Is the wave function real or not?

Size: px
Start display at page:

Download "Is the wave function real or not?"

Transcription

1 Is the wave function real or not? Lessons from quantum gravity Claus Kiefer Institut für Theoretische Physik Universität zu Köln

2 Contents Quantum Mechanics Quantum Gravity Quantum Cosmology Lessons

3 The superposition principle Let Ψ 1 and Ψ 2 be physical states. Then, αψ 1 + βψ 2 is again a physical state. For more than one degree of freedom, this leads to the entanglement between systems (Verschränkung). Linearity of the Schrödinger equation: the sum of two solutions is again a solution. Classical states form only a tiny subset in the space of all possible states. Erwin Schrödinger 1935: I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought. By the interaction the two representatives (or ψ-functions) have become entangled.... Another way of expressing the peculiar situation is: the best possible knowledge of a whole does not necessarily include the best possible knowledge of all its parts, even though they may be entirely separated...

4 Experimental tests of the superposition principle Binding energies of atoms and molecules (Helium,... ) Interference of fullerenes C 60 and C 70 and more complicated molecules Welcher-Weg-experiments: Entanglement of an intrinsic atomic state with atomic momentum Entanglement of photon pairs over distances of more than 30 km Superposition of macroscopically different currents in SQUIDs Neutrino oscillations, superposition of K-mesons,...

5 A particular example (Vienna experiment) tetraphenylporphyrin (C 44H 30N 4) (left) and fluorofullerene C 60F 48 (right) counts in 40 s spectrometer background level position of 3rd grating (µm) Interference pattern of tetraphenylporphyrin L. Hackermüller et al., Phys. Rev. Lett. 91 (2003)

6 Decoherence Decoherence: Irreversible emergence of classical properties through the unavoidable interaction with the environment. Objects then appear classically, although they are fundamentally described by quantum theory. Important conceptual and quantitative developments in the early years by Zeh (1971, 1973), Kübler and Zeh (1973), Zurek (1981, 1982), Harris and Stodolsky (1981, 1982), Caldeira and Leggett (1983), Joos (1984), Joos and Zeh (1985),... ; experimental tests since 1996

7 Left: Decoherence through particle collisions. Right: Decoherence through heating of fullerenes. From: M. Arndt and K. Hornberger, Quantum interferometry with complex molecules, arxiv: v1

8 Interpretation of quantum theory The superposition principle is universally valid many-worlds interpretation ( Everett interpretation ): the dead and the alive Schrödinger cat indeed exist simultaneously in different Everett branches The current formalism of quantum theory must be modified in order to accommodate a collapse of the wave function such that only the dead or the alive Schrödinger cat exists Change of the kinematical structure (e.g. the de Broglie Bohm theory) Purely operationalistic interpretations (concept of reality?)

9 What about gravity? Richard Feynman 1957:... if you believe in quantum mechanics up to any level then you have to believe in gravitational quantization in order to describe this experiment.... It may turn out, since we ve never done an experiment at this level, that it s not possible... that there is something the matter with our quantum mechanics when we have too much action in the system, or too much mass or something. But that is the only way I can see which would keep you from the necessity of quantizing the gravitational field. It s a way that I don t want to propose....

10 Main approaches to quantum gravity No question about quantum gravity is more difficult than the question, What is the question? (John Wheeler 1984) Quantum general relativity Covariant approaches (perturbation theory, path integrals including spin foams, asymptotic safety,... ) Canonical approaches (geometrodynamics, connection dynamics, loop dynamics,... ) String theory Fundamental discrete approaches (quantum topology, causal sets, group field theory,... ); have partially grown out of the other approaches C. Kiefer, Quantum Gravity (Oxford 2012)

11 Erwin Schrödinger 1926: We know today, in fact, that our classical mechanics fails for very small dimensions of the path and for very great curvatures. Perhaps this failure is in strict analogy with the failure of geometrical optics... that becomes evident as soon as the obstacles or apertures are no longer great compared with the real, finite, wavelength.... Then it becomes a question of searching for an undulatory mechanics, and the most obvious way is by an elaboration of the Hamiltonian analogy on the lines of undulatory optics. 1 1 wir wissen doch heute, daß unsere klassische Mechanik bei sehr kleinen Bahndimensionen und sehr starken Bahnkrümmungen versagt. Vielleicht ist dieses Versagen eine volle Analogie zum Versagen der geometrischen Optik..., das bekanntlich eintritt, sobald die Hindernisse oder Öffnungen nicht mehr groß sind gegen die wirkliche, endliche Wellenlänge.... Dann gilt es, eine undulatorische Mechanik zu suchen und der nächstliegende Weg dazu ist wohl die wellentheoretische Ausgestaltung des Hamiltonschen Bildes.

12 Quantum geometrodynamics (a) John Archibald Wheeler (b) Bryce DeWitt Application of Schrödinger s procedure to general relativity leads to ĤΨ ( 16πG 2 δ 2 G abcd (16πG) 1 h ( (3) R 2Λ ) ) Ψ = 0 δh ab δh cd Wheeler DeWitt equation ˆD a δψ Ψ 2 b = 0 i δh ab quantum diffeomorphism (momentum) constraint

13 Problem of time External time t has vanished from the formalism This holds also for loop quantum gravity and probably for string theory Wheeler DeWitt equation has the structure of a wave equation any may therefore allow the introduction of an intrinsic time Hilbert-space structure in quantum mechanics is connected with the probability interpretation, in particular with probability conservation in time t; what happens with this structure in a timeless situation? What is an observable in quantum gravity?

14 Quantum cosmology Gell-Mann and Hartle 1990: Quantum mechanics is best and most fundamentally understood in the framework of quantum cosmology. A universally valid quantum theory must be applied to the Universe as a whole as the only closed quantum system in the strict sense; need quantum theory of gravity, since gravity dominates on large scales

15 Example Indefinite Oscillator ˆ Hψ(a, χ) ( Ha + Hχ )ψ C.K. (1990) a + χ ψ=0 a2 χ2

16 Born Oppenheimer type of approximation Describe small inhomogeneities by multipoles {x n } around the minisuperspace variables (e.g. a and φ) ( H 0 + ) H n (a, φ, x n ) Ψ(α, φ, {x n }) = 0 n (Halliwell and Hawking 1985) If ψ 0 is of WKB form, ψ 0 C exp(is 0 / ) (with a slowly varying prefactor C), one will get with Ψ = ψ 0 n ψ n, i ψ n t H n ψ n with t S 0 t: WKB time controls the dynamics in this approximation

17 Decoherence in quantum cosmology In quantum cosmology, arbitrary superpositions of the gravitational field and matter states can occur. How can we understand the emergence of an (approximate) classical Universe?

18 Time from symmetry breaking Analogy from molecular physics: emergence of chirality V(z) > > dynamical origin: decoherence through scattering by light or air molecules Quantum cosmology: decoherence between exp(is 0 /G )- and exp( is 0 /G )-components of the wave function through interaction with e.g. weak gravitational waves Example for decoherence ) factor: exp exp ( 10 43) (C.K. 1992) ( πmh2 0 a3 128

19 Decoherence of primordial fluctuations During the inflationary phase (ca after the Big Bang) there is a quantum-to-classical transition for the ubiquitous fluctuations of the inflaton and the metric. The process of decoherence is crucial in understanding this transition (C.K., Lohmar, Polarski, Starobinsky 1998, 2007). The fluctuations then behave like classical stochastic quantities and yield the seeds for the structures in the Universe. Quantum gravity is needed to understand the power spectrum.

20

21 Predictions in quantum cosmology Anthropic interpretation We find ourselves in a decohered branch of the wave function that is suitable for life (cf. landscape picture) Peak in the wave function If the wave function is peaked around particular values of a, φ,..., this corresponds to the prediction that these values occur with high probability; if the wave function vanishes, the corresponding values are not allowed (relevant e.g. for singularity avoidance) Semiclassical interpretation The wave function can only be interpreted in the semiclassical regime, where an approximate WKB time emerges from the timeless Wheeler DeWitt equation. Sharp peak in the wave function as a prediction? Inflation, for example, occurs naturally if Ψ has a peak at a sufficiently large value of the inflaton field φ.

22 No-boundary proposal Time t Imaginary Time τ τ = 0 S. W. Hawking, Vatican conference 1982: There ought to be something very special about the boundary conditions of the universe and what can be more special than the condition that there is no boundary. Ψ[h ab, Φ, Σ] = M ν(m) DgDΦ e S E[g µν,φ] M

23 The CMB spectrum from the PLANCK mission Figure credit: ESA/PLANCK Collaboration

24 First observational test of quantum gravity Within the inflationary scenario, the observed CMB fluctuations can only be understood from quantized metric plus scalar field modes. This is an indirect test of linearized quantum gravity. The observation of primordial B-modes would be an indirect confirmation of the existence of gravitons. The difference in the duration of inflation between the cold spots and the hot spots in the CMB spectrum is only of the order of the Planck time.

25 More direct observations? Next order in the Born Oppenheimer approximation gives Ĥ m Ĥm + 1 m 2 (various terms) P (C.K. and Singh 1991; Barvinsky and C.K. 1998) The anisotropy spectrum of the cosmic background radiation may contain information about quantum gravitational corrections terms to the (functional) Schrödinger equation (C.K. with Krämer, Brizuela, )

26 Interpretation of quantum cosmology Almost all approaches to quantum gravity preserve the linear structure of quantum theory and thus the strict validity of the superposition principle. Main interpretation of quantum cosmology: Everett interpretation (with decoherence as a key ingredient) Bryce S. DeWitt 1967: Everett s view of the world is a very natural one to adopt in the quantum theory of gravity, where one is accustomed to speak without embarassment of the wave function of the universe. It is possible that Everett s view is not only natural but essential.

27 At the fundamental level of quantum gravity, there is no need for a probability interpretation, since there exist neither time nor observers. Time and observers appear only in the semiclassical limit; classical properties follow through decoherence. The probability interpretation is thus needed only in this limit and can perhaps be derived in the sense of Zurek (2005). The origin of the direction of time can be understood in this framework, at least in principle.

28 Lessons In quantum mechanics, the wave function determines many structural issues; it has dynamical consequences and thus cannot be pure information; this is even more important in quantum gravity/cosmology, where probabilistic questions are less relevant; according to modern cosmology, all structure in the Universe can be traced back to an early quantum state; this state undergoes a quantum-to-classical transition, but gives imprints in the CMB (and other systems). The wave function is real!

Does Time Exist in Quantum Gravity?

Does Time Exist in Quantum Gravity? Does Time Exist in Quantum Gravity? Claus Kiefer Institut für Theoretische Physik Universität zu Köln Contents The Problem of Time Quantum Gravity Quantum Cosmology Arrow of Time The problem of time Absolute

More information

Quantum Gravity. General overview and recent developments. Claus Kiefer. Institut für Theoretische Physik Universität zu Köln

Quantum Gravity. General overview and recent developments. Claus Kiefer. Institut für Theoretische Physik Universität zu Köln Quantum Gravity General overview and recent developments Claus Kiefer Institut für Theoretische Physik Universität zu Köln Contents Why quantum gravity? Steps towards quantum gravity Covariant quantum

More information

Space, Time, Matter in Quantum Gravity

Space, Time, Matter in Quantum Gravity Space, Time, Matter in Quantum Gravity Claus Kiefer Institut für Theoretische Physik Universität zu Köln Contents Why quantum gravity? The configuration space of general relativity Quantum geometrodynamics

More information

Black holes as open quantum systems

Black holes as open quantum systems Black holes as open quantum systems Claus Kiefer Institut für Theoretische Physik Universität zu Köln Hawking radiation 1 1 singularity II γ H γ γ H collapsing 111 star 1 1 I - future event horizon + i

More information

Emergence of a classical Universe from quantum gravity and cosmology

Emergence of a classical Universe from quantum gravity and cosmology 370, 4566 4575 doi:10.1098/rsta.2011.0492 Emergence of a classical Universe from quantum gravity and cosmology BY CLAUS KIEFER* Institute for Theoretical Physics, University of Cologne, Zülpicher Strasse

More information

On the origin of probability in quantum mechanics

On the origin of probability in quantum mechanics On the origin of probability in quantum mechanics Steve Hsu Benasque, September 2010 Outline 1. No Collapse quantum mechanics 2. Does the Born rule (probabilities) emerge? 3. Possible resolutions R. Buniy,

More information

OBITUARY FOR HEINZ-DIETER ZEH ( )

OBITUARY FOR HEINZ-DIETER ZEH ( ) International Journal of Quantum Foundations 5 (2019) 11-15 Original Paper OBITUARY FOR HEINZ-DIETER ZEH (1932 2018) Claus Kiefer Institute for Theoretical Physics, University of Cologne, Zülpicher Straβe

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

6.2 Quantum Gravity and the Quantization of Time 193

6.2 Quantum Gravity and the Quantization of Time 193 6.2 Quantum Gravity and the Quantization of Time 193 (points), assumed to possess statistical weights according to Ψ 2. In contrast to Bohm s time-dependent theory, this is no longer an initial condition

More information

Quantum gravity and aspects of relativity

Quantum gravity and aspects of relativity Quantum gravity and aspects of relativity Branislav Nikolic Institute for Theoretical Physics, University of Cologne Bonn-Cologne Graduate School in Physics and Astronomy who are we??? Gravitation and

More information

Quantum Gravity Phenomenology

Quantum Gravity Phenomenology Quantum Gravity Phenomenology Sabine Hossenfelder Sabine Hossenfelder, Quantum Gravity Phenomenology 1/16 Why do we need quantum gravity? Because We don t know what is the gravitational field of a quantum

More information

The Quantum to Classical Transition in Inflationary Cosmology

The Quantum to Classical Transition in Inflationary Cosmology The Quantum to Classical Transition in Inflationary Cosmology C. D. McCoy Department of Philosophy University of California San Diego Foundations of Physics Munich, 31 July 2013 Questions to Address 1.

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama

Research Center for the Early Universe (RESCEU) Department of Physics. Jun ichi Yokoyama Research Center for the Early Universe (RESCEU) Department of Physics Jun ichi Yokoyama time size Today 13.8Gyr Why is Our Universe Big, dark energy Old, and full of structures? galaxy formation All of

More information

Time (a-)symmetry in a recollapsing quantum universe

Time (a-)symmetry in a recollapsing quantum universe Time (a-)symmetry in a recollapsing quantum universe (Revised version - December 1991) H. D. Zeh Universität Heidelberg Email:zeh@uni-heidelberg.de Abstract: It is argued that Hawking s greatest mistake

More information

ORIGIN OF THE INFLATIONARY UNIVERSE 1

ORIGIN OF THE INFLATIONARY UNIVERSE 1 Freiburg THEP-99/6 gr-qc/9905098 ORIGIN OF THE INFLATIONARY UNIVERSE 1 Andrei O. Barvinsky Theory Department, Levedev Institute and Lebedev Research Center in Physics, Leninsky Prospect 53, Moscow 117924,

More information

arxiv:gr-qc/ v2 21 Sep 2005

arxiv:gr-qc/ v2 21 Sep 2005 adp header will be provided by the publisher Quantum Gravity: General Introduction and Recent Developments Claus Kiefer Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937

More information

Gravity: Past, Present, Future, from East to West. A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow

Gravity: Past, Present, Future, from East to West. A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow Gravity: Past, Present, Future, from East to West A.O.Barvinsky Theory Department, Lebedev Physics Institute, Moscow Plan of talk Quantum gravity and cosmology in the last years of the Soviet Union Problem

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Analyzing WMAP Observation by Quantum Gravity

Analyzing WMAP Observation by Quantum Gravity COSMO 07 Conference 21-25 August, 2007 Analyzing WMAP Observation by Quantum Gravity Ken-ji Hamada (KEK) with Shinichi Horata, Naoshi Sugiyama, and Tetsuyuki Yukawa arxiv:0705.3490[astro-ph], Phys. Rev.

More information

Quantum Gravity (General) and Applications

Quantum Gravity (General) and Applications Quantum Gravity (General) and Applications 565 Quantum Gravity (General) and Applications Claus Kiefer What is Quantum Gravity? Quantum theory is a general theoretical framework to describe states and

More information

Is there an information-loss problem for black holes?

Is there an information-loss problem for black holes? Is there an information-loss problem for black holes? Claus Kiefer Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany. Abstract. Black holes emit thermal radiation

More information

Applications of Bohmian mechanics in quantum gravity

Applications of Bohmian mechanics in quantum gravity Applications of Bohmian mechanics in quantum gravity Ward Struyve LMU, Munich, Germany Outline: Why do we need a quantum theory for gravity? What is the quantum theory for gravity? Problems with quantum

More information

Quantum Geometry and Space-time Singularities

Quantum Geometry and Space-time Singularities p. Quantum Geometry and Space-time Singularities Abhay Ashtekar Newton Institute, October 27th, 2005 General Relativity: A beautiful encoding of gravity in geometry. But, as a consequence, space-time itself

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

arxiv:gr-qc/ v1 31 Jul 2001

arxiv:gr-qc/ v1 31 Jul 2001 SINGULARITY AVOIDANCE BY COLLAPSING SHELLS IN QUANTUM GRAVITY 1 arxiv:gr-qc/0107102v1 31 Jul 2001 Petr Hájíček Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland.

More information

The No-Boundary Cosmological Measure

The No-Boundary Cosmological Measure The No-Boundary Cosmological Measure Jim Hartle Santa Fe Institute University of California, Santa Barbara Stephen Hawking, DAMTP, Cambridge Thomas Hertog, Institute of Physics, KU, Leuven Mark Srednicki,

More information

Cosmology Lecture 2 Mr. Kiledjian

Cosmology Lecture 2 Mr. Kiledjian Cosmology Lecture 2 Mr. Kiledjian Lecture 2: Quantum Mechanics & Its Different Views and Interpretations a) The story of quantum mechanics begins in the 19 th century as the physicists of that day were

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

De Sitter Space Without Quantum Fluctuations

De Sitter Space Without Quantum Fluctuations De Sitter Space Without Quantum Fluctuations arxiv:1405.0298 (with Kim Boddy and Sean Carroll) Jason Pollack Quantum Foundations of a Classical Universe IBM Watson Research Center August 12, 2014 8/12/2014

More information

PURE QUANTUM SOLUTIONS OF BOHMIAN

PURE QUANTUM SOLUTIONS OF BOHMIAN 1 PURE QUANTUM SOLUTIONS OF BOHMIAN QUANTUM GRAVITY arxiv:gr-qc/0105102v1 28 May 2001 FATIMAH SHOJAI 1,3 and ALI SHOJAI 2,3 1 Physics Department, Iran University of Science and Technology, P.O.Box 16765

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Pedro and the WOLF: the quantum and the vacuum in cosmology

Pedro and the WOLF: the quantum and the vacuum in cosmology Pedro's Universes, 4 December 2018 Guillermo A. Mena Marugán, IEM-CSIC Pedro and the WOLF: the quantum and the vacuum in cosmology Pedro's Universes, 4 December 2018 Guillermo A. Mena Marugán, IEM-CSIC

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

How do black holes move, as quantum objects or as classical objects? C. L. Herzenberg

How do black holes move, as quantum objects or as classical objects? C. L. Herzenberg How do black holes move, as quantum objects or as classical objects? C. L. Herzenberg Abstract Results of a recent study of the transition between quantum and classical behavior are applied to black holes.

More information

arxiv: v1 [gr-qc] 30 Dec 2015 Abstract. We investigate the behavior of the entanglement entropy of space in the

arxiv: v1 [gr-qc] 30 Dec 2015 Abstract. We investigate the behavior of the entanglement entropy of space in the Entanglement time in the primordial universe Eugenio Bianchi, 1, Lucas Hackl, 1, and Nelson Yokomizo 1, 1 Institute for Gravitation and the Cosmos, Physics Department, Penn State, University Park, PA 16802,

More information

The Measurement Problem

The Measurement Problem The Measurement Problem Johannes Kofler Quantum Foundations Seminar Max Planck Institute of Quantum Optics Munich, December 12 th 2011 The measurement problem Different aspects: How does the wavefunction

More information

Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009

Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009 Particules Élémentaires, Gravitation et Cosmologie Année 2008-09 Gravitation et Cosmologie: le Modèle Standard Cours 8: 6 fevrier 2009 Le paradigme inflationnaire Homogeneity and flatness problems in HBB

More information

Physics 133: Extragalactic Astronomy and Cosmology. Week 8

Physics 133: Extragalactic Astronomy and Cosmology. Week 8 Physics 133: Extragalactic Astronomy and Cosmology Week 8 Outline for Week 8 Primordial Nucleosynthesis Successes of the standard Big Bang model Olbers paradox/age of the Universe Hubble s law CMB Chemical/Physical

More information

Master Projects (EPFL) Philosophical perspectives on the exact sciences and their history

Master Projects (EPFL) Philosophical perspectives on the exact sciences and their history Master Projects (EPFL) Philosophical perspectives on the exact sciences and their history Some remarks on the measurement problem in quantum theory (Davide Romano) 1. An introduction to the quantum formalism

More information

Is quantum linear superposition exact on all energy scales? A unique case study with flavour oscillating systems

Is quantum linear superposition exact on all energy scales? A unique case study with flavour oscillating systems Is quantum linear superposition exact on all energy scales? A unique case study with flavour oscillating systems Supervisor: Dr. Beatrix C. Hiesmayr Universität Wien, Fakultät für Physik March 17, 2015

More information

arxiv: v1 [quant-ph] 15 Sep 2016

arxiv: v1 [quant-ph] 15 Sep 2016 Can the Many-Worlds-Interpretation be probed in Psychology? Heinrich Päs 1 1 Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany Abstract arxiv:1609.04878v1 [quant-ph] 15 Sep

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Time in Quantum Theory *

Time in Quantum Theory * Time in Quantum Theory * H. D. Zeh www.zeh-hd.de I. In general, time is used in quantum theory as an external ('classical') concept. So it is assumed, as in classical physics, to exist as a controller

More information

Modern Physics for Frommies V Gravitation Lecture 8

Modern Physics for Frommies V Gravitation Lecture 8 /6/017 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies V Gravitation Lecture 8 Administrative Matters Suggested reading Agenda What do we mean by Quantum Gravity

More information

Symmetry protected entanglement between gravity and matter

Symmetry protected entanglement between gravity and matter Symmetry protected entanglement between gravity and matter Nikola Paunković SQIG Security and Quantum Information Group, IT Departamento de Matemática, IST in collaboration with Marko Vojinović GPF Group

More information

Triple unification of inflation, dark matter and dark energy

Triple unification of inflation, dark matter and dark energy Triple unification of inflation, dark matter and dark energy May 9, 2008 Leonard Susskind, The Anthropic Landscape of String Theory (2003) A. Liddle, A. Ureña-López, Inflation, dark matter and dark energy

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

arxiv:gr-qc/ v2 4 Sep 1998

arxiv:gr-qc/ v2 4 Sep 1998 Loss of Quantum Coherence and ositivity of Energy Density in Semiclassical Quantum Gravity Sang yo Kim Department of hysics, Kunsan National University, Kunsan 573-70, Korea Kwang-Sup Soh Department of

More information

Gauge invariant quantum gravitational decoherence

Gauge invariant quantum gravitational decoherence Gauge invariant quantum gravitational decoherence Teodora Oniga Department of Physics, University of Aberdeen BritGrav 15, Birmingham, 21 April 2015 Outline Open quantum systems have so far been successfully

More information

Quantization, spatiotemporalization and pure variation

Quantization, spatiotemporalization and pure variation Quantization, spatiotemporalization and pure variation Jérôme Rosanvallon (PhD student, Université Paris Diderot; Haredhol, Centre Cavaillès, ENS) Frontiers of Fundamental Physics 14, "Epistemology and

More information

German physicist stops Universe

German physicist stops Universe Big bang or freeze? NATURE NEWS Cosmologist claims Universe may not be expanding Particles' changing masses could explain why distant galaxies appear to be rushing away. Jon Cartwright 16 July 2013 German

More information

Hugh Everett III s Many Worlds

Hugh Everett III s Many Worlds 236 My God, He Plays Dice! Hugh Everett III s Many Worlds Many Worlds 237 Hugh Everett III s Many Worlds Hugh Everett III was one of John Wheeler s most famous graduate students. Others included Richard

More information

Intrinsic Time Quantum Geometrodynamics (ITQG)

Intrinsic Time Quantum Geometrodynamics (ITQG) Intrinsic Time Quantum Geometrodynamics (ITQG) Assistant Professor Eyo Ita Eyo Eyo Ita Physics Department LQG International Seminar United States Naval Academy Annapolis, MD 27 October, 2015 Outline of

More information

Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015

Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015 diffraction experiment Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015 In reality, it contains the only mystery, the basic peculiarities of all of quantum mechanics.

More information

Quantum reality. Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics

Quantum reality. Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics Quantum reality Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics www.helsinki.fi/yliopisto 1 Quantum century Quantum mechanics (and quantum field theory) is

More information

Inflation. Week 9. ASTR/PHYS 4080: Introduction to Cosmology

Inflation. Week 9. ASTR/PHYS 4080: Introduction to Cosmology Inflation ASTR/PHYS 4080: Intro to Cosmology Week 9 1 Successes of the Hot Big Bang Model Consists of: General relativity Cosmological principle Known atomic/nuclear/particle physics Explains: dark night

More information

Decoherence and the Classical Limit

Decoherence and the Classical Limit Chapter 26 Decoherence and the Classical Limit 26.1 Introduction Classical mechanics deals with objects which have a precise location and move in a deterministic way as a function of time. By contrast,

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 11; May 21 2013 Previously on astro-2 In an expanding universe the relationship between redshift and distance depends on the cosmological parameters (i.e. the geometry

More information

The Bubble Multiverses of the No Boundary Quantum State

The Bubble Multiverses of the No Boundary Quantum State The Bubble Multiverses of the No Boundary Quantum State Jim Hartle Santa Fe Institute University of California, Santa Barbara Stephen Hawking, DAMTP, Cambridge Thomas Hertog, Institute of Physics, KU,

More information

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario

Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario J. Astrophys. Astr. (1985) 6, 239 246 Quantum Mechanics in the de Sitter Spacetime and Inflationary Scenario Τ. Padmanabhan Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005 Received

More information

SEMICLASSICAL and QUANTUM BLACK HOLES

SEMICLASSICAL and QUANTUM BLACK HOLES SEMICLASSICAL and QUANTUM BLACK HOLES Norma G. SANCHEZ DR CNRS, LERMA Observatoire de Paris Ecole Internationale Daniel Chalonge Héctor de Vega Open Session 19 MAI 2016 Observatoire de Paris Macroscopic

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition Lecture notes 1 Standard physics vs. new physics The black hole information paradox has challenged our fundamental beliefs about spacetime and quantum theory. Which belief will have to change to resolve

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 14 Dec. 2, 2015 Today The Inflationary Universe Origin of Density Perturbations Gravitational Waves Origin and Evolution of

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

Quantum Field Theory and the Limits of Knowledge. Sean Carroll, Caltech

Quantum Field Theory and the Limits of Knowledge. Sean Carroll, Caltech Quantum Field Theory and the Limits of Knowledge Sean Carroll, Caltech Two claims: 1. The laws of physics underlying everyday life are completely known. 2. The structure of quantum field theory provides

More information

Holographic Model of Cosmic (P)reheating

Holographic Model of Cosmic (P)reheating Holographic Model of Cosmic (P)reheating Yi-Fu Cai 蔡一夫 University of Science & Technology of China New perspectives on Cosmology, APCTP, Feb 13 th 2017 In collaboration with S. Lin, J. Liu & J. Sun, Based

More information

Non-singular quantum cosmology and scale invariant perturbations

Non-singular quantum cosmology and scale invariant perturbations th AMT Toulouse November 6, 2007 Patrick Peter Non-singular quantum cosmology and scale invariant perturbations Institut d Astrophysique de Paris GRεCO AMT - Toulouse - 6th November 2007 based upon Tensor

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

Redundant Information and the Quantum-Classical Transition

Redundant Information and the Quantum-Classical Transition University of California, Santa Barbara 22 August 2012 Redundant Information and the Quantum-Classical Transition C. Jess Riedel Acting advisor: Wojciech H. Zurek Theoretical Division Los Alamos National

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Wave function collapse

Wave function collapse Wave function collapse I.-O. Stamatescu November 15, 2007 Under collapse of the wave function (or state vector reduction ) one understands the sudden change of the system s state in a measurement. This

More information

Lecture 3. The inflation-building toolkit

Lecture 3. The inflation-building toolkit Lecture 3 The inflation-building toolkit Types of inflationary research Fundamental physics modelling of inflation. Building inflation models within the context of M-theory/braneworld/ supergravity/etc

More information

Physical Cosmology 6/6/2016

Physical Cosmology 6/6/2016 Physical Cosmology 6/6/2016 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2016 CMB anisotropies The temperature fluctuation in

More information

arxiv: v1 [gr-qc] 25 Oct 2008

arxiv: v1 [gr-qc] 25 Oct 2008 Late Time Decay of the False Vacuum, Measurement, and Quantum Cosmology Lawrence M. Krauss 1, James Dent 2 and Glenn D. Starkman 3 krauss@asu.edu, james.b.dent@vanderbilt.edu, gds6@cwru.edu 1 School of

More information

Effects of the field-space metric on Spiral Inflation

Effects of the field-space metric on Spiral Inflation Effects of the field-space metric on Spiral Inflation Josh Erlich College of William & Mary digitaldante.columbia.edu Miami 2015 December 20, 2015 The Cosmic Microwave Background Planck collaboration Composition

More information

arxiv:astro-ph/ v1 25 Jun 1998

arxiv:astro-ph/ v1 25 Jun 1998 Science 280, 1397 (1998) The Case of the Curved Universe: Open, Closed, or Flat? Marc Kamionkowski Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 arxiv:astro-ph/9806347v1

More information

GRAVITATIONAL WAVES AND THE END OF INFLATION. Richard Easther (Yale)

GRAVITATIONAL WAVES AND THE END OF INFLATION. Richard Easther (Yale) GRAVITATIONAL WAVES AND THE END OF INFLATION Richard Easther (Yale) OUTLINE Inflation: a reminder Ending inflation: Parametric resonance / preheating [SKIP: technical calculation] Gravitational wave generation

More information

ECD. Martin Bojowald. The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA

ECD. Martin Bojowald. The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA ECD Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA Talk mainly based on MB, A. Tsobanjan: arxiv:0911.4950 ECD p.1 Evaluating the dynamics

More information

The Concept of Inflation

The Concept of Inflation The Concept of Inflation Introduced by Alan Guth, circa 1980, to provide answers to the following 5 enigmas: 1. horizon problem. How come the cosmic microwave background radiation is so uniform in very

More information

An Introduction to Quantum Cosmology

An Introduction to Quantum Cosmology An Introduction to Quantum Cosmology Michael Cooke Department of Physics, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kingdom Submitted in partial fulfillment of the requirements

More information

arxiv: v4 [quant-ph] 26 Oct 2017

arxiv: v4 [quant-ph] 26 Oct 2017 Hidden Variable Theory of a Single World from Many-Worlds Quantum Mechanics Don Weingarten donweingarten@hotmail.com We propose a method for finding an initial state vector which by ordinary Hamiltonian

More information

Quantum gravity, probabilities and general boundaries

Quantum gravity, probabilities and general boundaries Quantum gravity, probabilities and general boundaries Robert Oeckl Instituto de Matemáticas UNAM, Morelia International Loop Quantum Gravity Seminar 17 October 2006 Outline 1 Interpretational problems

More information

quant-ph/ Aug 1999

quant-ph/ Aug 1999 Elements of Environmental Decoherence Erich Joos Rosenweg 2, D-22869 Schenefeld, Germany quant-ph/9908008 2 Aug 1999 Abstract In this contribution I give an introduction to the essential concepts and mechanisms

More information

A Field Theory approach to important Cosmological Issues including Dark Energy and the. Energy -Anupam Singh, L.N.M. I.I.T.

A Field Theory approach to important Cosmological Issues including Dark Energy and the. Energy -Anupam Singh, L.N.M. I.I.T. A Field Theory approach to important Cosmological Issues including Dark Energy and the gravitational collapse of Dark Energy -Anupam Singh, L.N.M. I.I.T. Outline Introduction and Motivation Field Theory:

More information

What is cosmic inflation? A short period of fast expansion, happening very early in the history of the Universe. Outline.

What is cosmic inflation? A short period of fast expansion, happening very early in the history of the Universe. Outline. Outline Covers chapters 1 & 11 in Ryden Grand Unification Grand Unification II Gravity? Theory of Everything? Strong force Weak force EM t Planck : ~1-43 s t GUT : ~1-36 s t EW : ~1-12 s t Phase Transitions

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

formation of the cosmic large-scale structure

formation of the cosmic large-scale structure formation of the cosmic large-scale structure Heraeus summer school on cosmology, Heidelberg 2013 Centre for Astronomy Fakultät für Physik und Astronomie, Universität Heidelberg August 23, 2013 outline

More information

mpipks Dresden Distinction of pointer states in (more) realistic environments Max Planck Institute for the Physics of Complex Systems Klaus Hornberger

mpipks Dresden Distinction of pointer states in (more) realistic environments Max Planck Institute for the Physics of Complex Systems Klaus Hornberger Max Planck Institute for the Physics of Complex Systems Klaus Hornberger Distinction of pointer states in (more) realistic environments In collaboration with Johannes Trost & Marc Busse Benasque, September

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

arxiv: v1 [gr-qc] 14 May 2010

arxiv: v1 [gr-qc] 14 May 2010 1 Quantum Cosmology for the XXI st Century: A Debate arxiv:1005.2471v1 [gr-qc] 14 May 2010 Martin Bojowald 1 The Pennsylvania State University, Institute for Gravitation and the Cosmos University Park,

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Quantum Cosmology of Kantowski Sachs like Models

Quantum Cosmology of Kantowski Sachs like Models PITHA 94/64 Juni 1995 gr-qc/941049 arxiv:gr-qc/941049v3 13 Jul 1995 Quantum Cosmology of Kantowski Sachs like Models Heinz Dieter Conradi Institute for Theoretical Physics E, RWTH Aachen Sommerfeldstr.

More information