotopes: Why is Tin so Fluffy? Nuclear Physics A 788 (2007) 36c 43c The Giant Monopole Resonance in the Sn Isotopes: Why is Tin so Fluffy? U. Garg, a T. Li, a S. Okumura, b H. Akimune c M. Fujiwara, b M.N. Harakeh, d H. Hashimoto, b

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic

Motivation Density functional theory H(F) RPA Skyrme, Gogny or Relativistic New Skyrme energy density functional for a better description of spin-isospin resonances Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, via Celoria 16, I-2133 Milano,

More information

Giant Resonance Studies Perspectives

Giant Resonance Studies Perspectives Giant Resonance Studies Perspectives Muhsin N. Harakeh KVI, Groningen & GANIL, Caen Joliot-Curie School La Colle Sur Loup, 12-17 September 2011 1 Introduction Giant resonances: Fundamental modes of nuclear

More information

Overview of Nuclear Structure and Excitations

Overview of Nuclear Structure and Excitations Overview of Nuclear Structure and Excitations MAJOR FEATURES OF OUR SUN -the 3rd lecture- SS Jyvaskyla August 06-12, 2014 T= ~10 7 K at the core = ~1 kev Yoshitaka Fujita Osaka University Layer Structure

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Theoretical models for nuclear structure studies Xavier Roca-Maza Università degli Studi di Milano e INFN, sezione di Milano Terzo Incontro Nazionale di Fisica Nucleare LNF,

More information

Giant resonances in exotic nuclei & astrophysics

Giant resonances in exotic nuclei & astrophysics Giant resonances in exotic nuclei & astrophysics 1) Giant resonances: properties & modelisation 2) Giant resonances in exotic nuclei 3) Giant resonances and astrophysics E. Khan 1) Properties and modelisation

More information

Coherent and incoherent nuclear pion photoproduction

Coherent and incoherent nuclear pion photoproduction Coherent and incoherent nuclear pion photoproduction Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Gordon Conference on photonuclear reactions, August 2008

More information

Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation

Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation C. Losa, A. Pastore, T. Døssing, E. Vigezzi, R. A. Broglia SISSA, Trieste Trento, December

More information

Collective excitations in nuclei away from the valley of stability

Collective excitations in nuclei away from the valley of stability Collective excitations in nuclei away from the valley of stability A. Horvat 1, N. Paar 16.7.14, CSSP 14, Sinaia, Romania 1 Institut für Kernphysik, TU Darmstadt, Germany (for the R3B-LAND collaboration)

More information

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution

Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution 2012 4 12 16 Nuclear collective vibrations in hot nuclei and electron capture in stellar evolution Yifei Niu Supervisor: Prof. Jie Meng School of Physics, Peking University, China April 12, 2012 Collaborators:

More information

The Nuclear Symmetry Energy: constraints from. Giant Resonances. Xavier Roca-Maza

The Nuclear Symmetry Energy: constraints from. Giant Resonances. Xavier Roca-Maza The Nuclear Symmetry Energy: constraints from Giant Resonances Xavier Roca-Maza Dipartimento di Fisica, Università degli Studi di Milano and INFN, Sezione di Milano Trobada de Nadal 2012 Table of contents:

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Microscopic nuclear form factor for the Pygmy Dipole Resonance

Microscopic nuclear form factor for the Pygmy Dipole Resonance Microscopic nuclear form factor for the Pygmy Dipole Resonance M.V. Andrés - Departamento de FAMN, Universidad de Sevilla, Spain F. Catara - INFN-Sezione di Catania, Italy A. Vitturi - Dipartimento di

More information

Nuclear and Coulomb excitations of the pygmy dipole resonances

Nuclear and Coulomb excitations of the pygmy dipole resonances SPES Legnaro, 5-7 ovember uclear and oulomb excitations of the pygmy dipole resonances M. V. Andrés a), F. tara b), D. Gambacurta b), A. Vitturi c), E. G. Lanza b) a)departamento de FAM, Universidad de

More information

One-particle motion in nuclear many-body problem

One-particle motion in nuclear many-body problem RIKEN Dec., 008 (expecting experimentalists as an audience) One-particle motion in nuclear many-body problem (The 3rd lecture, V.3) Giant resonances (GR) and sum rules in stable and unstable nuclei Iuo

More information

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb

Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Dipole Polarizability and Parity Violating Asymmetry in 208 Pb Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy) 2nd European Nuclear Physics Conference EuNPC 2012, 16-21

More information

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems

Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems TU DARMSTADT Magnetic Dipole and Quadrupole Transitions in Nuclei Open Problems Qualitative nature of the M1 response Orbital M1 scissors mode: low and high Spin M1 resonance in heavy deformed nuclei Quenching

More information

The pygmy dipole strength, the neutron skin thickness and the symmetry energy

The pygmy dipole strength, the neutron skin thickness and the symmetry energy The pygmy dipole strength, the neutron skin thickness and the symmetry energy Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Giacomo Pozzi Marco Brenna Kazhuito Mizuyama

More information

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments

Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments Investigation of the Pygmy Dipole Resonance in particle- coincidence experiments V. Derya 1*, J. Endres 1, M. N. Harakeh 2,3, D. Savran 4,5, M. Spieker 1*, H. J. Wörtche 2, and A. Zilges 1 1 Institute

More information

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008

Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to neutron-rich nuclei Radii, skins, and halos From finite

More information

Fermi-Liquid Theory for Strong Interactions

Fermi-Liquid Theory for Strong Interactions Fermi-Liquid Theory for Strong Interactions H. Lenske Institut für Theoretische Physik, U. Giessen The theorist s dream from asymptotic freedom to confinement to the nuclear shell model Nucleus ~ cold,

More information

X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood

X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood Folding model analysis for 240MeV 6 Li elastic scattering on 28 Si and 24 Mg X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood In order to study giant resonance induced by 6 Li scattering,

More information

Relativistic versus Non Relativistic Mean Field Models in Comparison

Relativistic versus Non Relativistic Mean Field Models in Comparison Relativistic versus Non Relativistic Mean Field Models in Comparison 1) Sampling Importance Formal structure of nuclear energy density functionals local density approximation and gradient terms, overall

More information

Photopion photoproduction and neutron radii

Photopion photoproduction and neutron radii Photopion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Jefferson Lab PREX workshop, August 2008 Talk Outline Nuclear (π

More information

Modern nuclear mass models

Modern nuclear mass models Modern nuclear mass models S. Goriely Institut d Astronomie et d Astrophysique Université Libre de Bruxelles in collaboration with N. Chamel, M. Pearson, S. Hilaire, M. Girod, S. Péru, D. Arteaga, A. Skabreux

More information

Particle decay studies: Microscopic structure of isoscalar giant resonances

Particle decay studies: Microscopic structure of isoscalar giant resonances Particle decay studies: Microscopic structure of isoscalar giant resonances Notre Dame 2005 Mátyás Hunyadi ATOMKI KVI NDU RCNP Institute of Nuclear Research Debrecen, Hungary Kerfysisch Versneller Instituut

More information

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes Andreas Görgen Service de Physique Nucléaire CEA Saclay Sunniva Siem Department of Physics University of Oslo 1 Context

More information

in covariant density functional theory.

in covariant density functional theory. Nuclear Particle ISTANBUL-06 Density vibrational Functional coupling Theory for Excited States. in covariant density functional theory. Beijing, Sept. 8, 2011 Beijing, May 9, 2011 Peter Peter Ring Ring

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics III: Nucleosynthesis beyond iron Karlheinz Langanke GSI & TU Darmstadt Tokyo, November 18, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Tokyo, November 18, 2008

More information

RPA CORRECTION TO THE OPTICAL POTENTIAL

RPA CORRECTION TO THE OPTICAL POTENTIAL RPA CORRECTION TO THE OPTICAL POTENTIAL Guillaume Blanchon, Marc Dupuis, Hugo Arellano and Nicole Vinh Mau. CEA, DAM, DIF CNR*11, 22/09/11, Prague. Parametrized potentials are very useful but only in the

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

Clusters in Dense Matter and the Equation of State

Clusters in Dense Matter and the Equation of State Clusters in Dense Matter and the Equation of State Excellence Cluster Universe, Technische Universität München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt in collaboration with Gerd Röpke

More information

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire 4 November 2010. Master 2 APIM Le problème à N corps nucléaire: structure nucléaire The atomic nucleus is a self-bound quantum many-body (manynucleon) system Rich phenomenology for nuclei Mean field Which

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Neutron skins of nuclei vs neutron star deformability

Neutron skins of nuclei vs neutron star deformability Neutron skins of nuclei vs neutron star deformability Chuck Horowitz, Indiana U., INT, Mar. 2018 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react with protons to make

More information

Collective excitations of Λ hypernuclei

Collective excitations of Λ hypernuclei Collective excitations of Λ hypernuclei Kouichi Hagino (Tohoku Univ.) J.M. Yao (Southwest Univ.) Z.P. Li (Southwest Univ.) F. Minato (JAEA) 1. Introduction 2. Deformation of Lambda hypernuclei 3. Collective

More information

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Dipole Polarizability and Neutron Skins in 208 Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016 Equation of State of neutron matter and neutron skin Proton scattering at 0 and electric

More information

A MICROSCOPIC MODEL FOR THE COLLECTIVE RESPONSE IN ODD NUCLEI

A MICROSCOPIC MODEL FOR THE COLLECTIVE RESPONSE IN ODD NUCLEI Corso di Laurea Magistrale in Fisica A MICROSCOPIC MODEL FOR THE COLLECTIVE RESPONSE IN ODD NUCLEI Relatore: Prof. Gianluca COLÒ Correlatore: Prof.ssa Angela BRACCO Correlatore: Dott. Xavier ROCA-MAZA

More information

nuclear states nuclear stability

nuclear states nuclear stability nuclear states 1 nuclear stability 2 1 nuclear chart 3 nuclear reactions Important concepts: projectile (A) target (B) residual nuclei (C+D) q-value of a reaction Notations for the reaction B(A,C)D A+B

More information

Cluster-gas-like states and monopole excitations. T. Yamada

Cluster-gas-like states and monopole excitations. T. Yamada Cluster-gas-like states and monopole excitations T. Yamada Cluster-gas-like states and monopole excitations Isoscalar monopole excitations in light nuclei Cluster-gas-likes states: C, 16 O, 11 B, 13 C

More information

Elastic and inelastic scattering to low-lying states of 58 Ni and 90 Zr using 240-MeV 6 Li

Elastic and inelastic scattering to low-lying states of 58 Ni and 90 Zr using 240-MeV 6 Li PHYSICAL REVIEW C 81, 014603 (2010) Elastic and inelastic scattering to low-lying states of 58 Ni and 90 Zr using 240-MeV 6 Li Krishichayan, X. Chen, * Y.-W. Lui, Y. Tokimoto, J. Button, and D. H. Youngblood

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness

The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness The dipole strength: microscopic properties and correlations with the symmetry energy and the neutron skin thickness Xavier Roca-Maza INFN, Sezione di Milano, Via Celoria 16, I-2133, Milano (Italy) Giacomo

More information

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei

Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei Density dependence of the nuclear symmetry energy estimated from neutron skin thickness in finite nuclei X. Roca-Maza a,b X. Viñas b M. Centelles b M. Warda b,c a INFN sezione di Milano. Via Celoria 16,

More information

Nuclear radii of unstable nuclei -neutron/proton skins and halos-

Nuclear radii of unstable nuclei -neutron/proton skins and halos- --- OUTLINE --- Introduction Situation @ stable nuclei How to measure radii? σ R / σ I measurements Transmission method Experimental setup Glauber model analysis Optical limit approximation Density distribution

More information

Covariance analysis for Nuclear Energy Density Functionals

Covariance analysis for Nuclear Energy Density Functionals Covariance analysis for Nuclear Energy Density Functionals Xavier Roca-Maza Università degli Studi di Milano and INFN Information and statistics in nuclear experiment and theory ISNET-3 16 20 November

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Some new developments in relativistic point-coupling models

Some new developments in relativistic point-coupling models Some new developments in relativistic point-coupling models T. J. Buervenich 1, D. G. Madland 1, J. A. Maruhn 2, and P.-G. Reinhard 3 1 Los Alamos National Laboratory 2 University of Frankfurt 3 University

More information

Coupling of giant resonances to soft E1 and E2 modes in 8 B

Coupling of giant resonances to soft E1 and E2 modes in 8 B Physics Letters B 547 (2002) 205 209 www.elsevier.com/locate/npe Coupling of giant resonances to soft E1 and E2 modes in 8 B C.A. Bertulani National Superconducting Cyclotron Laboratory, Michigan State

More information

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure Kouichi Hagino Tohoku University, Sendai, Japan 1. Introduction: heavy-ion fusion reactions 2. Fusion and Quasi-elastic

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

arxiv: v1 [nucl-th] 26 Jun 2011

arxiv: v1 [nucl-th] 26 Jun 2011 Study of the neutron skin thickness of 208 Pb in mean field models X. Roca-Maza 1,2, M. Centelles 1, X. Viñas 1 and M. Warda 1, 1 Departament d Estructura i Constituents de la Matèria and Institut de Ciències

More information