Chapter 2. Continued. Proofs For ANOVA Proof of ANOVA Identity. the product term in the above equation can be simplified as n

Size: px
Start display at page:

Download "Chapter 2. Continued. Proofs For ANOVA Proof of ANOVA Identity. the product term in the above equation can be simplified as n"

Transcription

1 Chapter 2. Continued Proofs For ANOVA Proof of ANOVA Identity We are going to prove that Writing SST SSR + SSE. Y i Ȳ (Y i Ŷ i ) + (Ŷ i Ȳ ) Squaring both sides summing over all i 1,...n, we get (Y i Ȳ ) 2 (Y i Ŷ i ) 2 + (Ŷ i Ȳ )) 2 Noting that +2 (Y i Ŷ i )(Ŷ i Ȳ ) Y i Ŷ i Y i (b 0 + b 1 X i ) Y i (Ȳ b 1 X + b 1 X i ) (Y i Ȳ ) b 1 (X i X) Ŷ i Ȳ (b 0 + b 1 X i ) Ȳ (Ȳ b 1 X) + b 1 X i Ȳ b 1 (X i X) the product term in the above equation can be simplified as n (Y i Ŷ i )(Ŷ i Ȳ ) [(Y i Ȳ ) b 1 (X i X)] b 1 (X i X) b 1 S xy b 2 1 Sxx b 1 [S xy b 1 S xx] And since b 1 S xy/s xx, S xy b 1 S xx the rhs of the above equation is zero. Therefore, (Y i Ȳ ) 2 (Y i Ŷ i ) 2 + (Ŷ i Ȳ )) 2 or Expected Mean Squares We are going to prove that SST SSE + SSR E(MSE) σ 2 E(MSR) σ 2 + β 2 1S xx Note that these results allow us to compare MSE MSR in average sense when H 0 : β 1 0 H 1 : β 1 0. Since E(MSR) > E(MSE) when β 1 0, 1 2 we can create a decision rule; reject H 0 if MSR MSE This gives the F -test of ANOVA. is large To find the E{MSE}, we may use the result quoted earlier that SSE χ 2 (n 2) σ 2 This gives E{ SSE } (n 2) σ2 hence, E{MSE} E{SSE/(n 2)} (n 2)σ 2 /(n 2) σ 2 Alternatively, we will prove without normality assumption that E{SST O} (n 1)σ 2 + β 2 1 Sxx Using the expression for E{MSR}, this in turn provides, E{SSE} E{SST } E{SSR} (n 1)σ 2 + β1 2Sxx σ2 β1 2Sxx (n 2)σ 2 this implies that E{MSE} σ 2 Proof of E{SST } (n 1)σ 2 + β 2 1 Sxx Using the model Y i β 0 + β 1 X i + ɛ i, we can write [ Ȳ 1 β0 + β n n 1 X i + β 0 + β 1 X + ɛ Hence, Y i Ȳ β 1 (X i X) + (ɛ i ɛ) Squaring both sides we get SST β 2 1 Sxx + Sɛɛ + 2β 1S xɛ ɛ i Note that since S ɛɛ/(n 1) denotes the sample variance of ɛ 1,..., ɛ n which are i.i.d. with mean zero variance σ 2, we have E{S ɛɛ} (n 1)σ 2. For the expectetion of the product term we see that E{β n 1 (X i X)(ɛ i ɛ)} β n 1 (X i X)E{(ɛ i ɛ)} 0 since E{(ɛ i ɛ)} 0 by the assumption on the errors. This proves that E{SST } (n 1)σ 2 + β 2 1S xx ] 3 4

2 Proof of E{SSR} σ 2 + β 2 1 Sxx For this result we note that Ŷ i Ȳ b 1 (X i X i ), hence SSR (Ŷ i Ȳ ) 2 b 2 1 (X i X) 2 b 2 1S xx Therefore E{SSR} S xxe{b 2 1 } To evaluate E{b 2 1 }, use the formula which gives V ar(b 1 ) E{b 2 1 } (E{b 1}) 2 E{b 2 1 } V ar(b 1) + (E{b 1 }) 2 Using the sampling properies of b 1, we obtain from the above equation hence E{b 2 1} σ 2 /S xx + β 2 1, E{SSR} S xx[σ 2 /S xx + β1 2] σ 2 + β1 2Sxx Equivalence of t F for H 0 : β 1 0 vs. H 1 : β 1 0 The test statistic t is given by Using the formula we find that t b 1 /s{b 1 } s 2 {b 1 } MSE/S xx t 2 b 2 1 Sxx/MSE The numerator b 2 1Sxx may be recognized to be SSR MSR. Hence t 2 MSR/MSE which is the usual F, the ANOVA F -test statistic. Since t 2 (ν) follows F (1, ν) distribution, the C.R. is equivalent to t > t(1 α 2, n 2) F > t 2 (1 α, n 2) F (1 α; 1, n 2) General Linear Test Approach This approach is based on the fact under restrictions on the model the sum of squared errors is generally larger as compared to that without any restriction. (Because the SSE without any restrictions is the absolute minimum). The difference in these summ of squared errors is used to propose a test statistic for the hypothesis imposing restrictions on the model. The model without any hypothesis is known as the full model the model under the hypothesis is called the reduced model. Let SSE(F ) SSE(R) denote the sum of squared errors under these models, the SSE(F ) (Y i Ŷ i ) 2 min (Y i Ŷ for any linear prediction Ŷ i, SSE(F ) SSE(R) Under departures from the H 0, the difference SSE(R) SSE(F ) is expected to be significantly large. create a T.S. as F [SSE(R) SSE(F )]/(df R df F ) SSE(F )/df F i )2 Hence, we may 7 This test statistic follows an F (df R df F, df F ) under the null hypothesis, when the errors are assumed normally distributed. Hence the decision rule to reject the null hypothesis is given by Testing H 0 : β 1 0 F > F (1 α; df R df F, df F ) In this case, SSE(F ) SSE. The reduced model becomes, Y i β 0 + ɛ i, in which case the L.S. estimator of β 0 becomes b 0 (R) Ȳ Ŷ ( R) Ȳ, hence SSE(R) the T.S. becomes F (Y i Ŷ i (R)) 2 SST (SST SSE)/[(n 1) (n 2)] SSE/(n 2) the usual F statistic. MSR/MSE 8

3 2.9 Descriptive Measures of Association The goodness of fit of the line can be measured by amount of the total variation attributed to regression. For example, if SSR SST then SSE 0 all the predicted values fall on the LS line. In this case we can say that the regression explains the variation in Y i s 100%. SSR is termed as the Explained Variation SSE as the unexplained variation. Coefficient of Determination It is defined as the ratio of Explained Variation to the Total Variation, r 2 SSR SST Since the denominator SST SSR + SSE SSR, all the sum of squares are non-negative, 0 r When all the values fall on the regression line, SSE 0 r 2 1. Hence the predictor variable accounts for all the variability. 2. When b 1 0, the predictor variable drops out from the model we have SSE SST, i.e. SSR 0 r 2 0. And the variable X does not play any role in explaining the variation in Y s. 3. The above two cases are extreme cases. The value of r 2 closer to 1 is regarded as giveing a good fit. Usually it is measured in percentages is also called as Multiple Correlation Coefficient. The Correlation Coefficient It is defined by r ± r 2 positive sign corresponds to positive slope i.e b 1 > 0 the negative sign corresponds to negative slope b 1 < 0. It is clear that 1 r 1 A computational formula is given by r b 1 Sxx Syy The use of correlation coefficient is more in describing the joint association between X Y. And since r 2 < r, r may give an impression of a closer relationship than r Example The coefficient of determination for the height-weight data from the ANOVA table is given by since b 1 > 0. Adjusted R 2 r % r.7463 Since the SSR SSE carry different degrees of freedom, their ratio adjusted for degrees of freedom may be more appropriate as a measure of goodness of fit; it is given by AdjustedR 2 SSE/(n 2) 1 SST O/(n 1) 1 n 2 SSE n 1 SST O For the previous example Adj.R which tallies with the value in the ANOVA table. Chapter 3. Diagnostics Remedial Measures Diagnostic Tools Diagnostic tools are used to check any irregularities in the data. Graphical techniques are visual aids in locating patterns in the data identifying any extreme or unusual observations Diagnostics for Predictor Variable (X) Dot Plots These are basically frequency plots. Dots are placed above the variable line for the values of the variable. Dots are stacked over each other if a value is repeated in the data. These plots display the dispersion of the variable. It is desirable that the data is evenly dispersed. Figure 3.1 below represents the Dot Plot for the heights of the HtWt data. It shows that the data are evenly distributed there are no outlying observations. It can be obtained using the Graph/Dotplot menu from MINITAB

4 Stem Leaf Plot Sequence Plots Sequence plot is the plot of the observation against its place in the data. Such plots are useful when the data is observed as a sequence of time. The points are connected to show the time sequence more effectively, can depict a time trend or some other pattern. Figure 3.2 gives a sequence plot for the height data. But in this case it does not have much meaning since the order of the data is arbitrary. Such a plot can be obtained using the Graph/Time Series Plot menu from MINITAB. This plot is an alternative way to display the data. The main column, called stem of the data generally displays, first n 1 disgits for n-digit numbers in the data. The data is displayed by listing the last digit of the observation (called leaf) beside the proper stem. To the left of the stem column may appear the frequency of the branch, meaning the number of the observations in the corresponding row. Also the frequency of the branch containing the median is written in parenthesis. It basically resembles the histogram displayed sideways may bring out the symmetry or asymmetry of the distribution. [Note that symmetry of the distribution is preferred.] Figure 3.3 displays the distribution of the heights. The distribution is concentrated more towards larger values. It can be obtained using Graph/Stem Leaf Plot menu from MINITAB Residual Plots Residuals as introduced earlier may be used for checking various model departures. Recall that the residuals defined by Box-Whisker Plot This plot gives a Box with the top boundary as the 3rd quartle the bottom boundary as the first quartile a line in the middle of the box signifying the median. Two lines protrude from the bottom top giving the minimum maximum. This is known as the five number summary of the data. The median being in the centre signifies symmetry of the data. Any long whisker signifies outlying observation. Figure 3.4 gives the Box-Whisker plot of the height data signifies that asymmetry as reported looking at the Stem--Leaf plot is not severe. It can be obtained using Graph/Box Plot menu from MINITAB. e i Y i Ŷ i may be regarded as the observed errors in contrast to the unknown true errors ɛ i Y i E{ɛ i } The properties used in diagnostic residual plots are 1. Mean The mean of n-residuals is ē e i 0. n Since ē is always zero, it does not provide any information on the assumption E{ɛ i } Variance The variance of the n residuals for the simple regression model is defined by (e i ē) 2 n 2 e2 i n 2 MSE If the model is appropriate it provides an unbiased estimator of the error variance σ

5 3. Nonindependence The residuals in general are not independent as they are subject to the linear constraints (i) e i 0 (ii) X ie i 0. The dependency could, however, be ignored when n is large Semistudentized Residuals It may be helpful to stardize the residuals for residual analysis. The following form of stardization is useful: e i e i ē MSE These are known as Semistudentized Residuals because ei they are approximation to the stardized residual s.d.{ei}. Since the s.d.{e i } is complex varies for each X i, MSE is only an approximation to this stard deviation. Departures to be Studied from residuals 1. The regression function is not linear. 2. The variance of the error terms is not constant. 3. The error terms are not independent. 4. The model fits all but a few outlier observations. 5. The error terms are not normally distributed. 6. One or several important predictor variables are absent from the model. 17

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is.

Linear regression. We have that the estimated mean in linear regression is. ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. The standard error of ˆµ Y X=x is. Linear regression We have that the estimated mean in linear regression is The standard error of ˆµ Y X=x is where x = 1 n s.e.(ˆµ Y X=x ) = σ ˆµ Y X=x = ˆβ 0 + ˆβ 1 x. 1 n + (x x)2 i (x i x) 2 i x i. The

More information

F-tests and Nested Models

F-tests and Nested Models F-tests and Nested Models Nested Models: A core concept in statistics is comparing nested s. Consider the Y = β 0 + β 1 x 1 + β 2 x 2 + ǫ. (1) The following reduced s are special cases (nested within)

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

Diagnostics and Remedial Measures

Diagnostics and Remedial Measures Diagnostics and Remedial Measures Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Diagnostics and Remedial Measures 1 / 72 Remedial Measures How do we know that the regression

More information

SSR = The sum of squared errors measures how much Y varies around the regression line n. It happily turns out that SSR + SSE = SSTO.

SSR = The sum of squared errors measures how much Y varies around the regression line n. It happily turns out that SSR + SSE = SSTO. Analysis of variance approach to regression If x is useless, i.e. β 1 = 0, then E(Y i ) = β 0. In this case β 0 is estimated by Ȳ. The ith deviation about this grand mean can be written: deviation about

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Concordia University (5+5)Q 1.

Concordia University (5+5)Q 1. (5+5)Q 1. Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/1 40 Examination Date Time Pages Mid Term Test May 26, 2004 Two Hours 3 Instructor Course Examiner

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Linear Regression. Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x).

Linear Regression. Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x). Linear Regression Simple linear regression model determines the relationship between one dependent variable (y) and one independent variable (x). A dependent variable is a random variable whose variation

More information

3. Diagnostics and Remedial Measures

3. Diagnostics and Remedial Measures 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed where ɛ i iid N(0, σ 2 ), Y i = β 0 + β 1 X i + ɛ i i = 1, 2,..., n, β 0, β 1 and σ 2 are unknown parameters, X i s

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Chapter 3. Diagnostics and Remedial Measures

Chapter 3. Diagnostics and Remedial Measures Chapter 3. Diagnostics and Remedial Measures So far, we took data (X i, Y i ) and we assumed Y i = β 0 + β 1 X i + ǫ i i = 1, 2,..., n, where ǫ i iid N(0, σ 2 ), β 0, β 1 and σ 2 are unknown parameters,

More information

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables Regression Analysis Regression: Methodology for studying the relationship among two or more variables Two major aims: Determine an appropriate model for the relationship between the variables Predict the

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Simple Linear Regression

Simple Linear Regression 9-1 l Chapter 9 l Simple Linear Regression 9.1 Simple Linear Regression 9.2 Scatter Diagram 9.3 Graphical Method for Determining Regression 9.4 Least Square Method 9.5 Correlation Coefficient and Coefficient

More information

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Chapter 2 Inferences in Simple Linear Regression

Chapter 2 Inferences in Simple Linear Regression STAT 525 SPRING 2018 Chapter 2 Inferences in Simple Linear Regression Professor Min Zhang Testing for Linear Relationship Term β 1 X i defines linear relationship Will then test H 0 : β 1 = 0 Test requires

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression AMS 315/576 Lecture Notes Chapter 11. Simple Linear Regression 11.1 Motivation A restaurant opening on a reservations-only basis would like to use the number of advance reservations x to predict the number

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Chapter 1. Linear Regression with One Predictor Variable

Chapter 1. Linear Regression with One Predictor Variable Chapter 1. Linear Regression with One Predictor Variable 1.1 Statistical Relation Between Two Variables To motivate statistical relationships, let us consider a mathematical relation between two mathematical

More information

The Multiple Regression Model

The Multiple Regression Model Multiple Regression The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & or more independent variables (X i ) Multiple Regression Model with k Independent Variables:

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #6 STA 8 Applied Linear Models: Regression Analysis Spring 011 Solution for Homework #6 6. a) = 11 1 31 41 51 1 3 4 5 11 1 31 41 51 β = β1 β β 3 b) = 1 1 1 1 1 11 1 31 41 51 1 3 4 5 β = β 0 β1 β 6.15 a) Stem-and-leaf

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 PDF file location: http://www.murraylax.org/rtutorials/regression_anovatable.pdf

More information

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression Chapter 14 Student Lecture Notes 14-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Multiple Regression QMIS 0 Dr. Mohammad Zainal Chapter Goals After completing

More information

Regression Models. Chapter 4. Introduction. Introduction. Introduction

Regression Models. Chapter 4. Introduction. Introduction. Introduction Chapter 4 Regression Models Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna 008 Prentice-Hall, Inc. Introduction Regression analysis is a very valuable tool for a manager

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal

Econ 3790: Business and Economics Statistics. Instructor: Yogesh Uppal Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal yuppal@ysu.edu Sampling Distribution of b 1 Expected value of b 1 : Variance of b 1 : E(b 1 ) = 1 Var(b 1 ) = σ 2 /SS x Estimate of

More information

Regression and Statistical Inference

Regression and Statistical Inference Regression and Statistical Inference Walid Mnif wmnif@uwo.ca Department of Applied Mathematics The University of Western Ontario, London, Canada 1 Elements of Probability 2 Elements of Probability CDF&PDF

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

Oct Simple linear regression. Minimum mean square error prediction. Univariate. regression. Calculating intercept and slope

Oct Simple linear regression. Minimum mean square error prediction. Univariate. regression. Calculating intercept and slope Oct 2017 1 / 28 Minimum MSE Y is the response variable, X the predictor variable, E(X) = E(Y) = 0. BLUP of Y minimizes average discrepancy var (Y ux) = C YY 2u C XY + u 2 C XX This is minimized when u

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Chapter 4. Regression Models. Learning Objectives

Chapter 4. Regression Models. Learning Objectives Chapter 4 Regression Models To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian Peterson Learning Objectives After completing

More information

Ch. 1: Data and Distributions

Ch. 1: Data and Distributions Ch. 1: Data and Distributions Populations vs. Samples How to graphically display data Histograms, dot plots, stem plots, etc Helps to show how samples are distributed Distributions of both continuous and

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. 12er12 Chapte Bivariate i Regression (Part 1) Bivariate Regression Visual Displays Begin the analysis of bivariate data (i.e., two variables) with a scatter plot. A scatter plot - displays each observed

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

TMA4255 Applied Statistics V2016 (5)

TMA4255 Applied Statistics V2016 (5) TMA4255 Applied Statistics V2016 (5) Part 2: Regression Simple linear regression [11.1-11.4] Sum of squares [11.5] Anna Marie Holand To be lectured: January 26, 2016 wiki.math.ntnu.no/tma4255/2016v/start

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij =

K. Model Diagnostics. residuals ˆɛ ij = Y ij ˆµ i N = Y ij Ȳ i semi-studentized residuals ω ij = ˆɛ ij. studentized deleted residuals ɛ ij = K. Model Diagnostics We ve already seen how to check model assumptions prior to fitting a one-way ANOVA. Diagnostics carried out after model fitting by using residuals are more informative for assessing

More information

Regression Analysis II

Regression Analysis II Regression Analysis II Measures of Goodness of fit Two measures of Goodness of fit Measure of the absolute fit of the sample points to the sample regression line Standard error of the estimate An index

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable,

PART I. (a) Describe all the assumptions for a normal error regression model with one predictor variable, Concordia University Department of Mathematics and Statistics Course Number Section Statistics 360/2 01 Examination Date Time Pages Final December 2002 3 hours 6 Instructors Course Examiner Marks Y.P.

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Math 36b May 7, 2009 Contents 2 ANOVA: Analysis of Variance 16 2.1 Basic ANOVA........................... 16 2.1.1 the model......................... 17 2.1.2 treatment sum of squares.................

More information

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

More information

STA121: Applied Regression Analysis

STA121: Applied Regression Analysis STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 17 Simple Linear Regression and Correlation 17.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017

UNIVERSITY OF MASSACHUSETTS. Department of Mathematics and Statistics. Basic Exam - Applied Statistics. Tuesday, January 17, 2017 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Tuesday, January 17, 2017 Work all problems 60 points are needed to pass at the Masters Level and 75

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim

Figure 1: The fitted line using the shipment route-number of ampules data. STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim 0.0 1.0 1.5 2.0 2.5 3.0 8 10 12 14 16 18 20 22 y x Figure 1: The fitted line using the shipment route-number of ampules data STAT5044: Regression and ANOVA The Solution of Homework #2 Inyoung Kim Problem#

More information

Finding Relationships Among Variables

Finding Relationships Among Variables Finding Relationships Among Variables BUS 230: Business and Economic Research and Communication 1 Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions, hypothesis

More information

Bias Variance Trade-off

Bias Variance Trade-off Bias Variance Trade-off The mean squared error of an estimator MSE(ˆθ) = E([ˆθ θ] 2 ) Can be re-expressed MSE(ˆθ) = Var(ˆθ) + (B(ˆθ) 2 ) MSE = VAR + BIAS 2 Proof MSE(ˆθ) = E((ˆθ θ) 2 ) = E(([ˆθ E(ˆθ)]

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

Regression Analysis. BUS 735: Business Decision Making and Research. Learn how to detect relationships between ordinal and categorical variables.

Regression Analysis. BUS 735: Business Decision Making and Research. Learn how to detect relationships between ordinal and categorical variables. Regression Analysis BUS 735: Business Decision Making and Research 1 Goals of this section Specific goals Learn how to detect relationships between ordinal and categorical variables. Learn how to estimate

More information

Lecture 5: Linear Regression

Lecture 5: Linear Regression EAS31136/B9036: Statistics in Earth & Atmospheric Sciences Lecture 5: Linear Regression Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition of Wilks book)

More information

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model. Statistical Methods in Business Lecture 5. Linear Regression We like to capture and represent the relationship between a set of possible causes and their response, by using a statistical predictive model.

More information

Inference in Normal Regression Model. Dr. Frank Wood

Inference in Normal Regression Model. Dr. Frank Wood Inference in Normal Regression Model Dr. Frank Wood Remember We know that the point estimator of b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 Last class we derived the sampling distribution of b 1, it being

More information

ECON 450 Development Economics

ECON 450 Development Economics ECON 450 Development Economics Statistics Background University of Illinois at Urbana-Champaign Summer 2017 Outline 1 Introduction 2 3 4 5 Introduction Regression analysis is one of the most important

More information

Chapter 4: Regression Models

Chapter 4: Regression Models Sales volume of company 1 Textbook: pp. 129-164 Chapter 4: Regression Models Money spent on advertising 2 Learning Objectives After completing this chapter, students will be able to: Identify variables,

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Diagnostics and Remedial Measures: An Overview

Diagnostics and Remedial Measures: An Overview Diagnostics and Remedial Measures: An Overview Residuals Model diagnostics Graphical techniques Hypothesis testing Remedial measures Transformation Later: more about all this for multiple regression W.

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Biostatistics 380 Multiple Regression 1. Multiple Regression

Biostatistics 380 Multiple Regression 1. Multiple Regression Biostatistics 0 Multiple Regression ORIGIN 0 Multiple Regression Multiple Regression is an extension of the technique of linear regression to describe the relationship between a single dependent (response)

More information

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com 12 Simple Linear Regression Material from Devore s book (Ed 8), and Cengagebrain.com The Simple Linear Regression Model The simplest deterministic mathematical relationship between two variables x and

More information

Chap The McGraw-Hill Companies, Inc. All rights reserved.

Chap The McGraw-Hill Companies, Inc. All rights reserved. 11 pter11 Chap Analysis of Variance Overview of ANOVA Multiple Comparisons Tests for Homogeneity of Variances Two-Factor ANOVA Without Replication General Linear Model Experimental Design: An Overview

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Lecture 13 Extra Sums of Squares

Lecture 13 Extra Sums of Squares Lecture 13 Extra Sums of Squares STAT 512 Spring 2011 Background Reading KNNL: 7.1-7.4 13-1 Topic Overview Extra Sums of Squares (Defined) Using and Interpreting R 2 and Partial-R 2 Getting ESS and Partial-R

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

COPYRIGHT. Abraham, B. and Ledolter, J. Introduction to Regression Modeling Belmont, CA: Duxbury Press, 2006

COPYRIGHT. Abraham, B. and Ledolter, J. Introduction to Regression Modeling Belmont, CA: Duxbury Press, 2006 COPYRIGHT Abraham, B. and Ledolter, J. Introduction to Regression Modeling Belmont, CA: Duxbury Press, 2006 2 Simple Linear Regression 2.1 THE MODEL In this chapter, we consider the linear regression model

More information

CS 5014: Research Methods in Computer Science

CS 5014: Research Methods in Computer Science Computer Science Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Fall 2010 Copyright c 2010 by Clifford A. Shaffer Computer Science Fall 2010 1 / 207 Correlation and

More information

The simple linear regression model discussed in Chapter 13 was written as

The simple linear regression model discussed in Chapter 13 was written as 1519T_c14 03/27/2006 07:28 AM Page 614 Chapter Jose Luis Pelaez Inc/Blend Images/Getty Images, Inc./Getty Images, Inc. 14 Multiple Regression 14.1 Multiple Regression Analysis 14.2 Assumptions of the Multiple

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X 1.04) =.8508. For z < 0 subtract the value from

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

Theorem A: Expectations of Sums of Squares Under the two-way ANOVA model, E(X i X) 2 = (µ i µ) 2 + n 1 n σ2

Theorem A: Expectations of Sums of Squares Under the two-way ANOVA model, E(X i X) 2 = (µ i µ) 2 + n 1 n σ2 identity Y ijk Ȳ = (Y ijk Ȳij ) + (Ȳi Ȳ ) + (Ȳ j Ȳ ) + (Ȳij Ȳi Ȳ j + Ȳ ) Theorem A: Expectations of Sums of Squares Under the two-way ANOVA model, (1) E(MSE) = E(SSE/[IJ(K 1)]) = (2) E(MSA) = E(SSA/(I

More information

2.2 Classical Regression in the Time Series Context

2.2 Classical Regression in the Time Series Context 48 2 Time Series Regression and Exploratory Data Analysis context, and therefore we include some material on transformations and other techniques useful in exploratory data analysis. 2.2 Classical Regression

More information

Chapter 14 Simple Linear Regression (A)

Chapter 14 Simple Linear Regression (A) Chapter 14 Simple Linear Regression (A) 1. Characteristics Managerial decisions often are based on the relationship between two or more variables. can be used to develop an equation showing how the variables

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information