LECTURE 7 The Standard Model. Instructor: Shih-Chieh Hsu

Size: px
Start display at page:

Download "LECTURE 7 The Standard Model. Instructor: Shih-Chieh Hsu"

Transcription

1 LECTURE 7 The Standard Model Instructor: Shih-Chieh Hsu

2 Announcement 2 ATLAS Virtual Visit (PAB A110) Sep 7 Vidyo connection will start from 9:20am At least one question for CERN host from each group live- virtual- visit.web.cern.ch/atlas- live- virtual- visit/2016/ Seattle.html

3 The CMS Masterclass 3 LHC CMS Masterclass (PAB A110) Sep 8 and Sep 9 Team-up with your symposium group At least one laptop per group (two laptops are better) Make sure your browser can run ispy and CIMA software Read introduction and analysis tips before lectures Let s re-discovery W, Z and possibly H boson using CMS real data!

4 Lecture 7 4 The Particle Adventure

5 5 New Quantum Theory (First Quantization)

6 First Quantization 6 The quantization of equation of motion of electron of atom is induced by the boundary condition of wave function from electric field of positive nucleus Successfully describe the spectrum of atom. Electron is moving in the speed v << c. Quantum Mechanics + Newtonian Relativity 2 2m 2 Ψ( r,t) + U ( r )Ψ( r,t) = i t Ψ ( r,t) Schrödinger equation

7 Dirac Equation 7 Dirac tries to go beyond: Quantum Mechanics + Special Relativity -> Difficulty of negative energy -> Difficulty of develop motion of equation for photon Dirac equation

8 2 nd Quantization 8 From Particle to Field Single-particle to Many-particle theory Particle is an excitation (cluster of energy) of quantum field Each type of particle has a corresponding Field This leads to a complete quantum theory of electron and light!!!

9 9 Timeline I

10 Timeline II 10 H

11 The Modern Atom Model 11 If protons and neutrons a centimeter in diameter electrons and quarks would be less than the diameter of a hair the entire atom's diameter would be greater than the length of thirty football fields!

12 Scale of the atom 12 We don't know exactly how small quarks and electrons are;; they are definitely smaller than meters, and they might literally be points, but we do not know. It is also possible that quarks and electrons are not fundamental after all!

13 What are we looking for? 13 We have now discovered about two hundred particles (most of which aren't fundamental). They are named with letters from the Greek and Roman alphabets. Enrico Fermi said Young man, if I could remember the names of these particles, I would have been a botanist!"

14 The Standard Model 14 6 quarks. 6 leptons. The best-known lepton is the electron. We will talk about leptons in just a few pages. Force carrier particles, like the photon. We will talk about these particles later.

15 Quarks and Leptons 15 Everything you saw is made from quarks and leptons. Quarks behave differently than leptons, and for each kind of matter particle there is a corresponding antimatter particle.

16 Matter and Antimatter 16 Antiparticles look and behave just like their corresponding matter particles, except they have opposite charges.

17 What is Antimatter 17 evidence for antimatter in this early bubble chamber photo. The magnetic field in this chamber makes negative particles curl left and positive particles curl right. the "up quark" u has an "up antiquark, pronounced u-bar. The antielectron is called a positron and is designated e +.)

18 Quarks 18 Quarks have the unusual characteristic of having a fractional electric charge Quarks also carry another type of charge called color charge,

19 Naming of Quarks , Murray Gell-Mann and George Zweig suggested that hundreds of the particles known at the time could be explained as combinations of just three fundamental particles. Gell-Mann chose the name "quarks," pronounced "kworks," Gell-Mann George Zweig

20 Quarks Naming 20 There are six flavors of quarks. "Flavors" just means different kinds. The two lightest are called up and down. The third quark is called strange. It was named after the "strangely" long lifetime of the K particle, the first composite particle found to contain this quark. The fourth quark type, the charm quark, was named on a whim. It was discovered in 1974 almost simultaneously at both the Stanford Linear Accelerator Center (SLAC) and at Brookhaven National Laboratory.

21 Heavy Quarks 21 The bottom quark was first discovered at Fermi National Lab (Fermilab) in 1977, in a composite particle called Upsilon. The top quark was discovered last, also at Fermilab, in It is the most massive quark. It had been predicted for a long time but had never been observed successfully until then.

22 Hadrons: Baryons and Mesons 22 Like social elephants, quarks only exist in groups with other quarks and are never found alone. Composite particles made of quarks are called (uud), protons Pion, which is made of an up quark and a down anitiquark.

23 Leptons 23 "Lepton" comes from the Greek for "small mass," However, the tau lepton is more than 3000 times as massive as the electron. Quarks are sociable and only exist in composite particles with other quarks, whereas leptons are solitary particles.

24 Lepton Decays 24 the muon and the tau, are not found in ordinary matter at all. This is because when they are produced they very quickly decay, or transform, into lighter leptons. Physicists have observed that some types of lepton decays are possible and some are not. In order to explain this, three lepton families: the electron and its neutrino, the muon and its neutrino, and the tau and its neutrino. The number of members in each family must remain constant in a decay.

25 Lepton Type Conservation 25 We use the terms "electron number," "muon number," and "tau number" to refer to the lepton family of a particle. Electrons and their neutrinos have electron number +1, positrons and their antineutrinos have electron number -1,

26 Quiz 26 Which lepton decays are possible? Why or why not? Yes! Charge, tau number, electron number, and energy are all conserved. No! Muon number is not conserved. A muon has a muon number of 1, and thus the right side of the decay equation has muon number 1 No! energy is not conserved. A muon has a lot more mass than an electron,

27 Neutrinos 27 it was through a careful study of radioactive decays that physicists hypothesized the neutrino's existence. Because neutrinos were produced in great abundance in the early universe and rarely interact with matter, there are a lot of them in the Universe. Their tiny mass but huge numbers may contribute to total mass of the universe and affect its expansion.

28 Quiz 28 What are protons made of? Protons are made of two up quarks and one down quark, expressed as uud. What are electrons made of? As far as we know, electrons aren't composed of smaller particles, they are fundamental! Which of the following are made of quarks? Baryons? Mesons? Barons? Yes, they are made of three quarks put together. Yes, they are made of one quark and one antiquark. Yes, the English nobility are also made of quarks.

29 The Four Interactions 29 What holds things together? What's the difference between a force and an interaction? a force is the effect on a particle due to the presence of other particles. The interactions of a particle include all the forces that affect it, but also include decays and annihilations that the particle might go through. the particles which carry the interactions force carrier particles.

30 30 Elementary Particles

31 How does matter interact? 31 How do two magnets "feel" each other's presence and attract or repel accordingly? How does the sun attract the earth? We know the answers to these questions are "magnetism" and "gravity," but what are these forces? At a fundamental level, a force isn't just something that happens to particles. It is a thing which is passed between two particles.

32 The Unseen effect 32 You can think about forces as being analogous to the following situation: all interactions which affect matter particles are due to an exchange of force carrier particles

33 Electromagnetism 33 The carrier particle of the electromagnetic force is the photon Photons have zero mass, as far as we know, and always travel at the "speed of light", c, which is about 300,000,000 meters per second, or 186,000 miles per second, in a vacuum.

34 Residual EM force 34 Atoms usually have the same numbers of protons and electrons. They are electrically neutral, Since they are neutral, what causes them to stick together to form stable molecules? the charged parts of one atom can interact with the charged parts of another atom. This allows different atoms to bind together, an effect called the residual electromagnetic force.

35 What about the nucleus? 35 What binds the nucleus together? why doesn't the nucleus blow apart? Since neutrons have no charge and the positively-charged protons repel one another, So how can we account for this dilemma?

36 Strong and Color Charge 36 Quarks have an altogether different kind of charge called color charge The force between color-charged particles is very strong, so this force is "creatively" called Strong The force carrier is called Gluon composite particles made out of quarks have no net color charge (they are color neutral).

37 Color Charge 37 Gluons carry two colors "Color charge" has nothing to do with the visible colors, it is just a convenient naming convention for a mathematical system physicists developed to explain their observations about quarks in hadrons.

38 Quark Confinrment 38 Color-charged particles cannot be found individually. For this reason, the color-charged quarks are confined in groups (hadrons) with other quarks. These composites are color neutral. only baryons (three different colors) and mesons (color and anticolor) are color-neutral. ud or uddd that cannot be combined into color-neutral states are never observed.

39 Gluons and Quarks 39 The quarks in a given hadron madly exchange gluons. For this reason, physicists talk about the color-force field which consists of the gluons holding the bunch of quarks together. Quarks cannot exist individually because the color force increases as they are pulled apart.

40 Color exchange 40 When a quark emits or absorbs a gluon, that quark's color must change in order to conserve color charge. For example, suppose a red quark changes into a blue quark and emits a gluon. What is the color of the gluon? red/antiblue gluon (the image below illustrates antiblue as yellow). The net color is still red.

41 Residual strong force 41 the strong force binds quarks together because quarks have color charge. What holds the nucleus together? since positive protons repel each other with electromagnetic force, and protons and neutrons are color-neutral. The strong force between the quarks in one proton and the quarks in another proton is strong enough to overwhelm the repulsive electromagnetic force.

42 Weak Interactions 42 Weak interactions are responsible for the decay of massive quarks and leptons into lighter quarks and leptons. When a quark or lepton changes type (a muon changing to an electron, for instance) it is said to change flavor. All flavor changes are due to the weak interaction. the weak interactions are the W +, W -, and the Z

43 Electroweak 43 In the Standard Model the weak and the electromagnetic interactions have been combined into a unified electroweak theory. Physicists had long believed that weak forces were closely related to electromagnetic force At very short distances (about meters) the strength of the weak interaction is comparable to that of the electromagnetic. at thirty times that distance (3x10-17 m) the strength of the weak interaction is 1/10,000 th than that of the electromagnetic interaction. At distances typical for quarks in a proton or neutron (10-15 m) the force is even tinier.

44 Force Carrier Comparison 44 the weak and electromagnetic forces have essentially equal strengths. the strength of the interaction depends strongly on both the mass of the force carrier and the distance of the interaction. The difference between their observed strengths is due to the huge difference in mass between the W and Z particles, which are very massive, and the photon, which has no mass as far as we know.

45 Gravity 45 the gravity force carrier particle has not been found. Such a particle, however, is predicted to exist and may someday be found: the graviton. Why does the SM work without explaining Gravity? the effects of gravity are extremely tiny in most particle physics situations compared to the other three interactions, so theory and experiment can be compared without including gravity in the calculations.

46 46 Interaction Summary

47 Quiz 47 Which fundamental interaction is responsible for: Friction? Nuclear Binding? Planetary orbits? residual electromagnetic interactions between the atoms of the two materials. residual strong interactions between the various parts of the nucleus. the gravity that attracts them to the sun!

48 Quiz2 48 Which interactions act on neutrinos? Weak and Gravity Which interaction has heavy carriers? Weak (W+, W-, and Z) Which interactions act on the protons in you? All of them. Which force carriers cannot be isolated? Why? Gluons, because they carry color charge themselves. Which force carriers have not been observed? Gravitons (Gluons have been observed indirectly.)

49 49 Interactions

50 Quantum Mechanics 50 "quantum," which means "broken into increments or parcels, is used to describe the physics of very small particles A few of the important quantum numbers of particles are: Electric charge. Quarks may have 2/3 or 1/3 electron charges, but they only form composite particles with integer electric charge. Color charge. A quark carries one of three color charges and a gluon carries one of eight color-anticolor charges. All other particles are color neutral. Flavor. Flavor distinguishes quarks (and leptons) from one another.

51 Spin 51 Spin is a bizarre but important physical quantity. Large objects like planets or marbles may have angular momentum and a magnetic field because they spin. Since particles also to appear to have their own angular momentum and tiny magnetic moments, physicists called this particle property spin. This is a misleading term since particles are not actually "spinning." Spin is quantized to units of 0, 1/2, 1, 3/2 (times Planck's Constant, ) and so on.

52 Pauli Exclusion Principle 52 Pauli Exclusion Principle, no two particles in the same quantum state could exist in the same place at the same time. But it has been since discovered that a certain group of particles do not obey this principle. Particles that do obey the Pauli Exclusion Principle are called fermions, and those that do not are called bosons.

53 53 Fermions & Bosons Behavior

54 Fermions and Bosons: Explained 54 The predicted graviton has a spin of 2.

55 A Lot To Remember 55 We have answered the questions, "What is the world made of?" and "What holds it together?" The world is made of six quarks and six leptons. Everything we see is a conglomeration of quarks and leptons. There are four fundamental forces and there are force carrier particles associated with each force. We have also discussed how a particle's state (set of quantum numbers) may affect how it interacts with other particles. These are the essential aspects of the Standard Model. It is the most complete explanation of the fundamental particles and interactions to date.

56 56 Elementary Particles

57 57 Big Theory Chart

58 The Higgs Boson 58 Its discovery helps confirm the mechanism by which fundamental particles get mass.

59 The Higgs Boson 59 In 1964, six theoretical physicists hypothesized a new field (like an electromagnetic field) that would permeate all of space and solve a critical problem for our understanding of the universe. Photo of Francois Englert and Peter Higgs - CERN

60 The Mechanism giving mass to Particle 60 Interaction with the Higgs Field.

61 The Mechanism giving mass to the Boson 61 How does the Higgs Boson get mass?

62 62 How to detect the Higgs Boson?

63 63 Detecting invisible

64 What are debris? 64 Life time is longer enough to fly through the detector The tracker radius is about 1m The lifetime of particle is longer than

65 65 Particles and Detectors

66 How to measure charged & momentum? 66 Charge Momentum What happen for a neutral particle passing through magnet?

67 67 Particles and Detectors

68 Generic Design Cylinders wrapped around the beam pipe From inner to outer... Tracking Electromagnetic calorimeter Hadronic calorimeter Magnet* Muon chamber Detector Design * location of magnet depends on specific detector design

69 69 Particle Detection

70 Quiz1 70 e-, e+ muon+, muon-

71 Quiz2 71 quark-antiquark quark-antiquark+ gluon (?)

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

Chapter 46. Particle Physics and Cosmology

Chapter 46. Particle Physics and Cosmology Chapter 46 Particle Physics and Cosmology Atoms as Elementary Particles Atoms From the Greek for indivisible Were once thought to be the elementary particles Atom constituents Proton, neutron, and electron

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

The Particle Adventure Internet Activity II

The Particle Adventure Internet Activity II Name The Particle Adventure Internet Activity II Directions: 1) Proceed to: http://particleadventure.org 2) Once at the site, click on Start Here 3) On the Home Glossary/Table of Contents at left, go to

More information

An Introduction to Particle Physics

An Introduction to Particle Physics An Introduction to Particle Physics The Universe started with a Big Bang The Universe started with a Big Bang What is our Universe made of? Particle physics aims to understand Elementary (fundamental)

More information

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does?

The Particle World. This talk: What is our Universe made of? Where does it come from? Why does it behave the way it does? The Particle World What is our Universe made of? Where does it come from? Why does it behave the way it does? Particle physics tries to answer these questions. This talk: particles as we understand them

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

The Standard Model of Particle Physics

The Standard Model of Particle Physics The Standard Model of Particle Physics Jesse Chvojka University of Rochester PARTICLE Program Let s s look at what it is Description of fundamental particles quarks and leptons Three out of Four (Forces)

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

Particle physics: what is the world made of?

Particle physics: what is the world made of? Particle physics: what is the world made of? From our experience from chemistry has told us about: Name Mass (kg) Mass (atomic mass units) Decreasing mass Neutron Proton Electron Previous lecture on stellar

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden

Particle Physics. Tommy Ohlsson. Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden Particle Physics Tommy Ohlsson Theoretical Particle Physics, Department of Physics, KTH Royal Institute of Technology, Stockholm, Sweden International Baccalaureate T. Ohlsson (KTH) Particle Physics 1/

More information

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell

TEACHER. The Atom 4. Make a drawing of an atom including: Nucleus, proton, neutron, electron, shell Click on the SUBATOMIC roadmap button on the left. Explore the Subatomic Universe Roadmap to answer the following questions. Matter 1. What 3 atoms is a water molecule made of? Two Hydrogen atoms and one

More information

Lecture 02. The Standard Model of Particle Physics. Part I The Particles

Lecture 02. The Standard Model of Particle Physics. Part I The Particles Lecture 02 The Standard Model of Particle Physics Part I The Particles The Standard Model Describes 3 of the 4 known fundamental forces Separates particles into categories Bosons (force carriers) Photon,

More information

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1

Wesley Smith, U. Wisconsin, January 21, Physics 301: Introduction - 1 Wesley Smith, U. Wisconsin, January 21, 2014 Physics 301: Introduction - 1 Physics 301: Physics Today Prof. Wesley Smith, wsmith@hep.wisc.edu Undergraduate Physics Colloquium! Discussions of current research

More information

Modern physics 1 Chapter 13

Modern physics 1 Chapter 13 Modern physics 1 Chapter 13 13. Particle physics Particle studied within the ATLAS-project CERN In the beginning of 1930, it seemed that all the physics fundaments was placed within the new areas of elementary

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Most of Modern Physics today is concerned with the extremes of matter:

Most of Modern Physics today is concerned with the extremes of matter: Most of Modern Physics today is concerned with the extremes of matter: Very low temperatures, very large numbers of particles, complex systems Æ Condensed Matter Physics Very high temperatures, very large

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Announcement. Station #2 Stars. The Laws of Physics for Elementary Particles. Lecture 9 Basic Physics

Announcement. Station #2 Stars. The Laws of Physics for Elementary Particles. Lecture 9 Basic Physics Announcement Pick up your quiz after this lecture as you leave the lecture hall. Homework#2 due on Thursday No hand-written homework! Please staple them! Put it in the box before the lecture begins! Station

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007

Saturday Morning Physics -- Texas A&M University. What is Matter and what holds it together? Dr. Rainer J. Fries. January 27, 2007 Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries

Saturday Morning Physics -- Texas A&M University Dr. Rainer J. Fries Saturday Morning Physics -- Texas A&M University Particles and Forces What is Matter and what holds it together? Dr. Rainer J. Fries January 27, 2007 Zooming in on the World around us Particles and Forces

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013

Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 Particle Physics (concise summary) QuarkNet summer workshop June 24-28, 2013 1 Matter Particles Quarks: Leptons: Anti-matter Particles Anti-quarks: Anti-leptons: Hadrons Stable bound states of quarks Baryons:

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories

The Standard Model. 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories The Standard Model 1 st 2 nd 3 rd Describes 3 of the 4 known fundamental forces. Separates particle into categories Bosons (force carriers) Photon, W, Z, gluon, Higgs Fermions (matter particles) 3 generations

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

Elementary Particles - Quarks, Bosons, Leptons. The three types of subatomic particles are: Protons Neutrons Electrons.

Elementary Particles - Quarks, Bosons, Leptons. The three types of subatomic particles are: Protons Neutrons Electrons. Elementary Particles - Quarks, Bosons, Leptons You have already learned about atoms and their parts. Atoms are made of subatomic particles. The three types of subatomic particles are: Protons Neutrons

More information

Intro to Particle Physics and The Standard Model. Robert Clare UCR

Intro to Particle Physics and The Standard Model. Robert Clare UCR Intro to Particle Physics and The Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960 s Timeline

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1 1. Introduction Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 1. Introduction 1 In this section... Course content Practical information Matter Forces Dr. Tina Potter 1. Introduction 2 Course

More information

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields

Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields Lecture 26 Fundamentals of Physics Phys 120, Fall 2015 Quantum Fields A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, December 3, 2015 Overview Quantized Fields: the reason for particles

More information

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang

Earlier in time, all the matter must have been squeezed more tightly together and a lot hotter AT R=0 have the Big Bang Re-cap from last lecture Discovery of the CMB- logic From Hubble s observations, we know the Universe is expanding This can be understood theoretically in terms of solutions of GR equations Earlier in

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS History of Elementary Particles THE CLASSICAL ERA (1897-1932) Elementary particle physics was born in 1897 with J.J. Thomson s discovery of the ELECTRONS

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Introduction to Particle Physics and the Standard Model. Robert Clare UCR

Introduction to Particle Physics and the Standard Model. Robert Clare UCR Introduction to Particle Physics and the Standard Model Robert Clare UCR Timeline of particle physics Ancient Greeks Rutherford 1911 Rutherford Chadwick Heisenberg 1930 s Hofstader Gell-Mann Ne eman 1960

More information

Democritus, a fifth century B.C. philosopher, is credited with being the first

Democritus, a fifth century B.C. philosopher, is credited with being the first This paper will give a general overview of the current thoughts on the building blocks of atoms through the scope of the Standard Model. There will be an abridged explanation of the interactions that these

More information

Chapter 30. Nuclear Energy and Elementary Particles

Chapter 30. Nuclear Energy and Elementary Particles Chapter 30 Nuclear Energy and Elementary Particles Processes of Nuclear Energy Fission A nucleus of large mass number splits into two smaller nuclei Fusion Two light nuclei fuse to form a heavier nucleus

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.00pm LRB Intro lecture 28-Jan-15 12.00pm LRB Problem solving (2-Feb-15 10.00am E Problem Workshop) 4-Feb-15

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

Finish up our overview of small and large

Finish up our overview of small and large Finish up our overview of small and large Lecture 5 Limits of our knowledge Clicker practice quiz Some terminology... "Elementary particles" = objects that make up atoms (n,p,e) or are produced when atoms

More information

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 Particles and Interactions Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 What is the world made of? In the ancient time: 4 elements 19 century atoms Beginning 20 th century

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

What is matter and how is it formed?

What is matter and how is it formed? What is matter and how is it formed? Lesson 6: Subatomic Particles Subatomic particles refers to particles that are more "fundamental" than... Are these fundamental particles or are they made up of smaller,

More information

Physics 7730: Particle Physics

Physics 7730: Particle Physics Physics 7730: Particle Physics! Instructor: Kevin Stenson (particle physics experimentalist)! Office: Duane F317 (Gamow tower)! Email: kevin.stenson@colorado.edu! Phone: 303-492-1106! Web page: http://www-hep.colorado.edu/~stenson/!

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV Mass and Charge Patterns in Hadrons To tame the particle zoo, patterns in the masses and charges can be found that will help lead to an explanation of the large number of particles in terms of just a few

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

Beyond the Quark Model: Tetraquarks and. Pentaquarks

Beyond the Quark Model: Tetraquarks and. Pentaquarks Beyond the Quark Model: Tetraquarks and Pentaquarks in completion of Drexel University s Physics 502 Final Tyler Rehak March 15, 2016 The Standard Model of particle physics is continually being tested

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future

Beyond the standard model? From last time. What does the SM say? Grand Unified Theories. Unifications: now and the future From last time Quantum field theory is a relativistic quantum theory of fields and interactions. Fermions make up matter, and bosons mediate the forces by particle exchange. Lots of particles, lots of

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Physics 424: Dr. Justin Albert (call me Justin!)

Physics 424: Dr. Justin Albert (call me Justin!) Physics 424: Dr. Justin Albert (call me Justin!) A Brief History of Particle Physics Discoveries (Or: Figuring out What the Universe is Made Of ) Looking Inside the Atom: e -, p, and n! 1897: J.J. Thomson

More information

Phys 102 Lecture 28 Life, the universe, and everything

Phys 102 Lecture 28 Life, the universe, and everything Phys 102 Lecture 28 Life, the universe, and everything 1 Today we will... Learn about the building blocks of matter & fundamental forces Quarks and leptons Exchange particle ( gauge bosons ) Learn about

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

PHL424: 4 fundamental forces in nature

PHL424: 4 fundamental forces in nature PHL424: 4 fundamental forces in nature The familiar force of gravity pulls you down into your seat, toward the Earth's center. You feel it as your weight. Why don't you fall through your seat? Well, another

More information

The Goals of Particle Physics

The Goals of Particle Physics The Goals of Particle Physics Richard (Ryszard) Stroynowski Department of Physics Southern Methodist University History of Elementary Particles Science as a field of study derives from the Western Civilization

More information

Some fundamental questions

Some fundamental questions Some fundamental questions What is the standard model of elementary particles and their interactions? What is the origin of mass and electroweak symmetry breaking? What is the role of anti-matter in Nature?

More information

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Modern Physics: Standard Model of Particle Physics (Invited Lecture) 261352 Modern Physics: Standard Model of Particle Physics (Invited Lecture) Pichet Vanichchapongjaroen The Institute for Fundamental Study, Naresuan University 1 Informations Lecturer Pichet Vanichchapongjaroen

More information

CHAPTER 14 Particle Physics

CHAPTER 14 Particle Physics CHAPTER 14 Particle Physics 14.1 Early Discoveries 14.2 The Fundamental Interactions 14.3 Classification of Particles 14.4 Conservation Laws and Symmetries 14.5 Quarks 14.6 The Families of Matter 14.7

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

Elementary (?) Particles

Elementary (?) Particles Elementary (?) Particles Dan Styer; 12 December 2018 This document summarizes the so-called standard model of elementary particle physics. It cannot, in seven pages, even touch upon the copious experimental

More information

Chapter S4: Building Blocks of the Universe

Chapter S4: Building Blocks of the Universe Chapter S4 Lecture Chapter S4: Building Blocks of the Universe Building Blocks of the Universe S4.1 The Quantum Revolution Our goals for learning: How has the quantum revolution changed our world? How

More information

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced) PC 3 Foundations of Particle Physics Lecturer: Dr F. Loebinger Books: - Martin, B.R. & Shaw, G Particle Physics (Wiley) (recommended) - Perkins, D.H. Introduction to High Energy Physics (CUP) (advanced)

More information

Contents. Objectives Newton s Laws preliminaries 1 st Law pushing things 2 nd Law 3 rd Law A Problem Fundamental Forces Fundamental Particles Recap

Contents. Objectives Newton s Laws preliminaries 1 st Law pushing things 2 nd Law 3 rd Law A Problem Fundamental Forces Fundamental Particles Recap Physics 121 for Majors Class 9 Newton s Laws Standard Model Last Class Matrices Classical boosts Lorentz boosts Space-time four-vectors Space and time problems in relativity Today s Class Newton s Laws

More information

Introduction. Read: Ch 1 of M&S

Introduction. Read: Ch 1 of M&S Introduction What questions does this field address? Want to know the basic law of nature. Can we unify all the forces with one equation or one theory? Read: Ch 1 of M&S K.K. Gan L1: Introduction 1 Particle

More information

Building Blocks of the Universe

Building Blocks of the Universe Building Blocks of the Universe S4.1 The Quantum Revolution Our goals for learning: How has the quantum revolution changed our world? The Quantum Realm Light behaves like particles (photons). Atoms consist

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits

A few thoughts on 100 years of modern physics. Quanta, Quarks, Qubits A few thoughts on 100 years of modern physics Quanta, Quarks, Qubits Quanta Blackbody radiation and the ultraviolet catastrophe classical physics does not agree with the observed world Planck s idea: atoms

More information

MODERN PHYSICS. A. s c B. dss C. u

MODERN PHYSICS. A. s c B. dss C. u MODERN PHYSIS Name: Date: 1. Which color of light has the greatest energy per photon? 4. The composition of a meson with a charge of 1 elementary charge could be. red. green. blue D. violet. s c. dss.

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc.

Chapter 29 Lecture. Particle Physics. Prepared by Dedra Demaree, Georgetown University Pearson Education, Inc. Chapter 29 Lecture Particle Physics Prepared by Dedra Demaree, Georgetown University Particle Physics What is antimatter? What are the fundamental particles and interactions in nature? What was the Big

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com OR K π 0 + µ + v ( µ ) M. (a) (i) quark antiquark pair OR qq OR named quark antiquark pair 0 (iii) us (b) (i) Weak any of the following also score mark: weak interaction weak interaction force weak nuclear

More information

The Particle Adventure Internet Activity I

The Particle Adventure Internet Activity I Name The Particle Adventure Internet Activity I Directions: 1) Proceed to: http://particleadventure.org 2) Once at the site, click on Start Here 3) You should find yourself on the What is Fundamental?

More information