A Motivated Non-Standard Supersymmetric Spectrum

Size: px
Start display at page:

Download "A Motivated Non-Standard Supersymmetric Spectrum"

Transcription

1 A Motivated Non-Standard Supersymmetric Spectrum Paolo Lodone, EPFL, CH PhD Thesis discussed on December 09, 2011 Scuola Normale Superiore and INFN, Pisa Supervisor: Riccardo Barbieri

2 Outline 1) Introduction: the Hierarchy problem and Supersymmetry 2) Supersymmetry phenomenology without a light Higgs boson 3) Hierarchical sfermions and the SUSY Flavor and CP problems 4) Consequences of a U(2)^3 flavor symmetry 5) Present status 6) A different project: the naturally light dilaton (related with the work of Sergio Fubini)

3 1) Introduction: the Hierarchy problem and supersymmetry What is Naturalness? Introduction to naturalness: e.g. [Luty, ]. 'Philosophical discussion': e.g. [Giudice ] SM as low-energy remnant of a more fundamental theory Parameters of the SM (e.g. mh) determined in terms of the fundamental ones What happens for small change of fundamental parameters? Initial condition at 'input scale' SM parameter Radiative corrections quadratically sensitive to the 'cutoff' Definition of finetuning [Barbieri, Giudice 1988] Idea: protect mh with a symmetry (that must be (among the others) broken at low energy) SUPERSYMMETRY Input scale the highest 'non-symmetric' scale = sparticle masses (motivation for low-energy SUSY)

4 Residual finetuning, or SUSY naturalness in one slide [Barbieri, talk October ] Can gain something by lowering the scale M at which SUSY-breaking is comunicated Reasonable (too optimistic?) requirement: " < 5-10 Minimal requirements: - stops, left sbottom < GeV - higgsinos < GeV - gluino < GeV

5 Crucial (i.e. theorist's favorite #) natural configuration to be tested at LHC: [Barbieri, Pappadopulo ], [Barbieri, recent talks] [Hall, talk Oct ] [Arkani-Hamed, talk Oct ]

6 REF: 2) Supersymmetry phenomenology without a light Higgs boson [PL, Naturalness bounds in extensions of the MSSM without a light Higgs boson 2010] [Barbieri, Bertuzzo, Farina, PL, Pappadopulo, A Non Standard Supersymmetric Spectrum 2010] ; [PL, Supersymmetry without a light Higgs boson but with a light pseudoscalar 2011] Main point: Increased Higgs quartic reduced finetuning SUSY Bottom-up approach: gauge extension or $SUSY [Barbieri et al ] Natural consequence: Higgs mass GeV (now excluded, except maybe if there is mixing, e.g. [Hall et al ]) First two generations can be naturally heavier improved flavor (now also better for direct detection) MSSM after LEP Perturbativity Unification & EWPT (manifest) Naturalness Phenomen. consequences on gluino decays, Higgs properties and DM (no flavor symmetry, only O($) suppr.)

7 3) Hierarchical sfermions and the SUSY Flavor and CP problems REF: [Barbieri, Bertuzzo, Farina, PL, Zhuridov, MFV with hierarchical squark masses 2010] [Bertuzzo, Farina, PL, On the QCD corrections to F=2 FCNC in the Supersymmetric SM with hierarchical squark masses 2010] [Barbieri, PL, Straub, CP violation in Supersymmetry with hierarchical squark masses 2011] Hierachy: SUSY CP problem: better under control with heavy first two generations Flavour: with no degeneracy / alignement: m1,2 > hundreds of TeV Minimal Flavour Violation: Flavour transitions controlled by CKM matrix Problem with flavour blind CPV phases: typically: sin(%)<10 &-10 ' How to keep the good features of both? Pattern: with mh > 5-10 TeV is enough (we also included previously neglected effects)

8 REF: 4) Consequences of a U(2)^3 flavor symmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] Pattern of masses and mixings Smaller GF, Y not irr. break. terms Flavor-blind phases hierarchical spectrum Motivation for hierarchical squarks and U(2) flavor symmetry Too large FV in original papers extend to U(2)^3. Moreover assume weakly broken in minimal way Consequences: Sufficient flavor protection [Pomarol, Tommasini 1993], [Barbieri, Dvali, Hall 1996], [Barbieri, Hall, Romanino 1997] Definite pattern of deviation from the SM in "F=2: possible to remove CKM tension Predictions (from preferred region in the fit) No more tension

9 5) The LHC data: no NP so far Models motivated by naturalness start being significantly constrained (but not 'dead' yet) [CMS, ]

10 5) Phenomenology of Supersymmetric models in light of the LHC data REF: [PL, Supersymmetry Phenomenology beyond the MSSM after 5/fb of LHC data 2012] 2) Insisting on DM and unification Split SUSY 3) Only elegance strings High-scale SUSY Main question the LHC will(is) answer(ing): is the EW scale finetuned?

11 5) Conclusions SM-like Higgs found Measure its couplings, look for new particles not found Main point: Naturalness Light colored sector coupled mainly to the top (scalar or fermion?) We are here Compositeness no new part., std coupings. non std Higgs coupl and/or new part. Supersymmetry Indication of fundamental Finetuning Naturalness arguments wrong. SUSY, if there, not for naturaln. Most feared by th-ists Landscape-anthropic? Naturalness arg. were Right Is it SUSY? MSSM Or Beyond? Composite? Other? What is flavor like? Exciting possibility Lot of work needed to discriminate.

12 6) Totally different subject, related with Fubini: requirements for a naturally light dilaton [work in progress with Riccardo Rattazzi et al] Question: which are the requirements in order to naturally have a light scalar, identifiable with the dilaton, in a Poincaré-invariant field theory? Why nontrivial: dilaton ( Goldstone boson of spontaneously broken conformal invariance. But Goldstone theorem does not work streightforwardly with spacetime symmetries (dilaton can have quartic potential in 4D) Very starting point is nontrivial: need tuning " = 0 Stay tuned Our purpose: - discuss the conditions under which the dilaton is naturally light - provide holographic 5D realization, elucidating the requirements

13 Backup

14 Outlook: with FLAVOR SM-like Higgs no extra info Flavor tests new flavor effects found not found SM only BSM We are here Measure its couplings, look for new particles no new part., std coupings. non std Higgs coupl and/or new part. SM (and MSSM) ecluded Look for Higgs with reduced couplings and new particles something Is found no Higgs nor new part. (Higgs but no new part.) Indication of fundamental Finetuning Naturalness arguments wrong. SUSY, if there, not for naturaln. Most feared by th-ists Landscape-anthropic? Switch to strings or cond. matter or finance. Naturalness arg. were Right Is it SUSY? MSSM Or Beyond? Composite? Other? What is flavor like? Exciting possibility Lot of work needed to discriminate. We did not understand much about EWSB. New particles beyond LHC reach? Now excluded NP is there, unfortunately beyond LHC reach. Nature is finetuned, maybe not too much. Opportunity to learn something about Flavor

15 2) PH: Supersymmetry phenomenology without a light Higgs boson [P.L. 2010] [Barbieri et al 2010] "SUSY SU(2) U(1) - = scale at which some coupling gets semiperturbative - In gauge extensions is maximized consistently with naturalness of the higher vev [Batra, Delgado, Kaplan, Tait 2004] [Barbieri, Hall, Nomura, Rychkov 2007] With low, mh can be significantly raised

16 2) PH: Supersymmetry phenomenology without a light Higgs boson No degeneracy nor alignement: > hundreds of TeV [Dine, Kagan Samuel 1990] [Pomarol Tommasini 1996] [Cohen, Kaplan, Nelson 1996] If and : See e.g. [Giudice, Nardecchia, Romanino 2009] If as above but :

17 2) PH: Supersymmetry phenomenology without a light Higgs boson

18 2) PH: Supersymmetry phenomenology without a light Higgs boson [Arkani-Hamed, Murayama 1997] M=10 13 TeV M=10 8 TeV MSSM "SUSY with mh=250 GeV M=10 3 TeV Mg=2 TeV Mg=1 TeV Mg=0.5 TeV We neglect lighter gauginos; Mg=gluino mass at low energy.

19 2) PH: Supersymmetry phenomenology without a light Higgs boson See also The well tempered neutralino [Arkani-Hamed, Delgado, Giudice 2006]

20 3) PH: Supersymmetry phenomenology - more focused on Flavor and CP problems REF: [Barbieri, Bertuzzo, Farina, PL, Zhuridov, MFV with hierarchical squark masses 2010] [Barbieri, PL, Straub, CP violation in Supersymmetry with hierarchical squark masses 2011] Assuming sparticles with similar mass ) 500 GeV: B, g Aq=yq A0 md A0* + cedm (both even 1 o.o.m. stronger without exact degenaracy ) Susy CP Problem

21 REF: 3) PH: Supersymmetry phenomenology - more focused on Flavor and CP problems [Barbieri, Bertuzzo, Farina, PL, Zhuridov, MFV with hierarchical squark masses 2010] [Barbieri, PL, Straub, CP violation in Supersymmetry with hierarchical squark masses 2011]

22 3) PH: Supersymmetry phenomenology - more focused on Flavor and CP problems REF: [Barbieri, Bertuzzo, Farina, PL, Zhuridov, MFV with hierarchical squark masses 2010] [Bertuzzo, Farina, PL, On the QCD corrections to F=2 FCNC in the Supersymmetric SM with hierarchical squark masses 2010] FC couplings all weighted by CKM: Effective MFV: m# Bounds (Mk, #k):

23 REF: We imposed "F=2 to be small We saw that EDMs at one loop are under control EDMs at two loops? ( Barr-Zee ) 3) PH: Supersymmetry phenomenology - more focused on Flavor and CP problems [Barbieri, Bertuzzo, Farina, PL, Zhuridov, MFV with hierarchical squark masses 2010] [Bertuzzo, Farina, PL, On the QCD corrections to F=2 FCNC in the Supersymmetric SM with hierarchical squark masses 2010] same order as one loop (mass suppr. loop suppr.) With the light part of the spectrum at about 500 GeV, we are on the edge of the EDM experimental bound with large phases Phenomenological consequences: possible signals in B-physics

24 REF: Problem in the original papers: too large FV in Right Handed sector large contrib. to k Solution: 4) PH: consequences of a U(2)^3 flavor symmetry in supersymmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] Assumption: only weakly broken in a minimal way O("$) Single (2,1,1) ensures MFV-like protection of FCNC

25 REF: 4) PH: consequences of a U(2)^3 flavor symmetry in supersymmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] Going to the physical basis: Additional FV terms: 1

26 REF: 4) PH: consequences of a U(2)^3 flavor symmetry in supersymmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] (CKMfitter and UTfit obtain similar results)

27 REF: 4) PH: consequences of a U(2)^3 flavor symmetry in supersymmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] Leading term: with:, Universal CPV in B-mixing, positive contribution to K Global No more tension CKM fit

28 REF: 4) PH: consequences of a U(2)^3 flavor symmetry in supersymmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] Gluino and sbottom left masses below TeV S%& above its tiny SM value, but not as much as Generic U(2) model with S%& not correlated to 'k [Ligeti et al 2010]

29 REF: Gauge mediation in two-site model: 4) PH: consequences of a U(2)^3 flavor symmetry in supersymmetry [Barbieri, Isidori, Jones-Perez, PL, Straub, U(2) and Minimal Flavor Violation in Supersymmetry 2011] Link fields we chose: [Craig, Green, Katz, 2011] With nonren. terms: then using simple discrete symmetries one can find exactly what was discussed

30 The Flavor problem in general SM as effective theory: From [Rattazzi, CHIPP2012] Unnatural SM: flavor as in SM (just CKM), B and L conservation Natural SM: flavor not as in SM Higgs not SM-Higgs

31 Natural Supersymmetry 1) Insisting on Naturalness Increased quartic coupling makes hierarchical (and heavier) sfermions more natural. SM-like Higgs mass can then be reduced by mixing, as in [Hall et all ]

32 1b) Escaping the bounds Possibility: keep Naturalness, but escape the bounds A first possible way out: $SUSY with $=2. Stop at 1 TeV can be compatible with "=10 [Hall, talk Oct ]

33 1b) Escaping the bounds R-Parity violation Recall: q.n. of Hd superfield equal to those of left handed lepton doubl. L Baryon and Lepton numbers are not acc. symm. of the theory Way to avoid proton decay: impose R-Parity R=(-1) 3(B-L)+2S LSP is stable DM candidate + missing energy at colliders What if it is (slightly) violated?

34 1b) Escaping the bounds Other possibilities Compressed Spectrum: acceptance of Jet+MET signal is reduced in 'compressed' configurations (e.g small MGluino-MLSP): See e.g. [LeCompte, Martin, , ] Stealth SUSY: Main ingredient: 'stealth' sector with Mparticles ) Msparticles, with 'ordinary LSP' stealth sector true LSP (small phase space). [Fan, Reece, Ruderman, , ]

35 2-3) Only DM and unif., or strings Split and High-scale Susy Retaining (ii)-(iv) Split SUSY [A.-Hamed et al, ] [Giudice et al, ] At low energy only SM particle content plus Higgsinos and gauginos. Many interesting peculiar features [A.-Hamed et al, ] Abandoning (i) Only (iv) High-scale SUSY [Hall,Nomura, ] At low energy only SM, all the rest is decoupled Interesting feature of both: (assuming only MSSM particle content) Higgs boson mass is very precisely determined in terms of the higher scale

36 2-3) Only DM and unif., or strings Consequences: by construction, only from Higgs mass Prediction of SUSY breaking scale from mh < 127 GeV (assuming no additional physics...) Results: Split SUSY: High scale SUSY: [Giudice, Strumia, ] MS < 10^5 TeV No firm conclusion [Arbey et al, ] If chargino and neutralino candidates are found, then must measure couplings and check SUSY relations ([Cheng et al ][Katz et al, ]etc) probably at Linear Collider... For review of the Split-SUSY phenomenol. [A.-Hamed, ]

arxiv: v1 [hep-ph] 16 Jun 2011

arxiv: v1 [hep-ph] 16 Jun 2011 IL NUOVO CIMENTO Vol.?, N.?? On the MSSM with hierarchical squark masses and a heavier Higgs boson arxiv:16.3253v1 [hep-ph] 16 Jun 2011 E. Bertuzzo( ) Scuola Normale Superiore and INFN, Piazza dei Cavalieri

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv: SUSY, the Third Generation and the LHC Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:1011.6670 Harvard University January 9, 2012 Andrey Katz (Harvard) SUSY petite January 9, 2012 1 / 27

More information

Split SUSY at LHC and a 100 TeV collider

Split SUSY at LHC and a 100 TeV collider Split SUSY at LHC and a 100 TeV collider Thomas Grégoire With Hugues Beauchesne and Kevin Earl 1503.03099 GGI - 2015 Status of Supersymmetry stop searches gluino searches m t & 700GeV m g & 1.4TeV What

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Radiative natural SUSY with mixed axion-higgsino CDM

Radiative natural SUSY with mixed axion-higgsino CDM Radiative natural SUSY with mixed axion-higgsino CDM Howie Baer University of Oklahoma ``The imagination of nature is far, far greater than that of man : a data-driven approach to where SUSY might be hiding

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

EDMs and flavor violation in SUSY models

EDMs and flavor violation in SUSY models EDMs and flavor violation in SUSY models Junji Hisano Institute for Cosmic Ray Research (ICRR), University of Tokyo The 3rd International Symposium on LEPTON MOMENTS Cape Cod, June 2006 Contents of my

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Models as existence proofs, speculations or... peaces of physical reality

Models as existence proofs, speculations or... peaces of physical reality Models as existence proofs, speculations or... peaces of physical reality Riccardo Barbieri Zuoz II, July 16/21, 2006 An example of what could happen, based on: An ultra-bottom-up hypothesis 2 concrete

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Yasunori Nomura. UC Berkeley; LBNL

Yasunori Nomura. UC Berkeley; LBNL Yasunori Nomura UC Berkeley; LBNL LHC 7 & 8 Discovery of the Higgs boson with M H 126 GeV No new physics Great success of the Standard Model 0 100 200 300 400 M H (GeV) Nature seems to be fine-tuned (at

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011

Dark Matter Searches and Fine-Tuning in Supersymmetry. Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011 Dark Matter Searches and Fine-Tuning in Supersymmetry Maxim Perelstein, Cornell University PACIFIC 2011 Symposium September 9, 2011 Bibliography Primary reference: MP, Shakya, arxiv:1107.5048 [hep-ph]

More information

Lecture 4 - Beyond the Standard Model (SUSY)

Lecture 4 - Beyond the Standard Model (SUSY) Lecture 4 - Beyond the Standard Model (SUSY) Christopher S. Hill University of Bristol Warwick Flavour ++ Week April 11-15, 2008 Recall the Hierarchy Problem In order to avoid the significant finetuning

More information

Implications et perspectives theoriques

Implications et perspectives theoriques Implications et perspectives theoriques Riccardo Barbieri SNS and INFN, Pisa 1/26 Particle Physics in one page L ST L SM = 1 4 Fa µnf aµn + iȳ 6Dy + D µ h 2 V (h) +y i l ij y j h + h.c. The gauge sector

More information

How high could SUSY go?

How high could SUSY go? How high could SUSY go? Luc Darmé LPTHE (Paris), UPMC November 24, 2015 Based on works realised in collaboration with K. Benakli, M. Goodsell and P. Slavich (1312.5220, 1508.02534 and 1511.02044) Introduction

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed

New Models. Savas Dimopoulos. with. Nima Arkani-Hamed New Models Savas Dimopoulos with Nima Arkani-Hamed Small numbers and hierarchy problems 10 18 GeV M PL Gauge Hierarchy Problem 10 3 GeV M W 10 12 GeV ρ 1 4 vac Cosmological Constant Problem Program of

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/ with Zackaria Chacko and Hock-Seng Goh hep-ph/0506256 Naturalness and LHC LHC is going to be exciting from the start (first 10 fb -1 ). t L +? = Natural SMt R NP Naturalness and LHC LHC is going to be

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

SO(10) SUSY GUTs with family symmetries: the test of FCNCs SO(10) SUSY GUTs with family symmetries: the test of FCNCs Outline Diego Guadagnoli Technical University Munich The DR Model: an SO(10) SUSY GUT with D 3 family symmetry Top down approach to the MSSM+

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Phenomenology of the flavour messenger sector

Phenomenology of the flavour messenger sector ULB, Bruxelles October 12th 2012 Phenomenology of the flavour messenger sector Lorenzo Calibbi ULB based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arxiv:1203.1489 [hep-ph] & arxiv:1204.1275 [hep-ph]

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

Whither SUSY? G. Ross, Birmingham, January 2013

Whither SUSY? G. Ross, Birmingham, January 2013 Whither SUSY? G. Ross, Birmingham, January 2013 whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to

More information

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC) Yasunori Nomura UC Berkeley; LBNL Based on work with Ryuichiro Kitano (SLAC) hep-ph/0509039 [PLB] hep-ph/0509221 [PLB] hep-ph/0602096 [PRD] We will be living in the Era of Hadron Collider Exploring highest

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

Phenomenology of low-energy flavour models: rare processes and dark matter

Phenomenology of low-energy flavour models: rare processes and dark matter IPMU February 2 nd 2016 Phenomenology of low-energy flavour models: rare processes and dark matter Lorenzo Calibbi ITP CAS, Beijing Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information

INTRODUCTION TO EXTRA DIMENSIONS

INTRODUCTION TO EXTRA DIMENSIONS INTRODUCTION TO EXTRA DIMENSIONS MARIANO QUIROS, ICREA/IFAE MORIOND 2006 INTRODUCTION TO EXTRA DIMENSIONS p.1/36 OUTLINE Introduction Where do extra dimensions come from? Strings and Branes Experimental

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

arxiv: v1 [hep-ph] 31 Oct 2011

arxiv: v1 [hep-ph] 31 Oct 2011 Natural SUSY Endures DESY 11-193 CERN-PH-TH/265 Michele Papucci, 1, 2 Joshua T. Ruderman, 1, 2 and Andreas Weiler 3, 4 1 Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

The Flavour Portal to Dark Matter

The Flavour Portal to Dark Matter Dark Side of the Universe 2015 Kyoto University The Flavour Portal to Dark Matter Lorenzo Calibbi ITP CAS, Beijing December 18th 2015 Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector

Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector Search for supersymmetry with disappearing tracks and high energy loss at the CMS detector Teresa Lenz in Collaboration with Loic Quertenmont, Christian Sander, Peter Schleper, Lukas Vanelderen International

More information

Perspectives on Future Supersymmetry at Colliders

Perspectives on Future Supersymmetry at Colliders Perspectives on Future Supersymmetry at Colliders Sunghoon Jung Korea Institute for Advanced Study (KIAS) The Future of High Energy Physics @ HKUST IAS Based on collaborations with B.Batell, E.J.Chun,

More information

Physics Beyond the Standard Model at the LHC

Physics Beyond the Standard Model at the LHC Physics Beyond the Standard Model at the LHC G G Ross, Edinburgh 7th February 2007 The Standard Model as an Effective Field Theory Beyond the Standard Model The LHC as a probe of BSM physics The Standard

More information

Minimal SUSY SU(5) GUT in High- scale SUSY

Minimal SUSY SU(5) GUT in High- scale SUSY Minimal SUSY SU(5) GUT in High- scale SUSY Natsumi Nagata Nagoya University 22 May, 2013 Planck 2013 Based on J. Hisano, T. Kuwahara, N. Nagata, 1302.2194 (accepted for publication in PLB). J. Hisano,

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Composite Higgs Overview

Composite Higgs Overview Composite Higgs Overview Tony Gherghetta Fundamental Composite Dynamics, IBS CTPU, Daejeon, Korea, December 6, 2017 1 IBS Daejeon - 6 December 2017 Composite Higgs New strong force with coupling, g s g

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Higgs: Interpretation and Implications. Marco Farina April 19, 2013

Higgs: Interpretation and Implications. Marco Farina April 19, 2013 Higgs: Interpretation and Implications Marco Farina April 19, 2013 Discovery! ATLAS coll. ATLAS-CONF-2013-034. CMS coll. CMS-PAS-HIG-13-002 Data Giardino et al. 1303.3570 Giardino et al. 1303.3570 Higgs

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

Whither SUSY? G. Ross, RAL, January 2013

Whither SUSY? G. Ross, RAL, January 2013 Whither SUSY? G. Ross, RAL, January 2013 whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to Gothic

More information

The Hierarchy Problem on Neutral

The Hierarchy Problem on Neutral The Hierarchy Problem on Neutral Natural Theories with Colorless Top Partners Gustavo Burdman University of São Paulo - IAS Princeton Is the discovery of the Higgs the End of Naturalness? Naturalness and

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Carlos E.M. Wagner EFI and KICP, University of Chicago HEP Division, Argonne National Lab. Work done in collaboration with

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Searching for sneutrinos at the bottom of the MSSM spectrum

Searching for sneutrinos at the bottom of the MSSM spectrum Searching for sneutrinos at the bottom of the MSSM spectrum Arindam Chatterjee Harish-Chandra Research Insitute, Allahabad In collaboration with Narendra Sahu; Nabarun Chakraborty, Biswarup Mukhopadhyay

More information

Supersymmetry and other theories of Dark Matter Candidates

Supersymmetry and other theories of Dark Matter Candidates Supersymmetry and other theories of Dark Matter Candidates Ellie Lockner 798G Presentation 3/1/07 798G 3/1/07 1 Overview Why bother with a new theory? Why is Supersymmetry a good solution? Basics of Supersymmetry

More information

Probing SUSY Dark Matter at the LHC

Probing SUSY Dark Matter at the LHC Probing SUSY Dark Matter at the LHC Kechen Wang Mitchell Institute for Fundamental Physics and Astronomy Texas A&M University Preliminary Examination, Feb, 24 OUTLINE Supersymmetry dark matter (DM) Relic

More information

New Phenomenology of Littlest Higgs Model with T-parity

New Phenomenology of Littlest Higgs Model with T-parity New Phenomenology of Littlest Higgs Model with T-parity Alexander Belyaev Michigan State University A.B., C.-R. Chen, K. Tobe, C.-P. Yuan hep-ph/0609179 A.B., A. Pukhov, C.-P. Yuan hep-ph/07xxxxx UW-Madison,

More information

The Future of Supersymmetry

The Future of Supersymmetry The Future of Supersymmetry Sreerup Raychaudhuri TIFR HEP Seminar Institute of Physics, Bhubaneswar ...in recent times, supersymmetry has been getting a lot of bad press Supersymmetry Bites the Dust Where

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Quantum transport and electroweak baryogenesis

Quantum transport and electroweak baryogenesis Quantum transport and electroweak baryogenesis Thomas Konstandin Mainz, August 7, 2014 review: arxiv:1302.6713 Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov '69] Baryogenesis aims at

More information

Electroweak Baryogenesis A Status Report

Electroweak Baryogenesis A Status Report Electroweak Baryogenesis A Status Report Thomas Konstandin Odense, August 19, 2013 review: arxiv:1302.6713 Outline Introduction SUSY Composite Higgs Standard Cosmology time temperature Standard Cosmology

More information

Physics at the Tevatron. Lecture IV

Physics at the Tevatron. Lecture IV Physics at the Tevatron Lecture IV Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory CERN, Academic Training Lectures, November 2007 1 Outline Lecture I: The Tevatron,

More information

Theoretical Developments Beyond the Standard Model

Theoretical Developments Beyond the Standard Model Theoretical Developments Beyond the Standard Model by Ben Allanach (DAMTP, Cambridge University) Talk outline Bestiary of some relevant models SUSY dark matter Spins and alternatives B.C. Allanach p.1/18

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JJC 2014 Dec. 11th 2014 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

KITP, Dec. 17, Tao Han

KITP, Dec. 17, Tao Han Higgs Couplings & new Physics KITP, Dec. 17, 2012 Tao Han 1 HEPAP Question: What couplings should be measured and to what precision? To uncover new physics 2 1. How badly (likely) we need BSM new physics?

More information

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration arxiv:1712.10165v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration Institute of Experimental and Applied Physics, Czech Technical University in Prague, Czech Republic

More information

Status of ATLAS+CMS SUSY searches

Status of ATLAS+CMS SUSY searches Status of ATLAS+CMS SUSY searches Renaud Brunelière Uni. Freiburg ~ ~ pp b b1 X candidate 2 b-tagged jets pt ~ 152 GeV and 96 GeV E miss T ~ 205 GeV, M CT (bb) ~ 201 GeV Status of ATLAS+CMS SUSY searches

More information

Phase transitions in cosmology

Phase transitions in cosmology Phase transitions in cosmology Thomas Konstandin FujiYoshida, August 31, 2017 Electroweak phase transition gravitational waves baryogenesis Outline Introduction MSSM Composite Higgs Baryogenesis [Sakharov

More information

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University Supersymmetry, Baryon Number Violation and a Hidden Higgs David E Kaplan Johns Hopkins University Summary LEP looked for a SM Higgs and didn t find it. Both electroweak precision measurements and supersymmetric

More information

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses

The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses 20/11/2013@ PASCOS 2013, Taipei Taiwan The Higgs boson mass in a natural MSSM with nonuniversal gaugino masses Hajime Otsuka (Waseda University) with H. Abe and J. Kawamura PTEP 2013 (2013) 013B02, arxiv

More information

Flavor violating Z from

Flavor violating Z from Flavor violating Z from SO(10) SUSY GUT model Yu Muramatsu( 村松祐 ) CCNU Junji Hisano(KMI, Nagoya U. & IPMU), Yuji Omura (KMI) & Yoshihiro Shigekami (Nagoya U.) Phys.Lett.B744 (2015) 395, and JHEP 1611 (2016)

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JRJC 2015 Nov. 19th 2015 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

Composite Higgs, Quarks and Leptons, a contemporary view

Composite Higgs, Quarks and Leptons, a contemporary view Composite Higgs, Quarks and Leptons, a contemporary view 1 Thanks to Sid Drell Always be positive, curious, constructive Α others will think your questions are dumb 2 3 Brodsky-Drell anomalous magnetic

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information