Science is asking questions. And living is not being afraid of the answer. The Science of Breakable Things by Tae Keller STEP 4: rhcbooks.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Science is asking questions. And living is not being afraid of the answer. The Science of Breakable Things by Tae Keller STEP 4: rhcbooks."

Transcription

1 B 1 K B ic hi Wh i i i? h l v Q 2 h h ll i i i h i i h m? i W B chi b l l G ii v i b 3 i c l ii i qi Gb m 4 i c ll ic G c i i h 5 l c im im l il ci. l m k m k? K G M MMB M X 6 i mim M h l m M X 7 i k h h ll l? i Wh l? 8 Z 2018 b li ki M W i i v i li j i bi j ll i imi cic i ki qi. livi i bi i h. h cic Bkbl hi b Kll hcbk.cm.

2 G 3-7 & il GB h cic Bkbl hi c Gi B BK li li i i mil chl h hi il cl. mm bi i i m i; h hi i li mii h hhl; h Mikl h chilh b i hv. Wh M. l h cic ch ic h ih h ciiic c li c l cc h mi h li. h h c ih i h b i i cic hi m i. li h bi l h iz m mhi h bliv cl hl h mm cv. Wh h il i li lch l h vl bi i lii h h mil. cmi lim ml ill ccibl b ic. Kik vi h hi b Jllih cm clv b cmbii cic ih h ic. Bkli B K i ll ii h h i m mbi ici i h chl cmii. (h i i.) i m B M ll h mv k i k i blihi h v bb ki mli bk mm. ii h Kll.cm ll h b i h l bi.l/kll. v hh 2018 b li ki -G vi h ih i h ciiic c 1 bv 2 Qi 3 viiv ch 4 hi 5 c 6 im 7 l 8 lz l ivi h cl i mll k hm cc im. vi vi mil hm ci hi im cl bbbl cki h cki mil. v h c imi b ch hi im. l mm i cic & chicl bjc K & il ;

3 M ic h c h vl. h ih ll vl imi b h chc clic l? Wh h cib h? 1 M. l k bv. Wh bv b li m h i i h lb bk? (. 5 6) ic li li b M. l Mikl Mz i. h hi b h clic h vl? M. l h 2 i h ciiic c i qi. hi ivi mhi h ii hm. Wh qi li hv b mil ihi? i ihi m li i vi. h Mikl h b i h h. Wh? ihi mim ch i mil chl? li h i k hich ic vi. Which bjc li i vi? li b i i i. m c hi mili. h bh l b? cib h il lihi ih i. h him mch h hm? li h i i mk li h l hi m h cmii. hmim i h i lc h m b hh h h. ml li h cll h mh ii. (. 19) i hi. Wh h l h m hmim hi i cii? li l b h mh i? mih li bi m m ih ici ih h h? li mm i bi. li cm h mm cii h l? li i i h lb jl h m bck. (. 26) Wh li hik h h mh h? mm bk il G Micl. Wh i li i i h mh ii? Wh i h iiicc h bl Bl chi? i h chi iv li h? ic li ci h h l h h bl l i hi h bl Bl chi b B Bl i. h l qi h mm b h h l h ii. li h h mh m b v c chc. (. 279) li h h K i i h c him i li mm. Wh li h h l i h h? li h li h cll i cm v. li mm l lik cii hi lil bi ch b ml i lz i. (. 196) i h chc h icl iicl hl h ih h ch. h i i h vl li ll bi lz h mil ii? Wh ccli h? Bl i ic h i mi hh h bk. Wh li hik h M. Mz b h mh? i h ml bl i h vl. li h i hl K. i i i. h h vi hi hicii. Wh li l b li m i? li h lli q Bc cic i ki qi. livi i bi i h. (. 292) li h il h bk. Wh i h bkbl hi? h ici qi bv cl ih mm i i i K & il ; & c ; ki & ii mhi & llbi ; vi lih ; Kl ; cbl cqiii & b li ki

4 M im 4 l l vl h li mm i bi. h h l l li h l l. bk i h lib i h ch h mblim vi l. h lli i i hll lmc.cm/c /l-mi-l-l. h lc l h chc i h vl m iv h. v i h h li hi chic ci ciic c cvi m h bk hi i. M l mm i Wii & W ; ch Bil & Kl W ; l ih mm i i i K & il ; & c ; ki & ii mhi & llbi ; vi lih ; Kl ; cbl cqiii & im cmml h i hich mi i m iivil b m h i hl. h mi i mv m lil iii. Wh li h m h h ll h h h mil ih bl ch. (. 6) ic h mi h lli cmm iim hh il ij Bck h i b Bki h Mk l h Bll i i c h h h mm v cl h ilv lii k ick iim i h ic h i h bk h h cl b. Which chc i m likl i i h ii? l mm i cbl cqiii & ; Wii ci & iibi Wii W li h i hi. ch h kill hi h./bcm-hi/kill-.hml. i vic m h bk i ici hh hik li h i hi. Wh chll mih hi c h cli hi mil? l mm i Wii & W ; ch Bil & Kl W iv cii h hi k c lb ii Glil Glili il Bli cl. k ch h cii i bihicl bk cll cii. cl ici h ciiic ivii h m hm m. M l mm i Wii & W ; ch Bil & Kl W ; vi lih ; Kl Mi i h hb h bl iz i hic i i 1911 h h bl iz i hmi. k ch h mb m m h hv h bl iz i vi cic m (bliz.). h hv hm cc b h h cm h i b. Wh i h i ml ml izi? ic h ii hh hi i ii. l mm i Wii ch Bil & Kl W ; cic & chicl bjc i Kl & b li ki

5 M (ci) li i h h l h h h mh v h bl Bl chi i hi h. v ch bl chi i h lib li. h cliv? k cc hi l l im. Bi i m hi l. vi vi cli. ll h ih h ciiic c icv h c cli l. mch i k hi l i cl? m cli c k cl? l h c k? c h c l i cic jl. l mm i cic & chicl bjc K & il 6-8.3; Wii & W B/ GG hl b c j mili i hm ki cl m c. ch m icl imiic (. 4) (. 17) micbl (. 20) clic (. 41) vlci (. 74) illi (. 95) icihbl (. 95) iimii (. 99) ih (. 113) iiiiv (. 123) blivi (. 146) v (. 157) mh (. 225) ml (. 260) cic (. 273). l mm i cbl cqiii & M W M hi c Gi hlk B h i mb J B h h Glih Ji. lm B zz M i ch B h G bl bh ki B l i B h M Wl lbi Bih hih h h Mii M b cl hil i l Gvill h li m hil Bk chl ib Mki 1745 B k /18 (h Wllc civ c Bk 1) J ; ill b Kll Mh B b li ki

Maturity in Christ. The. Rock

Maturity in Christ. The. Rock M i C T Rk J 2014 Gi k l f Si Rir Fr Rr Mr fil... Hr, Kll C S r f Si Rir i i r fr H i 2002. Hr Kll Rkll S O i Clr Lk r fr 23 r. T r l i rfl. C ill Jir S ill Fr R Rk Hi Sl x r. T r il i Al Y Miir. Hr rk

More information

* Project Cost is for Total Project 468,376

* Project Cost is for Total Project 468,376 I #7 i- Ub pi Pig Ogizi Fic i pi Tpi P - Hig Pjc Li - pjc v ci f TIP c f Pjc ig Exiig Pp gi Pjc F p I TIP Pjc Pjc cipi Pjc - - igifi- * Fci b b Lii g ci ci cc T FF - -T U- c v 3 i L Kig, J iv i- L Fcii

More information

Creating New Objects

Creating New Objects Wk Obj 1 C bj 2 A vb bj 3 bj C M & I I B & M 4 Cv bj v - 5 M b bj 6 A vv Jv b C N Obj A Jv C bj: bj k H bj : R R Rk V Rk Jv k bj 1 I v bj 2 I bj b C Vb bj Jv vb v 1 A vb v v 2 A vb Obj bj I R bj bj H x

More information

A. B. JASSO D. SALAZAR H. MONTELONGO MECH ENG VAA T&W QUALITY ENG VAA PLANT MANAGER VAA ACTION RESULTS CURRENT PROCESS CONTROLS DETECTION

A. B. JASSO D. SALAZAR H. MONTELONGO MECH ENG VAA T&W QUALITY ENG VAA PLANT MANAGER VAA ACTION RESULTS CURRENT PROCESS CONTROLS DETECTION I FI M FF YI ( FM) FM MB FM - 96 6 IM I F I M M IBIIY M. MI (h 57-0-000) BY. B. J M Y()/HI() 00-0 KY ugust st; 00 FM (IG.) /9/007 (.) 0 (070) M. B. J. Z H. MG MH G &W QIY G MG I FI QIM I FI M I FF() F

More information

dmid hud f i, fh dii m u Plii Svi ' ifmi vidd h whih whih f k, gm xui h i kwldg vidd m xud f gm mi diu, uhi hv Di Bd h T ig li mlig um ud Plii Svi ulh

dmid hud f i, fh dii m u Plii Svi ' ifmi vidd h whih whih f k, gm xui h i kwldg vidd m xud f gm mi diu, uhi hv Di Bd h T ig li mlig um ud Plii Svi ulh S NTO SPECIL UTILITY D ISTRICT S ERVICE PPLICTION ND GREEMENT P O Bx 248 S, Tx 76472 P l Pi: D TE PPLICNT'S NME CO- PPLICNT'S NME C URRENT BILLING DDRESS: FUTURE BILLING DDRESS: PHONE NUMBER - Hm () -

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball Al f Effc f Ru Ac f Tjc f Tl T Bll Juk Nu Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Ak Nkh Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Yhku Hkw Mchcl Scc Egg, Gu Schl f

More information

webster To order your custom trigger labels contact Webstercare on FREE CALL and quote the order code APERIENT ABSENT 2 MONTHLY ACTONEL

webster To order your custom trigger labels contact Webstercare on FREE CALL and quote the order code APERIENT ABSENT 2 MONTHLY ACTONEL F LL 1300 626 739 and quote the order code 2 MHLY L L H 2 LY LLGY -GL 3/12 VL L V G L - G L LLGY 3 Y M LLGY L 4/12 VL M LLGY MH - 0 6 : 0 0 M B (30 Y VW) LL HLH - 6/12 VL V HLH V LL HLH -YH 20 Y L V G

More information

P3.C8.COMPLEX NUMBERS

P3.C8.COMPLEX NUMBERS Recall: Within the real number system, we can solve equation of the form and b 2 4ac 0. ax 2 + bx + c =0, where a, b, c R What is R? They are real numbers on the number line e.g: 2, 4, π, 3.167, 2 3 Therefore,

More information

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333. 0 fltu77jjiimviu«7mi^ gi^"ijhm?'ijjw?flfi^ V m 1 /14 il?mitfl?^i7wwuiinuvitgviiyiititvi2- imviitvi^ qw^ww^i fi!i-j?'u'uil?g'iqwuwiijmi.wti twwrlf^ imii2^

More information

Raman Amplifier Simulations with Bursty Traffic

Raman Amplifier Simulations with Bursty Traffic R S h y Tc h N., k F, Jy K. c D Ecc E C Scc Uy ch b 3, Oc b, ch 489 X Cc, c. 5 W. hy D, S, Tx 753 Th h h bh R h bjc by c. y c c h h z c c c. Sch by c h -k c cy b. cc c, h c -- h h ych c k SONET), hch c

More information

INVERSE TERNARY CONTINUED FRACTIONS

INVERSE TERNARY CONTINUED FRACTIONS I93I-1 TERNARY CONTINUED FRACTIONS 565 INVERSE TERNARY CONTINUED FRACTIONS BY D. N. LEHMER In Jacobi's extension of the continued fraction algorithm* we are concerned with three series of numbers given

More information

KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN AMSTERDAM Reprinted from Proceedings, Series A, 61, No. 1 and Indag. Math., 20, No.

KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN AMSTERDAM Reprinted from Proceedings, Series A, 61, No. 1 and Indag. Math., 20, No. KONINKL. NEDERL. AKADEMIE VAN WETENSCHAPPEN AMSTERDAM Reprinted fro Proceedings, Series A, 6, No. and Indag. Math., 20, No., 95 8 MATHEMATIC S ON SEQUENCES OF INTEGERS GENERATED BY A SIEVIN G PROCES S

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

IJRET: International Journal of Research in Engineering and Technology eissn: pissn: IJRE: Iiol Joul o Rh i Eii d holo I: 39-63 I: 3-738 VRIE OF IME O RERUIME FOR ILE RDE MOWER EM WI DIFFERE EO FOR EXI D WO E OF DEIIO VI WO REOLD IVOLVI WO OMOE. Rvihd. iiv i oo i Mhi R Eii oll RM ROU ih

More information

(K + L)(c x) = K(c x) + L(c x) (def of K + L) = K( x) + K( y) + L( x) + L( y) (K, L are linear) = (K L)( x) + (K L)( y).

(K + L)(c x) = K(c x) + L(c x) (def of K + L) = K( x) + K( y) + L( x) + L( y) (K, L are linear) = (K L)( x) + (K L)( y). Exercise 71 We have L( x) = x 1 L( v 1 ) + x 2 L( v 2 ) + + x n L( v n ) n = x i (a 1i w 1 + a 2i w 2 + + a mi w m ) i=1 ( n ) ( n ) ( n ) = x i a 1i w 1 + x i a 2i w 2 + + x i a mi w m i=1 Therefore y

More information

HPLC/UHPLC Columns. Limit 5 columns per company. Excludes guard columns. Offer applies to columns with 4.6 mm ID. Specialty LC Columns

HPLC/UHPLC Columns. Limit 5 columns per company. Excludes guard columns. Offer applies to columns with 4.6 mm ID. Specialty LC Columns Clb Y-E wi Billi Svigs! Expis: Db 15, 2017 Mi ff : CYP17 G FREE Lii Eii Gl Nbi! w lb f g i is s i b N vy s l i O G 3 i ip i P. y lb. p ll g li l REE p F ii iv i li 0 ly 10 y B y! j f g i p Nbis p i y b

More information

On Symmetry Techniques and Canonical Equations for Basic Analogue of Fox's H-Function

On Symmetry Techniques and Canonical Equations for Basic Analogue of Fox's H-Function International Conference on Challenges and Applications of Mathematics in Science and Technology (CAMIST) January 11-13, 2010 On Symmetry Techniques and Canonical Equations for Basic Analogue of Fox's

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

v max for a rectangle

v max for a rectangle RCH il Emitio Reeree 05 0 0 0 C Reeree ormls ( ) B Bos ˆ B C Q i i si si si 4 i ( ) ˆ os p r d Q i i si W l t d t i r 4 d d d d g 9.8 m s mg d ˆ dv w d m d ˆ d V m V d w N N kgm m s N k, 000 psi l i π

More information

v max for a rectangle

v max for a rectangle RCH il Emitio Reeree S06 0 0 0 C Reeree ormls si B Bos ( ) ˆ B C Q si si i i 4 i ( ) ˆ os p r d Q i i si W l t d t r 4 d d i d d g 9.8 m s mg d ˆ dv w d m d ˆ d V m V d w N N kgm m s N k, 000 psi l i π

More information

Summary: angular momentum derivation

Summary: angular momentum derivation Summary: angular momentum derivation L = r p L x = yp z zp y, etc. [x, p y ] = 0, etc. (-) (-) (-3) Angular momentum commutation relations [L x, L y ] = i hl z (-4) [L i, L j ] = i hɛ ijk L k (-5) Levi-Civita

More information

fnm 'et Annual Meeting

fnm 'et Annual Meeting UUVtK Ht.t, A 0 8 4 S.. Rittin Nub t, n L Y t U N i, n ' A N n, t\ V n b n k pny' ull N) 0 R Z A L A V N U X N S N R N R H A V N U R A P A R K A L A N Y Buin Add. N. Stt ity wn / Pvin) Ali l) lil tal?l

More information

Lecture #8: We now take up the concept of dynamic programming again using examples.

Lecture #8: We now take up the concept of dynamic programming again using examples. Lecture #8: 0.0.1 Dynamic Programming:(Chapter 15) We now take up the concept of dynamic programming again using examples. Example 1 (Chapter 15.2) Matrix Chain Multiplication INPUT: An Ordered set of

More information

THE ROOST. Thanks, Brad. Sad faced hurdy-gurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood.

THE ROOST. Thanks, Brad. Sad faced hurdy-gurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood. THE ROOST H f Bg, vy, b kw w--y f b cc. Hwv b cgz, g g, f y f p, w kw cy. W p cfy w pc bg pb cp w Uvy f Lg. H y w f c c f f Lg' b Fcp p (W pb pc fg F p 2007 fw cp vb f $6.50) Sc bg pb Lg I g I g c p I

More information

FALL 1 PARTRIDGE TIPPETT NURSING FACILITY DATE:

FALL 1 PARTRIDGE TIPPETT NURSING FACILITY DATE: 1 IDG I IG IIY D: MODY Y G Y DY Y JI M O W MD GG OW WI O WDDY O ID GG O MI MI DY JI W G I IDY WD M O W GG/ OI DY JI IMO O DY MD GG O WI O GZD DO JI I ODO MD OO DID OO D : O J G JI GZD M O MD I Y O O :

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs N-B Oh Dw f Sv f P Tcc Cc Gh (Ex Ac) M. S Rh, N E, T Nhz G Sch f If Scc, Th Uvy, A-y 05, S 980-8579, J. {,}@hz.c.h.c. h@c.h.c. Ac. A h h wh fx. I - h w f h, ch vx w ch w hz vc. A h hv - h w f f h - h w.

More information

A New Model for the Pricing of Defaultable Bonds

A New Model for the Pricing of Defaultable Bonds A Nw Mol fo h Picing of Dflbl Bon Pof. D. Ri Zg Mnich Univiy of chnology Mi 6. Dzmb 004 HVB-Ini fo Mhmicl Finnc A Nw Mol fo h Picing of Dflbl Bon Ovviw Mk Infomion - Yil Cv Bhvio US y Sip - Ci Sp Bhvio

More information

Books. to Collect! Go to and continue the story.

Books. to Collect! Go to and continue the story. Cnnc wih yu kids v bakfas and imaginain. R-liv yu Chis bx advnu and chck u h alnaiv ndings yu sy. and sumbld in I was jus bf bakfas whn yu findʼs nam yu nam yu scinc ach yu nam cl h machin sad shak and

More information

53 NRODUCION I y m mzz y mzz ymm zz 155mm my US mzz vy m zz m mm ymm m my mzz ymm y j k j x vy m x m mzz k m 1800 W II W 199 my 0 CKGROUND B y C 9 C E

53 NRODUCION I y m mzz y mzz ymm zz 155mm my US mzz vy m zz m mm ymm m my mzz ymm y j k j x vy m x m mzz k m 1800 W II W 199 my 0 CKGROUND B y C 9 C E 52 6H INERNIONL SYPOSIU ON BLLISICS 2 SEPEBER 12 FL II 1 201 6 1 SYERICL UZZLE WER ISORICL PERSPECIVE H Bk Hm J E 1 B S E C Dvm R mm L Bé NY v W 9 218 1 m mzz ymm m m vv 155mm v m x z q v k mzz ymm mzz

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

The CFD Drag Prediction Workshop Series: Summary and Retrospective. David W. Levy Cessna Aircraft Company and the DPW Organizing Committee

The CFD Drag Prediction Workshop Series: Summary and Retrospective. David W. Levy Cessna Aircraft Company and the DPW Organizing Committee CD D icio oo i: u oci Di. C Aic Co D izi Coi o, o, oiu Dio, CA - u 1 CD D icio oo i: u oci, D izi Coi Di.. i C Aic Co w. ioco, o C., oi i, i oi Co:, Huio c,. oui Cio. u, ic A., o H. oio AA c C. o io Ci

More information

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100 EXAMPLE CFG L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa S asa L = {a n b : n 0 } L = {a n b : n 1 } S as b S as ab L { a b : n 0} L { a b : n 1} S asb S asb ab n 2n n 2n L {1 0 : n 0} L {1 0 : n 1} S

More information

You don t need a better car, you need to learn how to drive

You don t need a better car, you need to learn how to drive O h Imp f Cyb-Df L Am Y d d b, y d hw dv E Lv, F Hm, Phpp Lwk m AG 2017 m.m Wh w? m AG 2017 Pg 3 Y d d b, y d hw dv Wh h k b Wh w dd Wh w h p Wh h k NOT b C p-by-p hw fx hg Cd Vd bhg A mk

More information

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé Ešlc a pðå u LR abé 1z Ešlc a l e j 2z Sm l e j 3z Ešlc a l WL e J k N k Nl hhle (NË j, b e, hôl, fe L X, j h Cm eðl CaÉ c pçf ZÑ b L A a BhnÉL) WL e g e eðl (STD Code pq) j h Cm eðl C- jm 4z Hm L - 1z

More information

ARE YOU PREPARED FOR A TSUNAMI?

ARE YOU PREPARED FOR A TSUNAMI? Eq g g? g! b, gb bg K f g pc T c fc E YOU EE FO TUNI? Y pp c b ffc f Kāp I b f p : g g f p f gg b pp f gc g f g f g p p Kāp c c - Y f j 8000 pp Kāp c z. If q pp c Kāp, c. I p p g b f f g g f c qc c f g.

More information

Solve Linear System with Sylvester s Condensation

Solve Linear System with Sylvester s Condensation International Journal of Algebra, Vol 5, 2011, no 20, 993-1003 Solve Linear System with Sylvester s Condensation Abdelmalek Salem Department of Mathematics University of Tebessa, 12002 Algeria And Faculty

More information

Attacks on the Birational Permutation Signature Schemes

Attacks on the Birational Permutation Signature Schemes Attacks on the Birational Permutation Signature Schemes Don Coppersmith IBM Research T. J. Watson Research Center Yorktown Heights, NY 10598 Jacques Stern, Serge Vaudenay Laboratoire d'hformatique Ecole

More information

Page 1 of 10. PROFESSIONAL ENGINEERS ONTARIO NATIONAL EXAMINATIONS Mav CIV-A4 GEOTECHNICAL MATERIALS AND ANALYSIS 3 HOURS DURATION

Page 1 of 10. PROFESSIONAL ENGINEERS ONTARIO NATIONAL EXAMINATIONS Mav CIV-A4 GEOTECHNICAL MATERIALS AND ANALYSIS 3 HOURS DURATION Page 1 of 10 PROFESSIONAL ENGINEERS ONTARIO NATIONAL EXAMINATIONS Mav 2015 3 HOURS DURATION NOTES: 1. This is a closed book examination. 2. Read all questions carefully before you answer 3. Should you

More information

PARALLEL ALGORITEMS FOR FINDING THE FL4XIPIUM. Nimrod Megiddo:k. n elements can be found by n processors in O(1) time w?'.th

PARALLEL ALGORITEMS FOR FINDING THE FL4XIPIUM. Nimrod Megiddo:k. n elements can be found by n processors in O(1) time w?'.th PARALLEL ALGORITEMS FOR FINDING THE FL4XIPIUM AND THE MEDIAN ALMOST SURELY I N CONSTANT-TIME Nimrod Megiddo:k Abstract. It is shown that the maximum and the median of a set of n elements can be found by

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G Bk b $ 6 G Y 7 B B B B - BB -BY- B Bk B Qk Q k Q k B g (- -- k Bk G Bk k q B - - - - - $ gb q g bg g g b b q )( 6 B 7 B B k 6 g k 6 B b Y k b - b b k b b b g ( \ bg Y b b k b /% /% b k b b g Y Y k

More information

The European. Ombudsman. for business

The European. Ombudsman. for business G O D O Th E Ob f b EN Whh b SME, wh h EU b, h E Ob b f h EU. If b h fwk f EU-f j, f f fw wh h EU h f,, bb, f, h E Ob h. E O R E Ob Pb f b b wh h EU : L C Pb wh f Lk f /f f P U V f f h I h, h E Ob f b.

More information

A FINITE CHARACTERIZATION OF K-MATRICES IN DIMENSIONS LESS THAN FOUR

A FINITE CHARACTERIZATION OF K-MATRICES IN DIMENSIONS LESS THAN FOUR Mathematical Programming 35 (1986) 17-31 North-Holland A FINITE CHARACTERIZATION OF K-MATRICES IN DIMENSIONS LESS THAN FOUR John T. FREDRICKSEN* Amdahl Corporation, 1250 East Arques Avenue, Sunnyvale,

More information

!"#$!"#$%&'$$%&'(&)$*+,-#-+.-/$ 0-(12+$3#'45($6+&)7(1($ 0"+&)8$9:$;'<1+$

!#$!#$%&'$$%&'(&)$*+,-#-+.-/$ 0-(12+$3#'45($6+&)7(1($ 0+&)8$9:$;'<1+$ !"#$!"#$%&'$$%&'(&)$*+,-#-+.-/$ 0-(12+$3#'45($6+&)7(1($ 0"+&)8$9:$;'&#8$?+1>-#(1@7$ A@&B(B.($CDE/$F:G:$%".H#&+/$CIJK$ %)&((1.&)$LM5-#14-+@&)$0-(12+$ %)-&#$(-5&#&B"+$

More information

AP Physics C: UNIT CONVERSION

AP Physics C: UNIT CONVERSION AP Physics C: UNIT CONVERSION 1. Convert each of the following measurements into the specified units. a. 42.3 cm = 423 mm d. 0.023 mm = 0.23 cm 1 cm = 10 mm b. 6.2 pm = _0.0000000000062_ m e. 214 µm =

More information

ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT

ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT KYBERNETIKA- VOLUME 26 (1990), NUMBER 4 ACCELERATED LIFE MODELS WHEN THE STRESS IS NOT CONSTANT VILIJANDAS BAGDONAVICIUS 1 The concept of a relation functional is defined and the accelerated life models

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata nd Ed. (0/9/07) Page Errata of CMOS Analog Circuit Design nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 8 Line 4 after figure 3.3, CISW CJSW 0 Line from bottom: F F 5 Replace

More information

Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel

Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel Large System Analysis of Projection Based Algorithms for the MIMO Broadcast Channel Christian Guthy and Wolfgang Utschick Associate Institute for Signal Processing, Technische Universität München Joint

More information

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i.

Section 5.8. (i) ( 3 + i)(14 2i) = ( 3)(14 2i) + i(14 2i) = {( 3)14 ( 3)(2i)} + i(14) i(2i) = ( i) + (14i + 2) = i. 1. Section 5.8 (i) ( 3 + i)(14 i) ( 3)(14 i) + i(14 i) {( 3)14 ( 3)(i)} + i(14) i(i) ( 4 + 6i) + (14i + ) 40 + 0i. (ii) + 3i 1 4i ( + 3i)(1 + 4i) (1 4i)(1 + 4i) (( + 3i) + ( + 3i)(4i) 1 + 4 10 + 11i 10

More information

AS real numbers have an associated arithmetic and mathematical

AS real numbers have an associated arithmetic and mathematical INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 31-5330), VOL. 4, NO. 1, 014 8 An Interval Solid Transportation Problem with Vehicle Cost, Fixed Charge and Budget A. Das, A. Baidya

More information

UNIT # 01 MOLE CONCEPT EXERCISE # H 2. : O 3 no. of atoms=2n A. : H e : O 2

UNIT # 01 MOLE CONCEPT EXERCISE # H 2. : O 3 no. of atoms=2n A. : H e : O 2 UNIT # 0 MLE CNCEPT EXERCISE #. No. of molecule () Mole N A N nn A 5. At STP or NTP volume of any gas (STP NTP ). L 6. gram ion mole ion N A ion mol Al + ion N A Charge (e) on mol Al + ion N A e columb.

More information

Chapter 5. . Dynamics. 5.1 Introduction

Chapter 5. . Dynamics. 5.1 Introduction Chapter 5. Dynamics 5.1 Introduction The study of manipulator dynamics is essential for both the analysis of performance and the design of robot control. A manipulator is a multilink, highly nonlinear

More information

Normal Subgroups and Quotient Groups

Normal Subgroups and Quotient Groups Normal Subgroups and Quotient Groups 3-20-2014 A subgroup H < G is normal if ghg 1 H for all g G. Notation: H G. Every subgroup of an abelian group is normal. Every subgroup of index 2 is normal. If H

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

-0 and K any positive real number. Similarly we define,

-0 and K any positive real number. Similarly we define, AN INEQUALITY OF SCHÜR AND AN INEQUALITY OF NEWTON K. V. MENON Let El H) denote the elementary complete symmetric functions of the rth order in ai, a2,, am respectively. If (1.1) et = e\ jl \ i / (m +

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

:s ej2mttlm-(iii+j2mlnm )(J21nm/m-lnm/m)

:s ej2mttlm-(iii+j2mlnm )(J21nm/m-lnm/m) BALLS, BINS, AND RANDOM GRAPHS We use the Chernoff bound for the Poisson distribution (Theorem 5.4) to bound this probability, writing the bound as Pr(X 2: x) :s ex-ill-x In(x/m). For x = m + J2m In m,

More information

NON-COMPACT COMPOSITION OPERATORS

NON-COMPACT COMPOSITION OPERATORS BULL. AUSTRAL. MATH. SOC. 47B99 VOL. 21 (1980), 125-130. (46JI5) NON-COMPACT COMPOSITION OPERATORS R.K. SINGH AND S.D. SHARMA In this note sufficient conditions for non-compactness of composition operators

More information

8 - img mu - I Pin i b - nn lii RS il il y b ig im g li gmn 80 lu h biy 76 ( - vn) nly Wki Img Mmmghy ll ui g i h li k MIW vl l n h (MIW) ign n i MIW

8 - img mu - I Pin i b - nn lii RS il il y b ig im g li gmn 80 lu h biy 76 ( - vn) nly Wki Img Mmmghy ll ui g i h li k MIW vl l n h (MIW) ign n i MIW 7 GISEL J g P - HIN n (E) l R OMET 0 v igh ll uh 0 Exl ul i j: h T g i - uu mh n h b H íz Guillm Vlin n Migul Jé Og Suáz é Mnul Sl l Rubi H íz Guillm Mn Mín mn Ángl Migul Lóz Guv Nimy Gz P álz Pllán Rm

More information

CHAPTER 6. Direct Methods for Solving Linear Systems

CHAPTER 6. Direct Methods for Solving Linear Systems CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to

More information

c ll pj â **** p Cc q pe

c ll pj â **** p Cc q pe 1 c ll pj â **** p Cc q pe 2 fëbj fël n : H fëm, 2009 Date of first edition publication: April, 2009 p Cc q pe La«L phñüaæ pwl ra Published by Sayed Hossain Contact Address: Sayed Hossain Faculty of Management

More information

Secant-Tangent and Tangent-Tangent Angles

Secant-Tangent and Tangent-Tangent Angles -1- w2g07131s seutbau zeowfct1waerweb 1nrw.w b wa0lal rhigmhjt7s nroedsxeqrvzed.i pmadten fwithhk ITnTftiunbittge Ietormetjry.A orksheet by uta oftware uta oftware - Infinite eometry ame ecant-tangent

More information

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems.

I can use properties of similar triangles to find segment lengths. I can apply proportionality and triangle angle bisector theorems. Page! 1 of! 8 Attendance Problems. Solve each proportion. 12 1. 2. 3. 15 = AB 9.5 20 QR = 3.8 4.2 x 5 20 = x + 3 30 4.! y + 7 2y 4 = 3.5 2.8 I can use properties of similar triangles to find segment lengths.

More information

A partial order on partitions and the generalized Vandermonde determinant

A partial order on partitions and the generalized Vandermonde determinant Journal of Algebra 278 (2004 127 133 wwwelseviercom/locate/jalgebra A partial order on partitions and the generalized Vandermonde determinant Loring W Tu Department of Mathematics, Tufts University, Medford,

More information

Business Defamation. 3 d -E d -ci. Introduction [ 1.1} 4-4 (..) 3-, I. N 44. co, -2, bid 0 '''' -0 "._, 0 b.,,_, 4-> a) 4-4 (..

Business Defamation. 3 d -E d -ci. Introduction [ 1.1} 4-4 (..) 3-, I. N 44. co, -2, bid 0 '''' -0 ._, 0 b.,,_, 4-> a) 4-4 (.. N Cp] Bsiness Defamin Intrctin [ 11} 41 C:::1 r` 'a' r1 ca in ; H'i y "' 4 ") v) N N ' L 4 ct cc") '; 4 CD (14) C47'r Ln 4''3 el ry 41 v) E NI ba &4 CI r7 F3 2 c 4 _ rtt t) i 71 (ct c) 4 c) 7 (4Ci () 1

More information

WHY BOARD AT TRINITY? Philippians 2:3-4

WHY BOARD AT TRINITY? Philippians 2:3-4 BOARDING AT TRINITY D t yg lih it chp i t t, t hl t, ly cig tt ylv. A lk t tt, t jt y. Philippi 2:3-4 WY BOARD AT TRINITY? Bg t Tity i it lg cl Ipt Schl. W hv ci t kp Bg ll, t y c civ hight t c tg vill.

More information

Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia

Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia Flavor in the scalar sector of Warped Extra Dimensions a by Manuel Toharia (University of Maryland) at the University of Virginia, Dec. 2, 2009 a Based on PRD80:03506( 09) A.Azatov, M.T., L.Zhu PRD80:0370(

More information

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc M D O : 8 / M z G D z F zw z z P Dẹ O B M B N O U v O NO - v M v - v v v K M z z - v v MC : B ; 9 ; C vk C G D N C - V z N D v - v v z v W k W - v v z v O v : v O z k k k q k - v q v M z k k k M O k v

More information

Jicamarca. Ronald Woodman Instituto Geofisico del Peru

Jicamarca. Ronald Woodman Instituto Geofisico del Peru Jicamarca Ronald Woodman Instituto Geofisico del Peru VU /s /_ /.a^t ^0^000 I- LooeCtt'on - MAane7/c> ( f. -?o:nt± /;?S> 3- li)eum,^en^^ ~ 3>*ft/Lr'» ^»< - ZS. \ rfiz. (2 ^ ra-dltu^. OL ^ CiO^tyrt*!^ YOueLet^

More information

AN6783S. IC for long interval timer. ICs for Timer. Overview. Features. Applications. Block Diagram

AN6783S. IC for long interval timer. ICs for Timer. Overview. Features. Applications. Block Diagram IC for long interval timer Overview The is an IC designed for a long interval timer. It is oscillated by using the external resistor and capacitor, and the oscillation frequency divided by a - stage F.F.

More information

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation

d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation ) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q

More information

Constraints on the Higgs Width

Constraints on the Higgs Width Constraints on the Higgs Width Andrew Whitbeck (Fermilab) On behalf of the CMS collaboratsion!! Americas Workshop on Linear Colliders May 14, 2014 Results shown are from: CMS-PAS-HIG-14-002 Higgs Properties

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

Search for Higgs and new Physics at CDF

Search for Higgs and new Physics at CDF Search for Higgs and new Physics at CDF Outline: Search for Standard Model Higgs Introduction Analysis methods for low mass Higgs Strategies for high mass Higgs Search for new Physics Signature based Electron

More information

The graph sandwich problem for 1-join composition is NP-complete

The graph sandwich problem for 1-join composition is NP-complete Discrete Applied Mathematics 121 (2002) 73 82 The graph sandwich problem for 1-join composition is NP-complete Celina M.H. de Figueiredo a;, Sulamita Klein a, Kristina Vuskovic b a IM and COPPE, Universidade

More information

StAt 5,- - IHR COPY -'~~- 4 II. by- ' i, S ' -.

StAt 5,- - IHR COPY -'~~- 4 II. by- ' i, S ' -. StAt 5,- - MQW-a½ S. CIF 4 II I IHR COPY -'~~- by- X A ' i, S ' -. MODEL TEST RESULTS AND PREDICTED EHP FOR AN 86-FOOT PERSONNEL BOAT, FROM TESTS OF MODEL 4675 by Eugene P. Clement and Charles W. Tate,

More information

Dynamics. 1 Copyright c 2015 Roderic Grupen

Dynamics. 1 Copyright c 2015 Roderic Grupen Dynamics The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. Websters dictionary Outline Conservation of Momentum Inertia

More information

Math 95--Review Prealgebra--page 1

Math 95--Review Prealgebra--page 1 Math 95--Review Prealgebra--page 1 Name Date In order to do well in algebra, there are many different ideas from prealgebra that you MUST know. Some of the main ideas follow. If these ideas are not just

More information

Higgs Coupling Measurements!

Higgs Coupling Measurements! Status, prospects, and interplay with searches for physics BSM Seminar University of California - Irvine April 23rd, 2014 Introduction Fantastic progress since discovery July 2012 Observation in three

More information

Incremental Rotary Encoder G58

Incremental Rotary Encoder G58 Shaft: Type S / L / H Hollow shaft: Type W Mechanical Data Housing diameter: mm Shaft:... 0 mm Hollow shaft:... mm Line counts:... 0.000 signals: S, KI, KS, HTL, TTL, O, Vpp, µapp onnector or output: axial

More information

Components. Spanish Treasure Galleon

Components. Spanish Treasure Galleon G Iuc h G xp mu b xp, g u pck ch h mu u hk w hc u gm h mu umb cu ppxm p m cmpx O, G m Mch & Mu wh m wh h b gm Hw U h Exp h w Cp, Rum, M E c g wh h b gm whu g w u Hw, m mu h w u mmb uc h u gm gu h w u g

More information

Theory of Bouguet s MatLab Camera Calibration Toolbox

Theory of Bouguet s MatLab Camera Calibration Toolbox Theory of Bouguet s MatLab Camera Calibration Toolbox Yuji Oyamada 1 HVRL, University 2 Chair for Computer Aided Medical Procedure (CAMP) Technische Universität München June 26, 2012 MatLab Camera Calibration

More information

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik Nesting and Mixed Effects: Part I Lukas Meier, Seminar für Statistik Where do we stand? So far: Fixed effects Random effects Both in the factorial context Now: Nested factor structure Mixed models: a combination

More information

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers Spl d Dly U f XPCS F El L Wjh Rk LCLS Wkhp: Appl f Ch X-y h LCLS 70008 70008 Spl d Dly U f XPCS F El L Pg Spl pul XPCS Cp f h dly u Expl up Pf f h dly u Clu Oulk 70008 Spl d Dly U f XPCS F El L Pg Spl

More information

J (m) of size m is a commutative subgroup of GL(m, C) defined by. 71. The Generalized Confluent Hypergeometric Function.s t)

J (m) of size m is a commutative subgroup of GL(m, C) defined by. 71. The Generalized Confluent Hypergeometric Function.s t) 290 Proc. Japan Acad., 68, Ser, A (1992) [Vol. 68(A), 71. The Generalized Confluent Hypergeometric Function.s t) By Hironobu KIMURA, *) Yoshishige HARAOKA,* *) and Kyouichi TAKANO** *) (Communicated by

More information

Convergence of The Multigrid Method With A Wavelet. Abstract. This new coarse grid operator is constructed using the wavelet

Convergence of The Multigrid Method With A Wavelet. Abstract. This new coarse grid operator is constructed using the wavelet Convergence of The Multigrid Method With A Wavelet Coarse Grid Operator Bjorn Engquist Erding Luo y Abstract The convergence of the two-level multigrid method with a new coarse grid operator is studied.

More information

DIAMOND DRILL RECORD

DIAMOND DRILL RECORD iitft'ww!-;" '**!' ^?^S;Ji!JgHj DIAMOND DRILL RECORD Molftflp.'/^ f* -. j * Dtp * ^* * Property '^^^J^ - I/^X/'CA*- Etev, Collar Locatioa..-A^*.-//-^.^ /Z O f* j\. Is!/'. ~O stt^+'r&il, Di turn.....,,,...,.,......

More information

Balanced preamp - Digital control

Balanced preamp - Digital control TSOP Vdd U V OUT GN uf xial GN GN Vdd J Prog.Header J Prog.Header MLR V GN PG PG cc0 cc cc cc cc MLR cc cpwr U VSS V R0/IN0 R0/INT R/IN R/SI R/IN/VREF R/SO 9 R/IN R/P 0 R/T0KI R/SK R/MLR/VPP R/SS R/OS/LKO

More information

SOME APPLICATIONS H. F. BLICHFELDT

SOME APPLICATIONS H. F. BLICHFELDT A NEW PRINCIPLE THE GEOMETRY OF NUMBERS, WITH SOME APPLICATIONS BY H. F. BLICHFELDT 1. Minkowski has discovered a geometrical principle which he applied with success to certain important problems in the

More information

Lawrence R. Ernst, Bureau of Labor Statistics Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212

Lawrence R. Ernst, Bureau of Labor Statistics Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212 MAXIMIZING AND MINIMIZING OVERLAP OF ULTIMATE SAMPLING UNITS Lawrence R. Ernst, Bureau of Labor Statistics Bureau of Labor Statistics, 2 Massachusetts Ave., NE, Room 3160, Washington DC 20212 Key Words:

More information

SUBSEMiGROUPS OF THE ADDITIVE POSITIVE INTEGERS 1. INTRODUCTION

SUBSEMiGROUPS OF THE ADDITIVE POSITIVE INTEGERS 1. INTRODUCTION SUBSEMiGROUPS OF THE ADDITIVE POSITIVE INTEGERS JOHNC.HIGGINS Brigham Young University, Provo, Utah 1. INTRODUCTION Many of the attempts to obtain representations for commutative and/or Archimedean semigroups

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Name Date Class 5, 4, 7, 8

Name Date Class 5, 4, 7, 8 7 What Is an Average? Suppose that your class is doing an experiment to determine the boiling point of a particular liquid. Working in groups, your classmates come up with several answers that are all

More information

SOS-Hankel Tensors: Theory and Application

SOS-Hankel Tensors: Theory and Application SOS-Hankel Tensors: Theory and Application Guoyin Li Liqun Qi Yi Xu arxiv:submit/1103222 [math.sp] 2 Nov 2014 November 2, 2014 Abstract Hankel tensors arise from signal processing and some other applications.

More information

Unavoidable Multicoloured Families of Configurations

Unavoidable Multicoloured Families of Configurations Unavoidable Multicoloured Families of Configurations arxiv:1409.4123v2 [math.co] 29 Sep 2014 R.P. Anstee Mathematics Department The University of British Columbia Vancouver, B.C. Canada V6T 1Z2 Linyuan

More information

Little Orthogonality Theorem (LOT)

Little Orthogonality Theorem (LOT) Little Orthogonality Theorem (LOT) Take diagonal elements of D matrices in RG * D R D R i j G ij mi N * D R D R N i j G G ij ij RG mi mi ( ) By definition, D j j j R TrD R ( R). Sum GOT over β: * * ( )

More information

Chem Discussion #8 Chapter 6 and 7 KEY

Chem Discussion #8 Chapter 6 and 7 KEY Chem 101 017 Discussion #8 Chapter 6 and 7 KEY Things you should know when you leave Discussion today: Acid Base Reactions xidation Reduction Reactions xidation is loss of electrons (acts as a reducing

More information

DYNAMIC MODEL FOR AN ARTICULATED MANIPULATOR. Luis Arturo Soriano, Jose de Jesus Rubio, Salvador Rodriguez and Cesar Torres

DYNAMIC MODEL FOR AN ARTICULATED MANIPULATOR. Luis Arturo Soriano, Jose de Jesus Rubio, Salvador Rodriguez and Cesar Torres ICIC Express Letters Part B: Applications ICIC International c 011 ISSN 185-766 Volume, Number, April 011 pp 415 40 DYNAMIC MODEL FOR AN ARTICULATED MANIPULATOR Luis Arturo Soriano, Jose de Jesus Rubio,

More information