On-Line Hardware Implementation for Complex Exponential and Logarithm

Size: px
Start display at page:

Download "On-Line Hardware Implementation for Complex Exponential and Logarithm"

Transcription

1 On-Line Hardware Implementation for Complex Exponential and Logarithm Ali SKAF, Jean-Michel MULLER * and Alain GUYOT Laboratoire TIMA / INPG - 46, Av. Félix Viallet, 3831 Grenoble Cedex * Laboratoire LIP / ENSL - 46, Allée d'italie, Lyon Cedex (FRANCE) Phone : (+33) Fax : (+33) Ali.Skaf@.imag.fr ABSTRACT This work reports on an on-line arithmetic co-processor that implements a novel algorithm derived from CORDIC. This algorithm, known as BKM, was adapted for the on-line arithmetic use. A 16 SBD VLSI implementation is also discussed. The obtained circuit might be considered as the first on-line arithmetic co-processor. As a matter of fact, the BKM algorithm gives, depending on its functioning mode, the complex exponential or logarithm functions. All basic mathematical operations can hence be computed. The chip was designed using a specific to on-line cell library, some full-custom parts and a generated decision and control part. I- INTRODUCTION The CORDIC algorithm (COordinate Rotation on a DIgital Computer), discovered by Volder in 1959 [1] and generalised by Walther in 1971 [2], is largely used in classical arithmetic co-processors (such as I887, HP35, M68881, M ). When adapted to redundant systems, the algorithm leads to a more complex and less efficient architecture. In 1993 Bajard, Kla and Muller proposed another algorithm named BKM [3] in which computation is performed in the complex space. In this paper, the BKM is adapted to on-line types of architecture. II- FROM CORDIC TO BKM The CORDIC algorithm is based on the iteration: x n+1 = x n - d n y n 2 -n; y n+1 = y n + d n x n 2 -n; z n+1 = z n - d n arctan 2 -n; d n = ± 1. The d n values depend on the sign of operands in two different ways, giving two different computation modes (rotation and vectoring). The results for n, are summarised in Table 1. Rotation Mode dn = sign(zn) xn K(x cos z - y sin z ) Vectoring Mode dn = sign(-yn) xn K x 2 + y2 yn K(y cos z - x sin z ) yn zn zn z - arctan y Table 1: The CORDIC functioning modes with K = n= x 1 cos(arctan (2 -n = ))

2 This algorithm was later generalised [2] to perform most of the basic mathematical functions like hyperbolic, logarithmic, exponential and square root functions, as well as trigonometric functions, addition, subtraction, multiplication and division. The basic iteration being a shift-and-add operation, redundant number systems allowing carry-propagation-free additions speed up the execution. In our case, numbers are represented in the Signed Binary Digit (SBD) system, with digits {-1,, 1}, which is an extension of the Avizienis' redundant representation systems [4]. Each digit c is represented by two bits c + and c - such that c = c + - c -. Unfortunately, the sign of a redundant operand is given by that of the most significant non-zero digit, which might be any of the operand digits. So getting the sign is equivalent to a carry propagation. The test of the sign spoils the advantage of redundant systems. The examination of a few Most Significant Digits (MSD) might be a solution if we can afford to ignore the sign of small operands, and accept that dn is sometimes zero, knowing then that K is no longer a constant. To overcome the problem of the K variable value many solutions were proposed based on repeating the basic iteration in time [5] or in space [6]. Still these solutions do not lead to an efficient architecture. The BKM algorithm is based on the iteration: L n+1 = L n (1 + (d x n + i dy n ) 2-n ); E n+1 = En - ln (1 + (d x n + i dy n ) 2-n ) with d x n, dy n {1-,, 1} (I) The dn values are chosen either to drive Ln to 1 and consequently E n to E 1 + ln (L 1 ) (L-mode), or to drive E n to and thus L n to L 1 exp (E 1 ) (E-mode). We can show that to obtain n accuracy binary digits, n iterations are enough [3]. Under its original form the BKM receives operands and delivers results in parallel. III- ON-LINE ARCHITECTURE FOR BKM In on-line operators, operands as well as results are transported digit by digit through the different operators starting from the MSD [7]. Consequently, the result MSDs are first obtained and can eventually be fed to the next operator while computation is still going on. To obtain an on-line version of the BKM, we first have to feed the necessary number of the operand digits to be able to compute d 1. Five fractional digits are enough to guarantee the algorithm correctness. This has also an impact on the d n value choice in both modes. The on-line BKM is given by the following algorithm: a- E-mode: 1. Start with E 1 E= [ , ] + i [ , ] Let Ê n [γ] be the truncated value of 2 n E n after its γ fractional digits. 2. Initialise Ê 1 = E 1 [γ]; (γ = 5 is a convenient choice) 3. Iterate (I), with d x n, dy n {1-,, 1} determined as follows: if Ê x n [γ] < then dx n = 1- else if Ê x n [γ] 1 4 then dx n = else dx n = 1 if Ê y n [γ] < then dy n = 1- else if Ê y n [γ] 3 8 then dy n = else dy n = 1 4. Result: L n L 1 e E 1 ; E n b- L-mode: 1. Start with L 1 L = [.5, 1.3] + i x [-.5,.5] Let Lˆ n[γ] be the truncated value of 2 n (L n - 1) after its γ fractional digits. 2. Initialise Lˆ 1 = L 1 [γ] 3. Iterate (I), with d x n, dy n {1-,, 1} determined as follows: - At step 1: if Lˆ x 1 < then dx 1 = 1 else dx 1 = if Lˆ y 1 < then dy y 1 = 1 else if Lˆ then dy 1 = else dy 1 = 1-

3 At step n>1: if Lˆ x n [γ] < then dx x n =1 else if Lˆ n [γ] 1 4 then dx n = else dx n =1- if Lˆ y n [γ] < then dy y n = 1 else if Lˆ n [γ] 1 4 then dy n = else dy n =1-4. Result: L n 1 ; E n E 1 + ln (L 1 ) We obtain the architecture for on-line BKM given in Fig. 2. e x 5+n ROM X Exponential loop ROM Y e y 5+n EXP x r i OL1 dy dx OL1 MUX Decision MUX EXP y l x 5+n 2 -n+1 2 -n+1 l y 5+n LN x OL2 Logarithm loop OL2 LN y Fig. 2: On-line implementation for BKM The decision bloc contains PLAs that correspond to the different ways of determining d n according to the functioning mode. This is done by examining the six MSDs of either Ê n or Lˆ n. The PLAs have been reduced by 8% by simply eliminating the code 11 for the SBD. The ROM tables contain the constant values for the real an imaginary parts of the exponential loop : 2 ln[ n-2 1+d x n +( ) ] 2-n+1 d x2 +d y 2 n n 2-2n and 2 n-1 d y n arctan 2 -n 1+d x n 2-n The exponential-loop and logarithm-loop adders are redundant hybrid adders and four-input parallel adders respectively. OL1 and OL2 blocs are on-line adders [8]. IV- OPERATOR DESIGN STRATEGY We began first by building a library of the on-line elementary operators that we integrate in the already existing standard cell library from the ES2 company. We also built a modular full custom barrel shifter well adapted to our architecture. The target technology was chosen as the CMOS 1.2µ double-metal single-polysilicon of ES2. We generated the ROM tables and PLAs used in the decision and control parts. A special attention was paid to make the design as observable and controllable as possible. This would facilitate the circuit test and debugging operations.

4 A 16 SBD prototype was designed occupying 19 mm 2. The same circuit was also laid out using only the ES2 standard cells in order to evaluate the efficiency of our library and the impact of the full custom shifter, resulting in a 35 mm 2 chip. The area optimisation is hence of 45%. Electrical simulation showed that the chip would work at up to 25 MHz. The on-line delay is of 3 and 4 clock cycles for respectively the exponential and the logarithm loops, that has to be added to the initialisation time of 6 clock cycles. The circuit floorplan and plot are given in Fig. 3. Logarithm loop adder Y shifter X Decidion shifter Y Logarithm loop adder X Control Exponential loop adders ROM X PLAs & Clock ROM Y I/O Ring Figure not included in the postscript file. Fig. 3 Obtained on-line co-processor floorplan and plot V- CONCLUSION We presented in this work an on-line VLSI operator able to give either the complex exponential or the complex logarithm depending on the selected functioning mode. We can thus compute almost all elementary functions (sine, cosine, arctan, complex exponential, logarithm and multiplication). Furthermore, one can cascade two operators to compute other functions (2D rotations, square roots...). The developed on-line library seems to offer a good compromise between full custom solutions (very time consuming and not reusable) and standard cell solutions (area consuming and less efficient). As a matter of fact, using our library we could save 45% area compared to standard library. REFERENCES [1] J. Volder "The CORDIC computing technique" IRE Transactions on computers, Sept [2] J. Walther "A unified algorithm for elementary functions" Joint Computer Conference Vol. 38, [3] J. C. Bajard, S. Kla and J. M. Muller "BKM: a new hardware algorithm for complex elementary functions" 11th Symp. on Computer Arithmetic, Windsor, Canada, June [4] A. Avizienis "Signed-digit number representation for fast parallel arithmetic" IRE Transactions on Electronic Computers vol. EC-1 September [5] N. Tagaki, T. Asada and S. Yajima "Redundant CORDIC methods with a constant scale factor" IEEE Transactions on Computers, Vol. 4 N 9, September [6] J. Duprat and J. M. Muller "The CORDIC algorithm: new results for fast VLSI implementation" Res. Rep. N 9-4, Lab. LIP / ENSL, Lyon, France 199. [7] M.D. Ercegovac "A general hardware-oriented method for evaluation of functions and computation in digital computer" IEEE Transactions on Computers, Vol. C-26 N 7, July, 1977.

5 [8] A. Skaf and A. Guyot "VLSI design of on-line add/multiply algorithms" proc. International Conference on Computer Design (ICCD'93), Cambridge, USA, October 1993.

Accelerated Shift-and-Add algorithms

Accelerated Shift-and-Add algorithms c,, 1 12 () Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Accelerated Shift-and-Add algorithms N. REVOL AND J.-C. YAKOUBSOHN nathalie.revol@univ-lille1.fr, yak@cict.fr Lab. ANO,

More information

On-line Algorithms for Computing Exponentials and Logarithms. Asger Munk Nielsen. Dept. of Mathematics and Computer Science

On-line Algorithms for Computing Exponentials and Logarithms. Asger Munk Nielsen. Dept. of Mathematics and Computer Science On-line Algorithms for Computing Exponentials and Logarithms Asger Munk Nielsen Dept. of Mathematics and Computer Science Odense University, Denmark asger@imada.ou.dk Jean-Michel Muller Laboratoire LIP

More information

Numeration and Computer Arithmetic Some Examples

Numeration and Computer Arithmetic Some Examples Numeration and Computer Arithmetic 1/31 Numeration and Computer Arithmetic Some Examples JC Bajard LIRMM, CNRS UM2 161 rue Ada, 34392 Montpellier cedex 5, France April 27 Numeration and Computer Arithmetic

More information

Svoboda-Tung Division With No Compensation

Svoboda-Tung Division With No Compensation Svoboda-Tung Division With No Compensation Luis MONTALVO (IEEE Student Member), Alain GUYOT Integrated Systems Design Group, TIMA/INPG 46, Av. Félix Viallet, 38031 Grenoble Cedex, France. E-mail: montalvo@archi.imag.fr

More information

Complex Logarithmic Number System Arithmetic Using High-Radix Redundant CORDIC Algorithms

Complex Logarithmic Number System Arithmetic Using High-Radix Redundant CORDIC Algorithms Complex Logarithmic Number System Arithmetic Using High-Radix Redundant CORDIC Algorithms David Lewis Department of Electrical and Computer Engineering, University of Toronto Toronto, Ontario, Canada M5S

More information

A 32-bit Decimal Floating-Point Logarithmic Converter

A 32-bit Decimal Floating-Point Logarithmic Converter A 3-bit Decimal Floating-Point Logarithmic Converter Dongdong Chen 1, Yu Zhang 1, Younhee Choi 1, Moon Ho Lee, Seok-Bum Ko 1, Department of Electrical and Computer Engineering, University of Saskatchewan

More information

A HIGH-SPEED PROCESSOR FOR RECTANGULAR-TO-POLAR CONVERSION WITH APPLICATIONS IN DIGITAL COMMUNICATIONS *

A HIGH-SPEED PROCESSOR FOR RECTANGULAR-TO-POLAR CONVERSION WITH APPLICATIONS IN DIGITAL COMMUNICATIONS * Copyright IEEE 999: Published in the Proceedings of Globecom 999, Rio de Janeiro, Dec 5-9, 999 A HIGH-SPEED PROCESSOR FOR RECTAGULAR-TO-POLAR COVERSIO WITH APPLICATIOS I DIGITAL COMMUICATIOS * Dengwei

More information

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor Proposal to Improve Data Format Conversions for a Hybrid Number System Processor LUCIAN JURCA, DANIEL-IOAN CURIAC, AUREL GONTEAN, FLORIN ALEXA Department of Applied Electronics, Department of Automation

More information

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor

Proposal to Improve Data Format Conversions for a Hybrid Number System Processor Proceedings of the 11th WSEAS International Conference on COMPUTERS, Agios Nikolaos, Crete Island, Greece, July 6-8, 007 653 Proposal to Improve Data Format Conversions for a Hybrid Number System Processor

More information

como trabajan las calculadoras?

como trabajan las calculadoras? Revista de Matemática: Teoría y Aplicaciones 2005 12(1 & 2) : 45 50 cimpa ucr ccss issn: 1409-2433 como trabajan las calculadoras? Bruce H. Edwards Received/Recibido: 24 Feb 2004 Abstract What happens

More information

How Do Calculators Calculate? Helmut Knaust Department of Mathematical Sciences University of Texas at El Paso

How Do Calculators Calculate? Helmut Knaust Department of Mathematical Sciences University of Texas at El Paso How Do Calculators Calculate? Helmut Knaust Department of Mathematical Sciences University of Texas at El Paso Helmut Knaust How Do Calculators Calculate? April 25, 1997 1 / 18 History We give an introduction

More information

A Hardware-Oriented Method for Evaluating Complex Polynomials

A Hardware-Oriented Method for Evaluating Complex Polynomials A Hardware-Oriented Method for Evaluating Complex Polynomials Miloš D Ercegovac Computer Science Department University of California at Los Angeles Los Angeles, CA 90095, USA milos@csuclaedu Jean-Michel

More information

A VLSI Algorithm for Modular Multiplication/Division

A VLSI Algorithm for Modular Multiplication/Division A VLSI Algorithm for Modular Multiplication/Division Marcelo E. Kaihara and Naofumi Takagi Department of Information Engineering Nagoya University Nagoya, 464-8603, Japan mkaihara@takagi.nuie.nagoya-u.ac.jp

More information

Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) *

Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) * Institute for Applied Information Processing and Communications Graz University of Technology Dual-Field Arithmetic Unit for GF(p) and GF(2 m ) * CHES 2002 Workshop on Cryptographic Hardware and Embedded

More information

CORDIC, Divider, Square Root

CORDIC, Divider, Square Root 4// EE6B: VLSI Signal Processing CORDIC, Divider, Square Root Prof. Dejan Marković ee6b@gmail.com Iterative algorithms CORDIC Division Square root Lecture Overview Topics covered include Algorithms and

More information

Cost/Performance Tradeoff of n-select Square Root Implementations

Cost/Performance Tradeoff of n-select Square Root Implementations Australian Computer Science Communications, Vol.22, No.4, 2, pp.9 6, IEEE Comp. Society Press Cost/Performance Tradeoff of n-select Square Root Implementations Wanming Chu and Yamin Li Computer Architecture

More information

Laboratoire de l Informatique du Parallélisme. École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON n o 8512

Laboratoire de l Informatique du Parallélisme. École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON n o 8512 Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON n o 8512 SPI A few results on table-based methods Jean-Michel Muller October

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

An Effective New CRT Based Reverse Converter for a Novel Moduli Set { 2 2n+1 1, 2 2n+1, 2 2n 1 }

An Effective New CRT Based Reverse Converter for a Novel Moduli Set { 2 2n+1 1, 2 2n+1, 2 2n 1 } An Effective New CRT Based Reverse Converter for a Novel Moduli Set +1 1, +1, 1 } Edem Kwedzo Bankas, Kazeem Alagbe Gbolagade Department of Computer Science, Faculty of Mathematical Sciences, University

More information

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 9. Datapath Design Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 2, 2017 ECE Department, University of Texas at Austin

More information

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya

I. INTRODUCTION. CMOS Technology: An Introduction to QCA Technology As an. T. Srinivasa Padmaja, C. M. Sri Priya International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2018 IJSRCSEIT Volume 3 Issue 5 ISSN : 2456-3307 Design and Implementation of Carry Look Ahead Adder

More information

Radix-4 Vectoring CORDIC Algorithm and Architectures. July 1998 Technical Report No: UMA-DAC-98/20

Radix-4 Vectoring CORDIC Algorithm and Architectures. July 1998 Technical Report No: UMA-DAC-98/20 Radix-4 Vectoring CORDIC Algorithm and Architectures J. Villalba E. Antelo J.D. Bruguera E.L. Zapata July 1998 Technical Report No: UMA-DAC-98/20 Published in: J. of VLSI Signal Processing Systems for

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

Arithmetic operators for pairing-based cryptography

Arithmetic operators for pairing-based cryptography 7. Kryptotag November 9 th, 2007 Arithmetic operators for pairing-based cryptography Jérémie Detrey Cosec, B-IT, Bonn, Germany jdetrey@bit.uni-bonn.de Joint work with: Jean-Luc Beuchat Nicolas Brisebarre

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

AREA EFFICIENT MODULAR ADDER/SUBTRACTOR FOR RESIDUE MODULI

AREA EFFICIENT MODULAR ADDER/SUBTRACTOR FOR RESIDUE MODULI AREA EFFICIENT MODULAR ADDER/SUBTRACTOR FOR RESIDUE MODULI G.CHANDANA 1 (M.TECH),chandana.g89@gmail.com P.RAJINI 2 (M.TECH),paddam.rajani@gmail.com Abstract Efficient modular adders and subtractors for

More information

Lecture 8: Sequential Multipliers

Lecture 8: Sequential Multipliers Lecture 8: Sequential Multipliers ECE 645 Computer Arithmetic 3/25/08 ECE 645 Computer Arithmetic Lecture Roadmap Sequential Multipliers Unsigned Signed Radix-2 Booth Recoding High-Radix Multiplication

More information

THE discrete sine transform (DST) and the discrete cosine

THE discrete sine transform (DST) and the discrete cosine IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II: EXPRESS BIREFS 1 New Systolic Algorithm and Array Architecture for Prime-Length Discrete Sine Transform Pramod K. Meher Senior Member, IEEE and M. N. S. Swamy

More information

Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives

Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives Design and FPGA Implementation of Radix-10 Algorithm for Division with Limited Precision Primitives Miloš D. Ercegovac Computer Science Department Univ. of California at Los Angeles California Robert McIlhenny

More information

Laboratoire de l Informatique du Parallélisme

Laboratoire de l Informatique du Parallélisme Laboratoire de l Informatique du Parallélisme Ecole Normale Supérieure de Lyon Unité de recherche associée au CNRS n 1398 Reciprocation, Square root, Inverse Square Root, and some Elementary Functions

More information

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte

A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER. Jesus Garcia and Michael J. Schulte A COMBINED 16-BIT BINARY AND DUAL GALOIS FIELD MULTIPLIER Jesus Garcia and Michael J. Schulte Lehigh University Department of Computer Science and Engineering Bethlehem, PA 15 ABSTRACT Galois field arithmetic

More information

Research Article Implementation of Special Function Unit for Vertex Shader Processor Using Hybrid Number System

Research Article Implementation of Special Function Unit for Vertex Shader Processor Using Hybrid Number System Computer Networks and Communications, Article ID 890354, 7 pages http://dx.doi.org/10.1155/2014/890354 Research Article Implementation of Special Function Unit for Vertex Shader Processor Using Hybrid

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

A High-Speed Realization of Chinese Remainder Theorem

A High-Speed Realization of Chinese Remainder Theorem Proceedings of the 2007 WSEAS Int. Conference on Circuits, Systems, Signal and Telecommunications, Gold Coast, Australia, January 17-19, 2007 97 A High-Speed Realization of Chinese Remainder Theorem Shuangching

More information

Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems

Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems J Sign Process Syst DOI 10.1007/s11265-008-0249-8 Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems Andreas Persson Lars Bengtsson Received: 8 March 2007 /

More information

EGFC: AN EXACT GLOBAL FAULT COLLAPSING TOOL FOR COMBINATIONAL CIRCUITS

EGFC: AN EXACT GLOBAL FAULT COLLAPSING TOOL FOR COMBINATIONAL CIRCUITS EGFC: AN EXACT GLOBAL FAULT COLLAPSING TOOL FOR COMBINATIONAL CIRCUITS Hussain Al-Asaad Department of Electrical & Computer Engineering University of California One Shields Avenue, Davis, CA 95616-5294

More information

KEYWORDS: Multiple Valued Logic (MVL), Residue Number System (RNS), Quinary Logic (Q uin), Quinary Full Adder, QFA, Quinary Half Adder, QHA.

KEYWORDS: Multiple Valued Logic (MVL), Residue Number System (RNS), Quinary Logic (Q uin), Quinary Full Adder, QFA, Quinary Half Adder, QHA. GLOBAL JOURNAL OF ADVANCED ENGINEERING TECHNOLOGIES AND SCIENCES DESIGN OF A QUINARY TO RESIDUE NUMBER SYSTEM CONVERTER USING MULTI-LEVELS OF CONVERSION Hassan Amin Osseily Electrical and Electronics Department,

More information

Double Step Branching CORDIC : A New Algorithm for Fast Sine and Cosine Generation

Double Step Branching CORDIC : A New Algorithm for Fast Sine and Cosine Generation Double Step Branching CORDIC : A New Algorithm for Fast Sine and Cosine Generation Dhananjay S. Phatak Electrical Engineering Department State University of New York, Binghamton, NY 13902-6000 (IEEE Transactions

More information

Chapter 5: Solutions to Exercises

Chapter 5: Solutions to Exercises 1 DIGITAL ARITHMETIC Miloš D. Ercegovac and Tomás Lang Morgan Kaufmann Publishers, an imprint of Elsevier Science, c 2004 Updated: September 9, 2003 Chapter 5: Solutions to Selected Exercises With contributions

More information

Hardware Operator for Simultaneous Sine and Cosine Evaluation

Hardware Operator for Simultaneous Sine and Cosine Evaluation Hardware Operator for Simultaneous Sine and Cosine Evaluation Arnaud Tisserand To cite this version: Arnaud Tisserand. Hardware Operator for Simultaneous Sine and Cosine Evaluation. ICASSP 6: International

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions

Mark Redekopp, All rights reserved. Lecture 1 Slides. Intro Number Systems Logic Functions Lecture Slides Intro Number Systems Logic Functions EE 0 in Context EE 0 EE 20L Logic Design Fundamentals Logic Design, CAD Tools, Lab tools, Project EE 357 EE 457 Computer Architecture Using the logic

More information

The goal differs from prime factorization. Prime factorization would initialize all divisors to be prime numbers instead of integers*

The goal differs from prime factorization. Prime factorization would initialize all divisors to be prime numbers instead of integers* Quantum Algorithm Processor For Finding Exact Divisors Professor J R Burger Summary Wiring diagrams are given for a quantum algorithm processor in CMOS to compute, in parallel, all divisors of an n-bit

More information

Performance/Complexity Space Exploration : Bulk vs. SOI

Performance/Complexity Space Exploration : Bulk vs. SOI Performance/Complexity Space Exploration : Bulk vs. SOI S. J. Abou-Samra and A. Guyot TIMA laboratory 6, av. Félix Viallet, F-38031 Grenoble - France Tel : (+33) 76 57 8 1 Fax : (+33) 76 7 38 1 E-Mail:

More information

Low Power, High Speed Parallel Architecture For Cyclic Convolution Based On Fermat Number Transform (FNT)

Low Power, High Speed Parallel Architecture For Cyclic Convolution Based On Fermat Number Transform (FNT) RESEARCH ARTICLE OPEN ACCESS Low Power, High Speed Parallel Architecture For Cyclic Convolution Based On Fermat Number Transform (FNT) T.Jyothsna 1 M.Tech, M.Pradeep 2 M.Tech 1 E.C.E department, shri Vishnu

More information

Microtrend Systems Inc. Fixed Point Two s Complement CORDIC Arithmetic on MSP430

Microtrend Systems Inc.  Fixed Point Two s Complement CORDIC Arithmetic on MSP430 Fixed Point Two s Complement CORDIC Arithmetic on MSP430 Titi Trandafir, MSEE, PhD (abd),mba Slide 1 Agenda Part 1 General considerations Part 2 Lab Demo using Microtrend Sys development platforms and

More information

RN-coding of numbers: definition and some properties

RN-coding of numbers: definition and some properties Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n o 5668 RN-coding of numbers: definition and some properties Peter Kornerup,

More information

A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form (2 n (2 p ± 1))

A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form (2 n (2 p ± 1)) The Computer Journal, 47(1), The British Computer Society; all rights reserved A Suggestion for a Fast Residue Multiplier for a Family of Moduli of the Form ( n ( p ± 1)) Ahmad A. Hiasat Electronics Engineering

More information

FPGA accelerated multipliers over binary composite fields constructed via low hamming weight irreducible polynomials

FPGA accelerated multipliers over binary composite fields constructed via low hamming weight irreducible polynomials FPGA accelerated multipliers over binary composite fields constructed via low hamming weight irreducible polynomials C. Shu, S. Kwon and K. Gaj Abstract: The efficient design of digit-serial multipliers

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

VHDL DESIGN AND IMPLEMENTATION OF C.P.U BY REVERSIBLE LOGIC GATES

VHDL DESIGN AND IMPLEMENTATION OF C.P.U BY REVERSIBLE LOGIC GATES VHDL DESIGN AND IMPLEMENTATION OF C.P.U BY REVERSIBLE LOGIC GATES 1.Devarasetty Vinod Kumar/ M.tech,2. Dr. Tata Jagannadha Swamy/Professor, Dept of Electronics and Commn. Engineering, Gokaraju Rangaraju

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

Tree and Array Multipliers Ivor Page 1

Tree and Array Multipliers Ivor Page 1 Tree and Array Multipliers 1 Tree and Array Multipliers Ivor Page 1 11.1 Tree Multipliers In Figure 1 seven input operands are combined by a tree of CSAs. The final level of the tree is a carry-completion

More information

A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations

A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations James A. Muir School of Computer Science Carleton University, Ottawa, Canada http://www.scs.carleton.ca/ jamuir 23 October

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

EFFICIENT FPGA-BASED INVERSE PARK TRANSFORMATION OF PMSM MOTOR USING CORDIC ALGORITHM

EFFICIENT FPGA-BASED INVERSE PARK TRANSFORMATION OF PMSM MOTOR USING CORDIC ALGORITHM EFFICIENT FPGA-BASED INVERSE PARK TRANSFORMATION OF PMSM MOTOR USING CORDIC ALGORITHM 1 ANIS SHAHIDA MOKHTAR, 2 MAMUN BIN IBNE REAZ, 2 MOHD ALAUDDIN MOHD ALI 1 Department of Electric and Electronics. Faculty

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Design and Implementation of Efficient Modulo 2 n +1 Adder

Design and Implementation of Efficient Modulo 2 n +1 Adder www..org 18 Design and Implementation of Efficient Modulo 2 n +1 Adder V. Jagadheesh 1, Y. Swetha 2 1,2 Research Scholar(INDIA) Abstract In this brief, we proposed an efficient weighted modulo (2 n +1)

More information

Graduate Institute of Electronics Engineering, NTU Basic Division Scheme

Graduate Institute of Electronics Engineering, NTU Basic Division Scheme Basic Division Scheme 台灣大學電子所吳安宇博士 2002 ACCESS IC LAB Outline Shift/subtract division algorithm. Programmed division. Restoring hardware dividers. Nonstoring and signed division. Radix-2 SRT divisioin.

More information

Design of A Efficient Hybrid Adder Using Qca

Design of A Efficient Hybrid Adder Using Qca International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP30-34 Design of A Efficient Hybrid Adder Using Qca 1, Ravi chander, 2, PMurali Krishna 1, PG Scholar,

More information

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder

Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder Design of Arithmetic Logic Unit (ALU) using Modified QCA Adder M.S.Navya Deepthi M.Tech (VLSI), Department of ECE, BVC College of Engineering, Rajahmundry. Abstract: Quantum cellular automata (QCA) is

More information

The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers

The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers The equivalence of twos-complement addition and the conversion of redundant-binary to twos-complement numbers Gerard MBlair The Department of Electrical Engineering The University of Edinburgh The King

More information

Fixed-Point Trigonometric Functions on FPGAs

Fixed-Point Trigonometric Functions on FPGAs Fixed-Point Trigonometric Functions on FPGAs Florent de Dinechin Matei Iştoan Guillaume Sergent LIP, Université de Lyon (CNRS/ENS-Lyon/INRIA/UCBL) 46, allée d Italie, 69364 Lyon Cedex 07 June 14th, 2013

More information

Part VI Function Evaluation

Part VI Function Evaluation Part VI Function Evaluation Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

Novel Modulo 2 n +1Multipliers

Novel Modulo 2 n +1Multipliers Novel Modulo Multipliers H. T. Vergos Computer Engineering and Informatics Dept., University of Patras, 26500 Patras, Greece. vergos@ceid.upatras.gr C. Efstathiou Informatics Dept.,TEI of Athens, 12210

More information

Computer Architecture 10. Fast Adders

Computer Architecture 10. Fast Adders Computer Architecture 10 Fast s Ma d e wi t h Op e n Of f i c e. o r g 1 Carry Problem Addition is primary mechanism in implementing arithmetic operations Slow addition directly affects the total performance

More information

CMP 338: Third Class

CMP 338: Third Class CMP 338: Third Class HW 2 solution Conversion between bases The TINY processor Abstraction and separation of concerns Circuit design big picture Moore s law and chip fabrication cost Performance What does

More information

VLSI Arithmetic. Lecture 9: Carry-Save and Multi-Operand Addition. Prof. Vojin G. Oklobdzija University of California

VLSI Arithmetic. Lecture 9: Carry-Save and Multi-Operand Addition. Prof. Vojin G. Oklobdzija University of California VLSI Arithmetic Lecture 9: Carry-Save and Multi-Operand Addition Prof. Vojin G. Oklobdzija University of California http://www.ece.ucdavis.edu/acsel Carry-Save Addition* *from Parhami 2 June 18, 2003 Carry-Save

More information

Numbering Systems. Computational Platforms. Scaling and Round-off Noise. Special Purpose. here that is dedicated architecture

Numbering Systems. Computational Platforms. Scaling and Round-off Noise. Special Purpose. here that is dedicated architecture Computational Platforms Numbering Systems Basic Building Blocks Scaling and Round-off Noise Computational Platforms Viktor Öwall viktor.owall@eit.lth.seowall@eit lth Standard Processors or Special Purpose

More information

Design of Low Power, High Speed Parallel Architecture of Cyclic Convolution Based on Fermat Number Transform (FNT)

Design of Low Power, High Speed Parallel Architecture of Cyclic Convolution Based on Fermat Number Transform (FNT) Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 641-650 Research India Publications http://www.ripublication.com/aeee.htm Design of Low Power, High Speed

More information

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology

Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Novel Bit Adder Using Arithmetic Logic Unit of QCA Technology Uppoju Shiva Jyothi M.Tech (ES & VLSI Design), Malla Reddy Engineering College For Women, Secunderabad. Abstract: Quantum cellular automata

More information

Lecture 18: Datapath Functional Units

Lecture 18: Datapath Functional Units Lecture 8: Datapath Functional Unit Outline Comparator Shifter Multi-input Adder Multiplier 8: Datapath Functional Unit CMOS VLSI Deign 4th Ed. 2 Comparator 0 detector: A = 00 000 detector: A = Equality

More information

Power Consumption Analysis. Arithmetic Level Countermeasures for ECC Coprocessor. Arithmetic Operators for Cryptography.

Power Consumption Analysis. Arithmetic Level Countermeasures for ECC Coprocessor. Arithmetic Operators for Cryptography. Power Consumption Analysis General principle: measure the current I in the circuit Arithmetic Level Countermeasures for ECC Coprocessor Arnaud Tisserand, Thomas Chabrier, Danuta Pamula I V DD circuit traces

More information

Lecture 11. Advanced Dividers

Lecture 11. Advanced Dividers Lecture 11 Advanced Dividers Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 15 Variation in Dividers 15.3, Combinational and Array Dividers Chapter 16, Division

More information

Design and Comparison of Wallace Multiplier Based on Symmetric Stacking and High speed counters

Design and Comparison of Wallace Multiplier Based on Symmetric Stacking and High speed counters International Journal of Engineering Research and Advanced Technology (IJERAT) DOI:http://dx.doi.org/10.31695/IJERAT.2018.3271 E-ISSN : 2454-6135 Volume.4, Issue 6 June -2018 Design and Comparison of Wallace

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

Lecture 12: Datapath Functional Units

Lecture 12: Datapath Functional Units Lecture 2: Datapath Functional Unit Slide courtey of Deming Chen Slide baed on the initial et from David Harri CMOS VLSI Deign Outline Comparator Shifter Multi-input Adder Multiplier Reading:.3-4;.8-9

More information

Implementation of Reversible Control and Full Adder Unit Using HNG Reversible Logic Gate

Implementation of Reversible Control and Full Adder Unit Using HNG Reversible Logic Gate Implementation of Reversible Control and Full Adder Unit Using HNG Reversible Logic Gate Naresh Chandra Agrawal 1, Anil Kumar 2, A. K. Jaiswal 3 1 Research scholar, 2 Assistant Professor, 3 Professor,

More information

Table-based polynomials for fast hardware function evaluation

Table-based polynomials for fast hardware function evaluation Table-based polynomials for fast hardware function evaluation Jérémie Detrey, Florent de Dinechin LIP, École Normale Supérieure de Lyon 46 allée d Italie 69364 Lyon cedex 07, France E-mail: {Jeremie.Detrey,

More information

DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA)

DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA) DESİGN AND ANALYSİS OF FULL ADDER CİRCUİT USİNG NANOTECHNOLOGY BASED QUANTUM DOT CELLULAR AUTOMATA (QCA) Rashmi Chawla 1, Priya Yadav 2 1 Assistant Professor, 2 PG Scholar, Dept of ECE, YMCA University

More information

Implementation Of Digital Fir Filter Using Improved Table Look Up Scheme For Residue Number System

Implementation Of Digital Fir Filter Using Improved Table Look Up Scheme For Residue Number System Implementation Of Digital Fir Filter Using Improved Table Look Up Scheme For Residue Number System G.Suresh, G.Indira Devi, P.Pavankumar Abstract The use of the improved table look up Residue Number System

More information

Information encoding and decoding using Residue Number System for {2 2n -1, 2 2n, 2 2n +1} moduli sets

Information encoding and decoding using Residue Number System for {2 2n -1, 2 2n, 2 2n +1} moduli sets Information encoding and decoding using Residue Number System for {2-1, 2, 2 +1} moduli sets Idris Abiodun Aremu Kazeem Alagbe Gbolagade Abstract- This paper presents the design methods of information

More information

Toward Correctly Rounded Transcendentals

Toward Correctly Rounded Transcendentals IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 11, NOVEMBER 1998 135 Toward Correctly Rounded Transcendentals Vincent Lefèvre, Jean-Michel Muller, Member, IEEE, and Arnaud Tisserand Abstract The Table Maker

More information

An Area Efficient Enhanced Carry Select Adder

An Area Efficient Enhanced Carry Select Adder International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 PP.06-12 An Area Efficient Enhanced Carry Select Adder 1, Gaandla.Anusha, 2, B.ShivaKumar 1, PG

More information

EECS150 - Digital Design Lecture 25 Shifters and Counters. Recap

EECS150 - Digital Design Lecture 25 Shifters and Counters. Recap EECS150 - Digital Design Lecture 25 Shifters and Counters Nov. 21, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John

More information

Arithmetic Operators for Pairing-Based Cryptography

Arithmetic Operators for Pairing-Based Cryptography Arithmetic Operators for Pairing-Based Cryptography Jean-Luc Beuchat Laboratory of Cryptography and Information Security Graduate School of Systems and Information Engineering University of Tsukuba 1-1-1

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

Power Minimization of Full Adder Using Reversible Logic

Power Minimization of Full Adder Using Reversible Logic I J C T A, 9(4), 2016, pp. 13-18 International Science Press Power Minimization of Full Adder Using Reversible Logic S. Anandhi 1, M. Janaki Rani 2, K. Manivannan 3 ABSTRACT Adders are normally used for

More information

Residue Number Systems Ivor Page 1

Residue Number Systems Ivor Page 1 Residue Number Systems 1 Residue Number Systems Ivor Page 1 7.1 Arithmetic in a modulus system The great speed of arithmetic in Residue Number Systems (RNS) comes from a simple theorem from number theory:

More information

Literature Review on Multiplier Accumulation Unit by Using Hybrid Adder

Literature Review on Multiplier Accumulation Unit by Using Hybrid Adder Literature Review on Multiplier Accumulation Unit by Using Hybrid Adder Amiya Prakash M.E. Scholar, Department of (ECE) NITTTR Chandigarh, Punjab Dr. Kanika Sharma Assistant Prof. Department of (ECE) NITTTR

More information

Design and Implementation of a Radix-4 Complex Division Unit with Prescaling

Design and Implementation of a Radix-4 Complex Division Unit with Prescaling esign and Implementation of a Radix-4 Complex ivision Unit with Prescaling Pouya ormiani Computer Science epartment University of California at Los Angeles Los Angeles, CA 90024, USA Email: pouya@cs.ucla.edu

More information

FPGA IMPLEMENTATION OF BASIC ADDER CIRCUITS USING REVERSIBLE LOGIC GATES

FPGA IMPLEMENTATION OF BASIC ADDER CIRCUITS USING REVERSIBLE LOGIC GATES FPGA IMPLEMENTATION OF BASIC ADDER CIRCUITS USING REVERSIBLE LOGIC GATES B.Ravichandra 1, R. Kumar Aswamy 2 1,2 Assistant Professor, Dept of ECE, VITS College of Engineering, Visakhapatnam (India) ABSTRACT

More information

A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations

A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, MONTH 2007 1 A Simple Left-to-Right Algorithm for Minimal Weight Signed Radix-r Representations James A. Muir Abstract We present a simple algorithm

More information

OPTIMAL DESIGN AND SYNTHESIS OF FAULT TOLERANT PARALLEL ADDER/SUBTRACTOR USING REVERSIBLE LOGIC GATES. India. Andhra Pradesh India,

OPTIMAL DESIGN AND SYNTHESIS OF FAULT TOLERANT PARALLEL ADDER/SUBTRACTOR USING REVERSIBLE LOGIC GATES. India. Andhra Pradesh India, OPTIMAL DESIGN AND SYNTHESIS OF FAULT TOLERANT PARALLEL ADDER/SUBTRACTOR USING REVERSIBLE LOGIC GATES S.Sushmitha 1, H.Devanna 2, K.Sudhakar 3 1 MTECH VLSI-SD, Dept of ECE, ST. Johns College of Engineering

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. memory inst 32 register

More information