Introduction to Mechanics Dynamics Forces Newton s Laws

Size: px
Start display at page:

Download "Introduction to Mechanics Dynamics Forces Newton s Laws"

Transcription

1 Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Nov 1, 2017

2 Last time Newton s second law mass and weight examples free-body diagrams

3 Overview Newton s second law examples Newton s third law action-reaction pairs of forces

4 Diagrams of Forces We can draw pictures to aid our reasoning. This is always a good idea. The process will be to identify a system of interest. omething we want to study. We will make a mathematical model of it. Everything that is not part of the system, but interacts with it, is part of the environment. We do not describe the environment mathematically.

5 Diagrams of Forces This is a physical picture. (a) ketch the forces Physical picture We need to identify the system we want to study. Here: the chair. 1 (b) Isolate the object of interest (c) Choose a convenient coordinate sy Diagrams from Walker, Physics.

6 (c) Choose a convenient coordinate system (d) Resolve forces into their components Diagrams of Forces t indicates each and every external force acting on a h is referred to as a free-body diagram. If we are nal motion, as is the case in this and the next chapt as a point particle and apply each of the forces acts Figure 5 5 shows. Once the forces are drawn, we resolve each force into components. At this point, plied to each coordinate direction separately. PROBLEM-OLVING NOTE External Forces External forces acting on an object fall into two main classes: (i) Forces at the This is a physical picture, but point nowof contact we consider with another object, the and forces that act (ii) forces exerted by an external agent, on the system (chair) from thesuch environment as gravity. (everything else). (a) ketch the forces F W Physical picture N

7 Diagrams of Forces: Free-Body Diagram N Physical picture This is a free-body diagram. We represent the chair as a point-particle with force vectors pointing outward. interest (c) Choose a convenient coordinate system (d) Resolve fo y N N N x = 0 N y = N W F W W x = 0 W y = O x Free-body diagram We also picked a coordinate system (x, y axes).

8 N Diagrams of Forces: Free-Body Diagram To analyze the forces, we must break them into components along ate system our chosen axes. (d) Resolve forces into their components N N x = 0 N y = N y x W W x = 0 W y = W F x = F cos θ F y = θ F sin θ F x

9 object, which we will model as a particle. T us isolate only those forces on the object and We can choose our system analysis. to be more than one object. This is three interacting objects, a monitor sitting on a table, on the Earth: Diagrams of Forces n F tm n F tm F mt F g F me F Em F g F Em 1 Figure from erway & Jewett. a b

10 ly those forces on the object and eliminate the Force Diagrams We could later refine our system into pieces. Here is a depiction of the forces that act on a single object, the monitor. tm n F tm n F tm F g F Em F g F Em F g F Em

11 Clearly, we would like to use Newton s second law gas that can be released through varying combinati around the unit, producing a force of about 10 pou enough propellant for a six-hour EVA (extra-vehicular We show the physical situation in Figure 5 7 (a), w An astronaut useson a jet a 655-kg pack tosatellite. push on The a 655-kg corresponding satellite. If free-body the d satellite starts at rest shown and in moves Figure m(b). after Note 5.00that seconds we have of chosen pushing, what is the direction force, F, of exerted the push. on itnow, by theif astronaut? the satellite starts at after 5.00 seconds of pushing, what is the force, F, exer Force Diagrams, Newton s econd Law, and Kinematics astronaut using a jet llite ation. (b) The freehe satellite. Only one ellite, and it is in the. y F x (a) Physical picture (b) Free-body

12 be released through varying combinations of 24 nozzles spaced nit, Force producing Diagrams, a force of Newton s about 10 pounds. econd The Law, MMUs and contain llant Kinematics for a six-hour EVA (extra-vehicular activity). he physical An astronaut situation uses in Figure 5 7 a jet pack to (a), push where on a an 655-kg astronaut satellite. pushes If the atellite. The corresponding free-body diagram for the satellite is satellite starts at rest and moves m after 5.00 seconds of re 5 7 (b). Note that we have chosen the x axis to point in the pushing, what is the force, F, exerted on it by the astronaut? he push. Now, if the satellite starts at rest and moves m nds of ketch: pushing, what is the force, F, exerted on it by the astronaut? y F x picture (b) Free-body diagram!!

13 Force Diagrams, Newton s econd Law, and Kinematics An astronaut uses a jet pack to push on a 655-kg satellite. If the satellite starts at rest and moves m after 5.00 seconds of pushing, what is the force, F, exerted on it by the astronaut?

14 Force Diagrams, Newton s econd Law, and Kinematics

15 Newton s econd Law Implications Quick Quiz You push an object, initially at rest, across a frictionless floor with a constant force for a time interval t, resulting in a final speed of v for the object. You then repeat the experiment, but with a force that is twice as large. What time interval is now required to reach the same final speed v? A 4 t B 2 t C t 2 D t 4 4 &J page 116.

16 Example Three forces on a mass. Find the acceleration of the object. Write it as a vector and write out the x- and y-components.

17 Newton s Third Law Newton s Third Law is commonly stated as For every action, there is an equal and opposite reaction. However it is more precisely stated: Newton III If two objects (1 and 2) interact the force that object 1 exerts on object 2 is equal in magnitude and opposite in direction to the force that object 2 exerts on object 1. F 1 2 = F 2 1

18 Newton s Third Law Main idea: you cannot push on something, without having it push back on you. If object 1 pushes on (or interacts with) object 2, then the force that object 1 exerts on object 2, and the force that object 2 exerts on object 1 form an action reaction pair.

19 us isolate only those forces Newton s Third Law: Action Reaction analysis. Pairs ewton s Third Law 119 n F tm s 2 F 12 F 21 r - t s - F 12 F 21 Figure 5.5 Newton s third law. The force F 12 exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force F 21 exerted by object 2 1 a F mt F g F me F Em

20 5.6a. The gravita- Pitfall Prevention 5.6 Defining a ystem Consider5.6 these Newton s particles Third which Law exert a force119 on each other: n two objects, we ted by a on b. The erts on object 2 is ect 1 is called the rthermore, either e terms for convet objects and must, the force acting by the Earth on 2 Figure 5.5 Newton s third law. agnitude They are of attracted. this The Each force will F12 accelerate exerted by object toward 1 the other. xerted by the procelerate the Earth on object 2 is equal in magnitude and opposite in direction to the force F21 exerted by object 2 projectile toward on object 1. s acceleration due F 12 F 12 F 21 F 21 1

21 Defining a ystem Consider5.6 these Newton s particles Third which Law exert a force119 on each other: n two objects, we ted by a on b. The erts on object 2 is ect 1 is called the rthermore, either e terms for convet objects and must, the force acting by the Earth on agnitude of this xerted by the procelerate the Earth projectile toward s acceleration due 2 F 12 F 12 F 21 F 21 Figure 5.5 Newton s third law. They are attracted. The Each force will F12 accelerate exerted by object toward 1 the other. on object 2 is equal in magnitude But wait: do the forces and opposite cancel? in direction to the force F21 exerted by object 2 F on object = F 2 1 F F 2 1 = 0 Is the net force zero? How can they each accelerate? 5.6a. The gravita- Pitfall Prevention 5.6 1

22 Defining a ystem Consider these 5.6 particles Newton s Third which Law exert a force 119 on each other: between two objects, we e exerted by a on b. The t 1 exerts on object 2 is on object 1 is called the ms; furthermore, either se these terms for conveifferent objects and must ample, the force acting xerted by the Earth on Is the net force zero? the magnitude of this orce exerted by the proust accelerate the Earth tes the projectile toward ver, its acceleration due 2 F 12 F 12 igure The 5.6a. only The force gravitao this accelerates. force is the force n Does Not Always Equal mg In on particle Pitfall Prevention 1 is F , so the net force is not zero: it onitor does not acceler- the situation shown in Figure 5.6 F 21 Figure 5.5 Newton s third law. The force F12 exerted by object 1 on object 2 is equal in magnitude No! The forces act on and different opposite in objects. direction to To find if particle 1 accelerates, we find the force net Fforce 21 exerted onby particle object 2 1. We do not on object 1. consider forces on particle 2. F 21 1

23 Action and Reaction Why when we fire a cannon does the cannon ball move much faster forward than the cannon does backwards? Why when we drop an object does it race downwards much faster than the Earth comes up to meet it?

24 Action and Reaction Why when we fire a cannon does the cannon ball move much faster forward than the cannon does backwards? Why when we drop an object does it race downwards much faster than the Earth comes up to meet it? The masses of each object are very different! From Newton s second law a = F m If m is smaller, a is bigger. If m is very, very big (like the Earth), the acceleration is incredibly small.

25 ject, which we will model as a particle. Therefore, a free-body dia isolate Forceonly Diagrams those forces on the object and eliminate the other forc alysis. Question. Do the two forces shown in the diagram that act on the monitor form an action-reaction pair under Newton s third law? n F tm n F tm n F tm F mt F g F me (A) Yes. (B) No. F Em Figure 5 F g F Em F g F Em b c the force the gravi exerted b force F m diagram s shows th

26 ummary Newton s second law and kinematics problem solving with vectors Newton s third law Homework Walker Physics: Ch 5, onward from page 138. Questions: 8, 11, 13, 23; Problems: 11, 16 & 17, 19, 33

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Introduction to Mechanics Dynamics Forces Applying Newton s Laws

Introduction to Mechanics Dynamics Forces Applying Newton s Laws Introduction to Mechanics Dynamics Forces Applying Newton s Laws Lana heridan De Anza College Feb 21, 2018 Last time force diagrams Newton s second law examples Overview Newton s second law examples Newton

More information

Mechanics Newton s Laws (cont d)

Mechanics Newton s Laws (cont d) Mechanics Newton s Laws (cont d) Lana heridan De Anza College Oct 16, 2018 Last time net force example Newton s first law Newton s second law mass vs weight force diagrams Overview Newton s second law

More information

Mechanics Newton s Laws

Mechanics Newton s Laws Mechanics Newton s Laws Lana heridan De Anza College Oct 15, 2018 Last time circular motion force net force Overview net force example Newton s first law Newton s second law mass vs weight force diagrams

More information

Dynamics Laws of Motion More About Forces

Dynamics Laws of Motion More About Forces Dynamics Laws of Motion More About Forces Lana heridan De Anza College Oct 10, 2017 Overview Newton s first and second laws Warm Up: Newton s econd Law Implications Question. If an object is not accelerating,

More information

Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally

Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally Dynamics: Laws of Motion Newton s 1st & 2nd Laws Forces Fundametally Lana heridan De Anza College Oct 9, 2017 Last Time nonuniform circular motion Introduced forces Overview Newton s Laws! (1st & 2nd)

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Oct 30, 2017 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws 2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 14, 2018 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Laws of Motion Friction More Problem Solving

Laws of Motion Friction More Problem Solving Laws of Motion Friction More Problem olving Lana heridan De Anza College Feb 1, 2019 Last time pulleys friction Overview friction Problem solving with forces Friction friction The force caused by small-scale

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Mar 6, 2018 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

Introduction to Mechanics Applying Newton s Laws Friction

Introduction to Mechanics Applying Newton s Laws Friction Introduction to Mechanics Applying Newton s Laws Friction Lana heridan De Anza College Nov 9, 2017 Last time kinds of forces and problem solving objects accelerated together the Atwood machine and variants

More information

Dynamics Laws of Motion Elevators, Pulleys, and Friction

Dynamics Laws of Motion Elevators, Pulleys, and Friction Dynamics Laws of Motion Elevators, Pulleys, and riction Lana heridan De Anza College Oct 12, 2017 Last time equilibrium nonequilibrium Problem solving with tensions inclines Overview Problem solving with

More information

Introduction to Mechanics Projectiles

Introduction to Mechanics Projectiles Introduction to Mechanics Projectiles Lana heridan De Anza College Feb 6, 2018 Last time relative motion examples Overview another relative motion example motion with constant acceleration projectiles

More information

Introduction to Mechanics Friction Examples Friction Springs

Introduction to Mechanics Friction Examples Friction Springs Introduction to Mechanics Friction Examples Friction Springs Lana Sheridan De Anza College Mar 7, 2018 Last time kinetic and static friction friction examples Overview one more friction example springs

More information

Energy Potential Energy and Force Conservation Laws Isolated and Nonisolated Systems

Energy Potential Energy and Force Conservation Laws Isolated and Nonisolated Systems Energy Potential Energy and Force Conservation Laws Isolated and Nonisolated ystems Lana heridan De Anza College Oct 27, 2017 Last time gravitational and spring potential energies conservative and nonconservative

More information

Introduction to Mechanics Motion in 2 Dimensions

Introduction to Mechanics Motion in 2 Dimensions Introduction to Mechanics Motion in 2 Dimensions Lana heridan De Anza College Jan 31, 2018 Last time vectors and trig Overview introduction to motion in 2 dimensions constant velocity in 2 dimensions relative

More information

Introduction to Mechanics Non-uniform Circular Motion Introducing Energy

Introduction to Mechanics Non-uniform Circular Motion Introducing Energy Introduction to Mechanics Non-uniform Circular Motion Introducing Energy Lana Sheridan De Anza College Nov 20, 2017 Last time applying the idea of centripetal force banked turns Overview non-uniform circular

More information

Mechanics Friction. Lana Sheridan. Oct 23, De Anza College

Mechanics Friction. Lana Sheridan. Oct 23, De Anza College Mechanics riction Lana heridan De Anza College Oct 23, 2018 Last time Types of forces and new scenarios contact forces tension pulleys Overview finish Atwood machine friction Recap: Pulleys and the Atwood

More information

Kinematics: Circular Motion Mechanics: Forces

Kinematics: Circular Motion Mechanics: Forces Kinematics: Circular Motion Mechanics: Forces Lana heridan De Anza College Oct 11, 2018 Last time projectile trajectory equation projectile examples projectile motion and relative motion Overview circular

More information

Introduction to Mechanics Motion in 2 Dimensions

Introduction to Mechanics Motion in 2 Dimensions Introduction to Mechanics Motion in 2 Dimensions Lana heridan De Anza College Oct 17, 2017 Last time vectors and trig Overview wrap up vectors introduction to motion in 2 dimensions constant velocity in

More information

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College

Static Equilibrium. Lana Sheridan. Dec 5, De Anza College tatic Equilibrium Lana heridan De Anza College Dec 5, 2016 Last time simple harmonic motion Overview Introducing static equilibrium center of gravity tatic Equilibrium: ystem in Equilibrium Knowing that

More information

A Question about free-body diagrams

A Question about free-body diagrams Free-body Diagrams To help us understand why something moves as it does (or why it remains at rest) it is helpful to draw a free-body diagram. The free-body diagram shows the various forces that act on

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

Dynamics Energy and Work

Dynamics Energy and Work Dynamics Energy and Work Lana Sheridan De Anza College Oct 24, 2017 Last Time resistive forces: Drag Equation Drag Equation, One more point What if the object is not dropped from rest? (See Ch 6, prob

More information

Static Equilibrium Gravitation

Static Equilibrium Gravitation Static Equilibrium Gravitation Lana Sheridan De Anza College Dec 6, 2017 Overview One more static equilibrium example Newton s Law of Universal Gravitation gravitational potential energy little g Example

More information

Introduction to Mechanics Potential Energy Energy Conservation

Introduction to Mechanics Potential Energy Energy Conservation Introduction to Mechanics Potential Energy Energy Conservation Lana Sheridan De Anza College Nov 28, 2017 Last time power conservative and nonconservative forces friction Overview conservative forces and

More information

Introduction to Mechanics Energy Conservation Examples

Introduction to Mechanics Energy Conservation Examples Introduction to Mechanics Energy Conservation Examples Lana heridan De Anza College Nov 30, 2017 Last time energy conservation Overview more practice with energy conservation How to olve Energy Conservation

More information

Laws of Motion Friction More Problem Solving

Laws of Motion Friction More Problem Solving Laws of Motion riction More Problem olving Lana heridan De Anza College Oct 16, 2017 Last time elevators pulleys Overview riction Problem solving with forces Pulleys and the Atwood Machine The Atwood Machine

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Linear Momentum. Lana Sheridan. Nov 6, De Anza College

Linear Momentum. Lana Sheridan. Nov 6, De Anza College Linear Momentum Lana Sheridan De Anza College Nov 6, 2017 Last time energy practice Overview introducing momentum Newton s Second Law: more general form relation to force relation to Newton s third law

More information

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion Tue Sept 15 Assignment 4 Friday Pre-class Thursday Lab - Print, do pre-lab Closed toed shoes Exam Monday Oct 5 7:15-9:15 PM email me if class conflict or extended time Dynamics - Newton s Laws of Motion

More information

Lecture 7: More on Newton s Laws

Lecture 7: More on Newton s Laws Lecture 7: More on Newton s Laws Other Important Aspects of the Second Law: Note that = ma is a vector equation, i.e., it is equivalent to saying: = ma x y z = ma = ma An object accelerates in the same

More information

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity

Physics 111. Applying Newton s Laws. Lecture 9 (Walker: 5.4-5) Newton s Third Law Free Body Diagram Solving 2-D Force Problems Weight & Gravity Phsics 111 Lecture 9 (Walker: 5.4-5) Newton s Third Law ree Bod Diagram Solving -D orce Problems Weight & Gravit Sept. 1, 009 Quiz Wednesda - Chaps. 3 & 4 Lecture 9 1/6 Newton s Third Law of Motion orces

More information

Energy Work Kinetic Energy Potential Energy

Energy Work Kinetic Energy Potential Energy Energy Work Kinetic Energy Potential Energy Lana Sheridan De Anza College Oct 25, 2017 Last time energy work Overview Work as an integral Kinetic energy Work-Kinetic energy theorem Potential energy N through

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana heridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

Conceptual Physics Motion and Graphs Free Fall Using Vectors

Conceptual Physics Motion and Graphs Free Fall Using Vectors Conceptual Physics Motion and Graphs Free Fall Using Vectors Lana heridan De Anza College July 6, 2017 Last time Units More about size and scale Motion of objects Inertia Quantities of motion Overview

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

PS113 Chapter 4 Forces and Newton s laws of motion

PS113 Chapter 4 Forces and Newton s laws of motion PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two

More information

Introduction to Forces

Introduction to Forces Introduction to Forces Where do they come from? How are they measured? How are they added & Subtracted? Here s Tim & Mobey on Force Brainpop Log is: mms308 / password: marshall 7. Forces & Motion What

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Force F Chapter 5 Force and Motion is the interaction between objects is a vector causes acceleration Net force: vector sum of all the forces on an object. v v N v v v v v Ftotal Fnet = Fi = F1 + F2 +

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In the diagram shown, the unknown vector is 1) Diagram 1 A) B - A. B) A - B. C) A + B.

More information

Lecture 6. Applying Newton s Laws Free body diagrams Friction

Lecture 6. Applying Newton s Laws Free body diagrams Friction Lecture 6 Applying Newton s Laws Free body diagrams Friction ACT: Bowling on the Moon An astronaut on Earth kicks a bowling ball horizontally and hurts his foot. A year later, the same astronaut kicks

More information

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time, weather, comments Mark down bad weather attempts Today:

More information

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall Goals: Lecture 11 Chapter 8: Employ rotational motion models with friction or in free fall Chapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation

More information

Kinematics Varying Accelerations (1D) Vectors (2D)

Kinematics Varying Accelerations (1D) Vectors (2D) Kinematics Varying Accelerations (1D) Vectors (2D) Lana heridan De Anza College ept 29, 2017 Last time kinematic equations using kinematic equations Overview falling objects and g varying acceleration

More information

Energy Practice. Lana Sheridan. Nov 2, De Anza College

Energy Practice. Lana Sheridan. Nov 2, De Anza College Energy Practice Lana heridan De Anza College Nov 2, 2017 Overview Practice problems! a nonconservative force acts. Example: Block pulled across surface g along a freeway at 65 mi/h. Your car has kinetic

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Introduction to Mechanics Dynamics Forces Applying Newton s Laws

Introduction to Mechanics Dynamics Forces Applying Newton s Laws Introdction to Mechanics Dynamics Forces Applying Newton s Laws Lana heridan De Anza College Feb 26, 2018 Last time kinds of forces and problem solving gravity normal force and elevators Overview kinds

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations 2 dimensional motion Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors.

More information

5. Forces and Free-Body Diagrams

5. Forces and Free-Body Diagrams 5. Forces and Free-Body Diagrams A) Overview We will begin by introducing the bulk of the new forces we will use in this course. We will start with the weight of an object, the gravitational force near

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces 2D Kinematics: Nonuniform Circular Motion Dynamics: Forces Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform circular motion Introduce forces

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Copyright 2010 Pearson Education, Inc. Force and Mass Copyright 2010 Pearson Education, Inc. Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion

More information

Review: Newton s Laws

Review: Newton s Laws More force was needed to stop the rock Review: Newton s Laws F r 1 F r F r 3 F r 4 2 Newton s First Law The velocity of an object does not change unless a force acts on the object Newton s Second Law:

More information

Newton's Third Law. Examples of Interaction Force Pairs

Newton's Third Law. Examples of Interaction Force Pairs Newton's Third Law A force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions! Some forces result from contact interactions

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

Physics 1100: 2D Kinematics Solutions

Physics 1100: 2D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Physics 1100: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The initial velocity

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating, trigonometry,

More information

Physics Midterm Review Sheet

Physics Midterm Review Sheet Practice Problems Physics Midterm Review Sheet 2012 2013 Aswers 1 Speed is: a a measure of how fast something is moving b the distance covered per unit time c always measured in units of distance divided

More information

Introduction to Mechanics Projectiles Time of Flight

Introduction to Mechanics Projectiles Time of Flight Introduction to Mechanics Projectiles Time of Flight Lana Sheridan De Anza College Oct 24, 2017 Last time height of a projectile Warm Up Question # 57, page 107 Child 1 throws a snowball horizontally from

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Introduction to Mechanics Energy Conservation

Introduction to Mechanics Energy Conservation Introduction to Mechanics Energy Conservation Lana Sheridan De Anza College Mar 22, 2018 Last time conservative forces and potential energy energy diagrams mechanical energy energy conservation Overview

More information

Chapter 3 Kinematics in two and three dimensions. x and y components 1

Chapter 3 Kinematics in two and three dimensions. x and y components 1 Chapter 3 Kinematics in two and three dimensions x and y components 1 Start with 1D Motion 3 independent equations Derive these 2 from the other 3 v = v + at 0 v = 1 avg 2 (v + v) 0 x = x 0 + v 0 t + 1

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Newtonian Mechanics Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

More information

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow Section 7.1 Based on Knight 3 rd edition Ch. 7, pgs. 167-184 When a hammer hits a nail, it exerts a forward force on the nail At

More information

Dynamics Applying Newton s Laws Introducing Energy

Dynamics Applying Newton s Laws Introducing Energy Dynamics Applying Newton s Laws Introducing Energy Lana Sheridan De Anza College Oct 23, 2017 Last time introduced resistive forces model 1: Stokes drag Overview finish resistive forces energy work Model

More information

Physics 512. Motion Graphs Review

Physics 512. Motion Graphs Review Physics 512 Mr. Greenberg Name Test 1-2 Review Motion Graphs Review Type of Motion on a position vs. time graph on a velocity vs. time graph on an acceleration vs. time graph At Rest Moving forward at

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Newton s Law of Motion

Newton s Law of Motion Newton s Law of Motion Physics 211 Syracuse University, Physics 211 Spring 2019 Walter Freeman February 7, 2019 W. Freeman Newton s Law of Motion February 7, 2019 1 / 21 Announcements Homework 3 due next

More information

Forces and motion. Announcements. Force: A push or pull between pairs of objects. Newton s First Law: Inertia

Forces and motion. Announcements. Force: A push or pull between pairs of objects. Newton s First Law: Inertia Announcements 1. Exam 1 still going on a. until Monday night b. My advice: take it sooner rather than later, because we re moving on now Forces and motion Aristotle: 384 322 BC, Greece Four elements, two

More information

Main Ideas in Class Today

Main Ideas in Class Today 2/4/17 Test Wed, Feb 8th 7pm, G24 Eiesland Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating,

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Rotation Torque Moment of Inertia

Rotation Torque Moment of Inertia Rotation Torque Moment of Inertia Lana Sheridan De Anza College Nov 17, 2017 Last time rotational quantities rotational kinematics torque Quick review of Vector Expressions Let a, b, and c be (non-null)

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5. Force and Motion I Newton s Laws Concepts of Mass and Force Newton s Three Laws But first, let s review the last lecture.. Physics, Page 1 Summary of the last lecture 1. Projectile Motion x

More information

Newton s 2 nd Law of Motion

Newton s 2 nd Law of Motion Newton s 2 nd Law Objectives Explain the relationship between acceleration, net force, and mass of an object. Apply Newton s 2 nd Law to solve a variety of problems. Understand the difference between mass

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Feb 2, 2015 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

Do Now: Why are we required to obey the Seat- Belt law?

Do Now: Why are we required to obey the Seat- Belt law? Do Now: Why are we required to obey the Seat- Belt law? Newton s Laws of Motion Newton s First Law An object at rest remains at rest and an object in motion remains in motion with the same speed and direction.

More information

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Lana Sheridan De Anza College Feb 12, 2018 Last time projectiles launched horizontally projectiles launched at an angle

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Energy Work vs Potential Energy Energy and Friction

Energy Work vs Potential Energy Energy and Friction Energy Work vs Potential Energy Energy and Friction Lana heridan De Anza College Feb 19, 2019 Last time conservation Overview work vs. potential kinetic friction and Two Views: Isolated vs Nonisolated

More information

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion

Chapter 7. Preview. Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System. Section 1 Circular Motion Section 1 Circular Motion Preview Objectives Tangential Speed Centripetal Acceleration Centripetal Force Describing a Rotating System Section 1 Circular Motion Objectives Solve problems involving centripetal

More information

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS) !! www.clutchprep.com FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a

More information

Please turn on your clickers

Please turn on your clickers Please turn on your clickers HW #1, due 1 week from today Quiz in class Wednesday Sections meet in Planetarium Honors meeting tonight in my office Sterling 5520 at 5:30-6pm Newton s First Law An object

More information

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Oct 20, 2017 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Gravitation Kepler s Laws

Gravitation Kepler s Laws Gravitation Kepler s Laws Lana heridan De Anza College Mar 15, 2015 Overview Newton s Law of Universal Gravitation Gravitational field Kepler s Laws Gravitation The force that massive objects exert on

More information