V = = A = ln V


 Clifford Norris
 1 years ago
 Views:
Transcription
1 Chapter Problem Solutions. a. b. c. γ + γ + BE + C + + γ + ( γ ( γ C γ + BE + BE γ BE and C γ ( γ + or C BE + C ma.5 kω.7 ( ma + 4. kω.5 kω C. (a ln C BE T S (i μ 6 A,.6 ln.588 μa C BE 4 (ii μ 6 A,.6 ln.5987 μa C BE 4 (iii ma (b (i C BE 4,.6 ln.6585 ma + β 9.65 μa BE BE T ln + S (.6 ln A.6 ln (ii μ BE 4
2 ma.6 ln + 5 (iii B B BE 4. + BE.5. K ( on.7 (.5 C C C C.49 ma + + β 6 4. μa.4 + BE 8. B B ( on 5.7 ( 5.58 ma ( 6.98 μa C C C C.4958 ma + + β 8.5 (a (b 5.7 ( 5 + BE on or 58.6 kω.5.7 ( 5 on 8.6 kω + BE.5 Adantage: equires smaller resistance. (c For part (a: 9. ( max.56 ma min.476 ma ( 58.6(.5 Δ ma ± 5% For part (b: 4. ( max.56 ma min.476 ma ( 8.6(.5 Δ.5 ma ± 5%.6 a. + + or.4 ma β kω.4
3 b. A 8 r 4 kω Δ Δ ( 9..5 ma ΔCE r 4 Δ.5 Δ.6%.7 n C C C + B + B C + + β β n + n C + + C + β β β n + n β + or. n + n + β.8 (.. ma β K.9 a ma 8.9. ma + 5 b. A 5 r 8 kω. Δ Δ (..597 ma.6 ma EC r 7 Δ..56 ma.45 ma 7 c.. a kω ma 5.7 For EC min.7 C C.5 kω b. c..
4 .5 ma.5 ma A B A β 6.65 ma K K.5. and (a. ma,.5 ma (b.5 ma,.75 ma (c.67 ma,. ma.4 a.
5 E C and C + B C+ + β BE C BE E B + B + + β C C + + BE β ( + β ( + β BE + BE ( + β + β( + β ( + β β ( + β b ( 8( 8 + ( (.7.7 ma.7 kω.5 a. ES i C and C + BS C + + β ES B + B + B BN ( + N B ( + N C β ( + N C Then C + β( + β or i ( + N + β ( + β ma b. ( 5( 5 5(.7 ( kω.5
6 + (.5.54 ma β ( β + + ( 5( 5 5(.7 ( kω β ( β + For.8 ma ( ma 5( 7 8 (.7.69 kω.84.8
7 The analysis is exactly the same as in the text. We hae + β ( + β.9 ma, B.67 ma 75 C ma, B. ma 75 E B + B ma E.4 B.56 ma + β 76 C + B.56 ma ( kω. (a β ro Assuming A A r 4 K.5 ( 4 MΩ (b Δ Δ 5 Δ Δ MΩ MΩ Δ.5 μa. + BE ma T ln ln E ln By trial and error 4.7 μa BE.7 E BE.7 (.47( BE. (a
8 BE 9 μ A 9 ma E T ln.6 ln By trial and error, 6.8 μ A ( r + g o o m E Now ro 4.4 MΩ gm.65 ma /.6 (.6 rπ kω So E rπ E kω Then o (.6( 9.74 o 5.6 M Ω (b. Δ Δ BE BE o E BE BE ( m A 8.76 MΩ 6.8 m T.6 ( 8(.6 π C r + g r g ma/ rπ 6 kω.68 r K E E E MΩ Now Δ ( 5 Δ. μa (a K E T ln.6.5 E ln.5.5. K E
9 (b r [ + g ] (c c E m r E E π rπ 9 K gm.9 ma/.5.6 A ro MΩ E K.5 + (.64(.9 ( MΩ Δ 5 Δ.77 μa Δ.77 %.54% 5.5 Let 5 k Ω, Then ma 5 Now E T ln E ln E kω...6 BE T ln S 5.7 (.6 ln S. A S At ma, BE (.6 ln kω T.6 E ln ln E.9 kω a ma Let BE T ln S Then.465 BE (.6 ln Then 5.7 (.6 ln S. A S
10 ma T b. E ln ln E 4Ω (.485 ma 4 BE T ln S 5.7 (.6 ln S. A S Now BE BE So.485 (.6 ln ma 4 E T ln.48 (.6 ln By trial and error. 8.7 μa BE BE E BE BE E BE E BE BE E E For matched transistors BE T ln S BE T ln S Then T ln E E utput resistance looking into the collector of Q is increased.. (a (b BE + E ma.74 ma Using the same relation as for the widlar current source.
11 ( π r o + gm E r A 8.74 ro 5 K gm. ma/.74.6 (.6 rπ 8.9 K E rπ K (.( MΩ (c 5.7( 5.47 ma 7. A 8 ro 5 K.47. Assume all transistors are matched. a. BE BE + E BE T ln S BE T ln S T ln T ln E S S T ln ln E S S T ln E S b BE at. ma BE (.6 ln Since, then BE E E or E. 6.4 kω 5 BE.7 at ma S exp or S. A. (a 5.7( 5.8 ma.6 K.6.8 E ln E.44 K E ln E 4.8 K.. (b BE.7 (.5(.44 BE BE BE
12 . (a BE BE + BE + Now BE + BE + E or E BE BE + We hae BE T ln and BE T ln S S (b Let and Then BE E ( E so + ( E + E + Then + ε (c Want.5 ma 5( 5 So E E kω.5 5(.7 ( 5 7. kω.5 Then 8.6 kω.4 a ma. ma.55 ma 4.65 ma BE BE BE b. CE C ( (. + CE.8 EC C (.55( EC EC C EC.5 a. st approximation
13 .4.5 ma 8. Now BE.7 (.6 ln BE EB.7 Then nd approximation (.7. ma ma. ma 6.96 ma b. At the edge of saturation, CE BE.7.7 ( C C. kω C C 4. kω..7 C C. kω ( C C.86 ma C C4.86 ma.86 C5 (.5.6ln C5 By Trial and error. C5.6 ma C6 C7 C.8 + CE CE.86.8 CE 7. 5 EB6 + CE 5 + C5(.5 CE (.6(.5 CE EC 7 + C 7(.8 EC 7 5 (.6( EC ( C C C C.86 ma C4 C5.86 ma C.86 CE T ln C(..6 ln C C By trial and error C.95 ma 5.86 C C6E T ln C6(.5.6 ln C6 C6 By trial and error C 6.6 ma
14 .8.7 ma 6. + BE ( Q.7 as assumed E E (( E E E E kω E E E E.5 kω E E E E.75 kω 4 ma ma 4 ma.8 DS ( sat GS TN GS.5 GS.5 μncox ( GS TN L 5 ( L L μncox ( GS TN L ( L L Now GS GS So ( L L.9.5 GS.8 GS GS GS GS.6GS.6GS.6 GS.6 ± ( 6(.5 GS μa o 9. μa DS ( sat GS TN.9.5 sat.69 DS.9 a. From Equation (.5,
15 GS GS ( 5 + ( ( 5 + ( GS GS.74 Kn ( GS TN ( 8( 5( ma b. μncox ( GS TN ( + λds L ( 8( 5( ( ma c ma.4 (a 8 5 (.5 GS L. GS.5 Design such that DS ( sat.5 GS.5 GS So.5 5 K L L L 5 4 W W L L L (b 667 K λ (.5(. Δ (c Δ.5 μa 666 Δ.5 % %.5%.4 8 GS GS.44 5μA at DS GS.44 λ K (a 5 ( ( (.(.5
16 (i (ii (iii Δ.44 Δ.8 μa 5.8 μa Δ Δ. μa 6. μa Δ 6.44 Δ 7.8 μa 67.8 μa μ A at DS.44. K λ (.(.75 Δ.44 Δ 4. μa. 79. μa Δ Δ 5.5 μa. 9.5 μa Δ 6.44 Δ 6.7 μa. 4.7 μa (b (i (ii (iii.4 SD( sat.5 SG + TP SG.4 SG.65 k p W ( SG + TP L 4 5 (.65.4 L L ( WL / 75 μ A 6 ( WL / L k p W ( SG + TP L SG Then 75 ( L L.4 (a GS TN Kn.5 Kn K n K n Kn
17 .5 ( max (.5(.5 ( max.55 ma.5.5 ( min (.5(.95 ( min.475 ma.5 So ma (b K + n TN TN Kn.5 min (min.45 ma.5.5 ( max ( (max.55 ma.5 So ma.4 x A ( x + g m gs r A ( x + gmgs r So ( o o, gs x gs A x x A + gm ro ro A + g r g r ( [ ] x m x A o x m x o
18 Then x x ro( x gmx + gm ro ro x x gm x ro + gmx x gmx ro ro ro g r + g + g r x x x m o x m x m o x ro x[ + gmro] x + gm + gmro ro Since gm >> ro x [ + gmro] x( gm( + gmro x + gmro Then o x gm( + gmro Usually, gmr o>>, so that o g.44 DS (sat GS.8 GS.8 6 ( L L L.4 L. W. (.67 L L GS (..8. L L.45 (a 6 6 GS + GS 5 ( GS.7 5 GS ( μa (b 8.4 K λ (.5(.66 Δ.5.75 Δ. μa μa (.7 ( (.7 GS GS GS GS GS 6 ( ( μ A at DS.75 m
19 (c Δ.75 Δ 7.6 μa μa ( 5(.5 ( (.5 SG SG SG SG SG SG 5 ( SG.5 SG SG SG 5 ( 5 ( ma.9 ma (sat (sat.78 SD SG TP SD.47 (sat SD SG SG 5 ( L L ( W L ( W ( W L L SG SG SG L ( L L SG SG+ SG SG ( 5(. ( 4(. SG SG 5 ( SG Then SG.. SG SG 8 ( 5( ma (sat +.7. sat.7 SD SG TP SD.49 (sat.8.4. SD SG SG ( W L ( W L ( W 8 ( L L L.77 L.54
20 Assume M and M 4 are matched.. SG + SG SG.4 8 (.4.4 L,4.5 L,4.5 (a k p ( SG + TP L k p ( SG + TP L But SG SG So 5( SG.4 5( SG.4 which yields SG.8 and SG.9 ( 5(.8.4 μ A ( W / L 5.6 ( W / L 5 Then.6 9 μ A (b DS ( sat then. 6.7 kω.9.5 SD(sat.5 SG.4 SG.75 8 ( L L ( W ( W L 5 L ( W.4 ( W 8.7 L L SG ( L L.5 a. Kn ( GS TN ( D4 GS GS For, μa
21 b. r + r ( + g r.5 r 4 m 4 4 r 5 kω λ (.(. g K.. ma/ m n GS TN MΩ 6 Δ Δ Δ.8 μa D4 5 r gs4 X g r + r S6 X m gs4 4 X ( + g r r + r X m X 4 X r + + g r r S6 X m 4 gs6 g + g + X S6 X X m gs6 S6 m r6 r6 r6 X X X gm + r + ( + gmr r4 r 6 r6 X X + gm + r + ( + gmr r4 r6 r6 X r6 + ( + gmr6 r + ( + gmr r4 X 4 6. ma. GS g K..4 ma/ m n GS TN r r r 5 kω GS λ (.( kω.58 Ω { }
22 .54 k n k n L L k p W GS 4 + L GS TN GS TN 4 ( 5(.5 5( 5(.5 TP GS GS GS GS 4 ( 5(.5 (.5 ( SG GS GS From ( ( ( ( GS GS GS GS From ( ( ( ( GS GS 4 SG4 GS Then ( becomes GS GS GS which yields.6 and.,.4 GS GS SG4 k Then or.74 ma n GS TN L.6 GS GS sat.6.5 sat.86 DS GS TN DS.55 sat.5.5 DS GS TN GS GS k 5 μ A n GS TN L 5 (.5 4 L L k n GS GS ( GS TN L L L GS SG4 GS GS GS 5 5 ( L L k W p SG4 + TP L 4 5 ( L L a. As a first approximation GS GS 8 8 Then 4 DS The second approximation ( 8 8 GS r ( GS GS
23 Then Kn( GS TN ( + λngs 8(.96 + (.(.96 r μa b. From a PSpice analysis, 77.9 μa for D and 77.4 μa for D. The change is Δ.5 μa or.65%..57 a. For a first approximation, 8 8 GS 4 GS 4 As a second approximation 8 8( GS 4 + (. r GS 4.98 GS K + λ n GS TN GS To a ery good approximation 8 μa b. From a PSpice analysis, 8. μa for and the output resistance is 76.9 M Ω. Then For D + 4 Δ D μa.58.5 μa (a DS sat GS TN or GS DS sat + TN k n D ( GS TN L 5 48 (. 6 L L GS 5 TN GS TN (b GS 5 GS 5 (c min sat. min.4 D DS D.59 (a k n Kn 5( 5 5 μ A/ L ( W / L K ( W / L n D (.5( kω (b D
24 SD GS + SD + sat + sat SD SG TP D SG SG Then sat D GS GS Also Then (c min 5 5 ( L L ( L L GS ( C μn ox GS TN L W W W W ( L L L L μ C 4 5 n ox GS TN L r L W L. (.5.5 L L. L. L L. L And SGP GSN (( GSN 8(( SGP. ( ( Also 4. Then GSN SGP 6.5 which yields SGP ( GSN
25 4 ( ( Then.4 GSN. 4 GSN.49 GSN.. which yields.69 GSN and.4 SGP Now 89.4 μ A μ A μ A μ A μ A.6 a. gm( M Kn g ( M g ( M r m ma/ m r 5 kω (.(. n n λn r r 67 kω (.(. p p λp b. A g r r A 44.8 m n p c. L rn rp L 5 67 or kω.6 We hae.69 and So 9.4 μ A Then μ A 4 GSN 4( μ A μ A μ A SGP.6 ( W L ( W L ( W L 9 D ( D μ A 5 SG4 4 D ( 67 μ A W 9 L SG ( SD4 SD4 (sat.46.6 sat SG.6 L.75 SG 5 (
26 SD(sat.5 SG.6 SG K ( L L ( W L 49 5 (.4 L ( W D 5 L. 5 (.4 L DS 5(sat.5 GS 5.4 GS 5.75 ( L 5 L 5 ( W D4 D 5 L L.65 For GS, id DSS ( + λds a. D 5, DS 5 id + (.5( 5 id.5 ma b. D, DS id + (.5 id ma c. D 5, DS 5 id + (.5( 5 id.5 ma.66 GS DSS P GS 4 P GS.9 P 4 So GS (.9( 4.7 S Then and S GS (.7 GS.586 kω Finish solution: See solution.66 Completion of solution Need DS DS ( sat GS P.7 ( 4 DS.8 So sat D DS S D 4
27 .67 a. exp EB S T EB T EB S 5 or ln.6 ln.5568 b kω c. From Equations (.79 and (.8 and letting exp T exp ( T Then.6ln (. So.589 ( / T d. A ( / AN + ( / AP A A BE T BE S a. ln.6 ln.58 b kω.5 c. Modify Eqs..79 and.8 to apply to pnp and npn, and set the two equation equal to each other. EB EC BE CE C S exp + C S exp + T AP T AN EB.5 BE.5 5 exp + exp + T 8 T EB BE exp.8 exp T T EB exp T EB BE.9798 exp BE T exp T EB BE + T ln ( (.6 ln ( EB CE EC
28 d. A ( / T ( / + ( / AN A A 846 AP.69 a. M and M matched. For, we hae SD SG SG DS.5 For M and M : μpcox ( SG + TP ( + λpsd L (.5 + (.(.5 4. L L L L For M : μ C + λ L n ox GS TN n DS ( + (.( L L b. r n p r 5 kω λ (.(. g K μ C L g m n n ox o m ma/ ( A g r r A 48.8 m n p.7 a. Kp ( SG + TP ( b. From Eq λp( SG Kn( TN λ + λ λ + λ ( SG SG (. +. (. +. ( n p n p
29 c. A gm( rn rp rn rp 5 kω λ (.(. gm K n... ma / A A ma From Eq..96 C. T A.6.. C C L 9 AN L AP (a L, A 7 (b L 5 K, A 56 (c K, A 64 L L ma 5 Then C.54 ma From Eq A L L A (a L A 846 (b 5 K, A 47 L L.7 (a To a good approximation, output resistance is the same as the widlar current source. r + gm( rπ E A g r (b m L.74 utput resistance of Wilson source L
30 β r Then m m ( A g r r AP 8 4 kω. AN r 6 kω. g ma/.6 T ( 8( 4 A [ 6 6, ] A (a μa D D For M; ro 5 K λ g g m P D m P D (.(..4 K ma/ (.5(. For M; r K λ g mo n Do.8 (. gmo.8 ma/ (b A g ( r r (.8( 5 (c mo o oo A 4. ( Want A L 4.8 L 7.75 L 4 K Assume M, M matched μa D Do r o r oo 5 K λ p D (.(. K λ n D A g r r mo o oo (.5(. ( g g 5.7 ma/ g mo mo.8 (..7 L 5. L mo L L
31 k n k p Now L L 8 4 ( 5. L.77.6 L L Since sg, the circuit becomes
32 g r x sg x m sg + and sg x o r Then x so that o x + gmro + ro ro x r o o ro + g mro + x ro or ( r + r + g r o o o m o A g r o m o o i Now g r m o r.5..6 ma / 5 kω λ n DQ (.(. g K ma/ m p DQ ro ro 5 kω λ Then p DQ (.(. o MΩ A.6 5 A 5.78 From Eq..5 gm A + r r r r g g m m o o o4 o o k n L D ma/ r 65 K A λd (.(.8 ( (.56 ( 65 ( 65 A 6, 5.79
33 ( ( g + + g + π π m i m π rπ ro ro ( π + + m π ro g ( ( gm i π + + gm + + rπ ro ro ro π ( + + π + gm ro ro gm >> r o + β ( gm i π + rπ ro ( + + π gm ro ( π + gm ro Then + β ( gm i + + gm ro rπ ro + β + + r β r o o + β β β gm i + β From Equation (. β r So
34 A g r β m o gm i + β.6 o ( 9.65(.5 8 K.5 A 66,65 r 9.65 ma/
Chapter 13 Problem Solutions Computer Simulation Computer Simulation ma/ V 80. r I (120)(0.026)
Chapter 3 Pblem lutions 3. Computer Simulation 3. Computer Simulation 3.3 (a) ( Ri) g 0 C m T 0.0 r 80 o MΩ C 0 r 80 o MΩ C 0 0.79 m/ Ri + ( + βn) R 7 (0)(0.0) 7 5. kω 0. BE ( on) 0. C 0.030 m R 0 (0)(0.0)
More informationCircle the one best answer for each question. Five points per question.
ID # NAME EE255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationFYSE400 ANALOG ELECTRONICS
YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N
More informationChapter 3 Output stages
Chapter 3 utput stages 3.. Goals and properties 3.. Goals and properties deliver power into the load with good efficacy and small power dissipate on the final transistors small output impedance maximum
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More informationRIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIBR T7. Detailed Explanations. Rank Improvement Batch ANSWERS.
8 Electrical Engineering RIBR T7 Session 089 S.No. : 9078_LS RIB Rank Improvement Batch ELECTRICL ENGINEERING nalog Electronics NSWERS. (d) 7. (a) 3. (c) 9. (a) 5. (d). (d) 8. (c) 4. (c) 0. (c) 6. (b)
More informationClass AB Output Stage
Class AB Output Stage Class AB amplifier Operation Multisim Simulation  VTC Class AB amplifier biasing Widlar current source Multisim Simulation  Biasing 1 Class AB Operation v I V B (set by V B ) Basic
More informationECE 6412, Spring Final Exam Page 1
ECE 64, Spring 005 Final Exam Page FINAL EXAMINATION SOLUTIONS (Average score = 89/00) Problem (0 points This problem is required) A comparator consists of an amplifier cascaded with a latch as shown below.
More informationGEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 Third Exam Closed Book and Notes Fall 2002 November 27, 2002 General Instructions: 1. Write on one side of the
More informationLecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS
Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationInput Stage. V IC(max) V BE1. V CE 5(sat ) V IC(min) = V CC +V BE 3 = V EE. + V CE1(sat )
BJT OPAMPs Input Stage The input stage is similar to MOS design. Take a pnp input stage (Q1 Q2) with npn current mirror load (Q3 Q4) and a pnp tail current source (Q5). Then, V IC(max) = V CC V BE1 V
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationECE 523/421  Analog Electronics University of New Mexico Solutions Homework 3
ECE 523/42  Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationUniversity of Pittsburgh
University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationMicroelectronic Circuit Design Fourth Edition  Part I Solutions to Exercises
Page Microelectronic Circuit esign Fourth Edition  Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or ) 5.V 3.95 V V
More informationBipolar junction transistors
Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma
More informationAnalog Circuit Design Discrete & Integrated
This document contains the Errata for the textbook Analog Circuit Design Discrete & Integrated The Hardcover Edition (shown below at the left and published by McGrawHill Education) was preceded by a SpiralBound
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationLecture 010 ECE4430 Review I (12/29/01) Page 0101
Lecture 010 4430 Review I (12/29/01) Page 0101 LTUR 010 4430 RVIW I (RAIN: HLM hap. 1) Objective The objective of this presentation is: 1.) Identify the prerequisite material as taught in 4430 2.) Insure
More informationGEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering
NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of
More informationECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter
ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.
More informationLecture 13  Digital Circuits (II) MOS Inverter Circuits. March 20, 2003
6.012 Microelectronic Devices and Circuits Spring 2003 Lecture 131 Lecture 13 Digital Circuits (II) MOS Inverter Circuits March 20, 2003 Contents: 1. NMOS inverter with resistor pullup (cont.) 2. NMOS
More informationCollege of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer
Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Jehana Ermy/ Dr Azn Wat Table Number: College of Engneerng Department of Electroncs and Communcaton Engneerng Test 1 Wth
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More informationMicroelectronic Circuit Design 4th Edition Errata  Updated 4/4/14
Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: 1.35 x 10 6 cm/s Page 58, last exercise,
More informationQuantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.
Quantitative MOSFET Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. V DS _ n source polysilicon gate y = y * 0 x metal interconnect to
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationChapter 4 FieldEffect Transistors
Chapter 4 FieldEffect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 41 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationLecture 12 Circuits numériques (II)
Lecture 12 Circuits numériques (II) Circuits inverseurs MOS Outline NMOS inverter with resistor pullup The inverter NMOS inverter with currentsource pullup Complementary MOS (CMOS) inverter Static analysis
More informationID # NAME. EE255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom
ID # NAME EE255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.
More informationfigure shows a pnp transistor biased to operate in the active mode
Lecture 10b EE215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the
More informationCollege of Engineering Department of Electronics and Communication Engineering. Test 2
Name: Student D Number: Secton Number: 01/0/03/04 A/B Lecturer: Dr Jamaludn/ Dr Azn Wat/ Dr Jehana Ermy/ Prof Md Zan Table Number: ollege of Engneerng Department of Electroncs and ommuncaton Engneerng
More informationThe Devices. Jan M. Rabaey
The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time
More informationECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
More informationPractice 3: Semiconductors
Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given
More informationBipolar Junction Transistor (BJT)  Introduction
Bipolar Junction Transistor (BJT)  Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification
More informationEE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR
EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX =  4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3
More informationFig. 1 Simple BJT (NPN) current mirror and its test circuit
1 Lab 01: Current Mirrors Total 30 points: 20 points for lab, 5 points for wellorganized report, 5 points for immaculate circuit on breadboard Note: There are two parts for this lab. You must answer the
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTCAL ENGNEENG Subject
More information3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]
Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an nchannel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationV in (min) and V in (min) = (V OH V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs
ECE 642, Spring 2003  Final Exam Page FINAL EXAMINATION (ALLEN)  SOLUTION (Average Score = 9/20) Problem  (20 points  This problem is required) An openloop comparator has a gain of 0 4, a dominant
More informationEE 434 Lecture 34. Logic Design
EE 434 ecture 34 ogic Design Review from last time: Transfer characteristics of the static CMOS inverter (Neglect λ effects) Case 5 M cutoff, M triode V V > V V V Tp V < V Tn V V V Tp Transfer characteristics
More informationErrata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg
Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.23, CISW CJSW 88 Line between Eqs. (3.32)
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationLecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen
Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output
More informationFigure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors
Figure 1 Basic epitaxial planar structure of NPN Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors Lecture Notes: 2304154 Physics and Electronics Lecture 6 (2 nd Half), Year: 2007
More informationDEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:
UNIT VII IASING & STAILIZATION AMPLIFIE:  A circuit that increases the amplitude of given signal is an amplifier  Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency
More information6.012 MICROELECTRONIC DEVICES AND CIRCUITS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.012 MICROELECTRONIC DEVICES AND CIRCUITS Answers to Exam 2 Spring 2008 Problem 1: Graded by Prof. Fonstad
More informationElectronics II. Midterm #2
The University of Toledo EECS:3400 Electronics I Section sums_elct7.fm  StudentName Electronics II Midterm # Problems Points. 8. 3. 7 Total 0 Was the exam fair? yes no The University of Toledo sums_elct7.fm
More informationVI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationCHAPTER 13. Solutions for Exercises
HPT 3 Solutions for xercises 3. The emitter current is gien by the Shockley equation: i S exp VT For operation with i, we hae exp >> S >>, and we can write VT i S exp VT Soling for, we hae 3.2 i 2 0 26ln
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationTransfer Characteristic
EeldEffect Transstors (FETs 3.3 The CMS CommonSource Amplfer Transfer Characterstc Electronc Crcuts, Dept. of Elec. Eng., The Chnese Unersty of Hong Kong, Prof. K.L. Wu Lesson 8&9 EeldEffect Transstors
More informationCOLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SEMESTER / 2014
OLLEGE OF ENGNEERNG PUTRAJAYA AMPUS FNAL EXAMNATON SEMESTER 013 / 014 PROGRAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electrocs Egeerg (Hoours) Bachelor of Electrcal Power Egeerg (Hoours) : EEEB73
More information4.5 (A4.3)  TEMPERATURE INDEPENDENT BIASING (BANDGAP)
emp. Indep. Biasing (7/14/00) Page 1 4.5 (A4.3)  EMPERAURE INDEPENDEN BIASING (BANDGAP) INRODUCION Objective he objective of this presentation is: 1.) Introduce the concept of a bandgap reference 2.)
More informationLecture 28 FieldEffect Transistors
Lecture 8 FieldEffect Transistors FieldEffect Transistors 1. Understand MOSFET operation.. Analyze basic FET amplifiers using the loadline technique. 3. Analyze bias circuits. 4. Use smallsignal equialent
More informationCMOS Analog Circuits
CMOS Analog Circuits L6: Common Source Amplifier1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L  CC A 100
More informationChapter 9 Bipolar Junction Transistor
hapter 9 ipolar Junction Transistor hapter 9  JT ipolar Junction Transistor JT haracteristics NPN, PNP JT D iasing ollector haracteristic and Load Line ipolar Junction Transistor (JT) JT is a threeterminal
More informationAmplifiers, Source followers & Cascodes
Amplifiers, Source followers & Cascodes Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 005 02 Operational amplifier Differential pair v : B v + Current mirror
More informationLECTURE 380 TWOSTAGE OPENLOOP COMPARATORS  II (READING: AH ) Trip Point of an Inverter
Lecture 380 TwoStage OpenLoop ComparatorsII (4/5/02) Page 3801 LECTURE 380 TWOSTAGE OPENLOOP COMPARATORS  II (READING: AH 445461) Trip Point of an Inverter V DD In order to determine the propagation
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationContent. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching
Content MIS Capacitor Accumulation Depletion Inversion MOS CAPACITOR 1 MIS Capacitor Metal Oxide C ox psi C s Components of a capacitance model for the MIS structure 2 MIS Capacitor Accumulation ρ( x)
More informationElectronic Devices and Circuits Lecture 16  Digital Circuits: CMOS  Outline Announcements (= I ON V DD
6.01  Electronic Deices and Circuits Lecture 16  Digital Circuits: CMOS  Outline Announcements Handout; Web posting  Lecture Outline and Summary; two readings Exam  Wednesday, No. 5, 7:309:30 pm,
More informationMOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations
ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 2, 2007, 189 197 MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations S. EFTIMIE 1, ALEX. RUSU
More informationEE115C Digital Electronic Circuits Homework #3
Electrical Engineering Department Spring 1 EE115C Digital Electronic Circuits Homework #3 Due Thursday, April, 6pm @ 56147E EIV Solution Problem 1 VTC and Inverter Analysis Figure 1a shows a standard
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More information1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
More information(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.Y. Choi. Electronic Circuits 2 (09/1)
(S&S 4.1 4.3) NMOS: electrons flow from Source to Drain PMOS: holes flow from Source to Drain In cutoff ( v < V ), i = 0 GS t D NMOS IV Characteristics In triode, ( v > V but v v v ) GS t DS GS T W 1
More informationLecture 140 Simple Op Amps (2/11/02) Page 1401
Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More informationPMOS Device and CMOS Inverters
Lecture 23 PMOS Device and CMOS Inverters A) PMOS Device Structure and Oeration B) Relation of Current to t OX, µ V LIMIT C) CMOS Device Equations and Use D) CMOS Inverter V OUT vs. V IN E) CMOS Short
More information1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012
/3/ 9 January 0 Study the linear model of MOS transistor around an operating point." MOS in saturation: V GS >V th and V S >V GS V th " VGS vi  I d = I i d VS I d = µ n ( L V V γ Φ V Φ GS th0 F SB F
More informationECE342 Test 2 Solutions, Nov 4, :008:00pm, Closed Book (one page of notes allowed)
ECE342 Test 2 Solutions, Nov 4, 2008 6:008:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free
More informationUniversity of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a
More information6.012 Electronic Devices and Circuits
Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to
More informationESE319 Introduction to Microelectronics. BJT Biasing Cont.
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple
More informationEE 560 MOS TRANSISTOR THEORY
1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE ptype doped Si (N A = 10 15 to 10 16 cm 3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationM2 EEA Systèmes Microélectroniques Polytech montpellier MEA 4. Analog Integrated Circuits Design
M EEA Systèmes Microélectroniques Polytech montpellier MEA 4 Analog ntegrated Circuits Design Chapter Basic and Advanced Current Sources Pascal Nouet / 0405 nouet@lirmm.fr http://www.lirmm.fr/~nouet/homepage/lecture_ressources.html
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationCOLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014
OLLEGE OF ENGNEENG PUTAJAYA AMPUS FNAL EXAMNATON SPEAL SEMESTE 03 / 04 POGAMME SUBJET ODE SUBJET : Bachelor of Electrcal & Electroncs Engneerng (Honours) Bachelor of Electrcal Power Engneerng (Honours)
More informationChapter 13 Bipolar Junction Transistors
Chapter 3 ipolar Junction Transistors Goal. ipolar Junction Transistor Operation in amplifier circuits. 2. Loadline Analysis & Nonlinear Distortion. 3. Largesignal equialent circuits to analyze JT circuits.
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationEE 434 Lecture 33. Logic Design
EE 434 Lecture 33 Logic Design Review from last time: Ask the inverter how it will interpret logic levels V IN V OUT V H =? V L =? V LARGE V H V L V H Review from last time: The twoinverter loop X Y X
More informationElectronics II. Midterm #1
The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem
More informationV. Transistors. 3.1 III. BipolarJunction (BJT) Transistors
V. Transistors 3.1 III. BipolarJunction (BJT) Transistors A bipolar junction transistor is formed by joining three sections of semiconductors with alternatiely different dopings. The middle section (base)
More informationCheck course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory
EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday
More informationVidyalankar S.E. Sem. III [EXTC] Analog Electronics  I Prelim Question Paper Solution
. (a) S.E. Sem. [EXTC] Analog Electronics  Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority
More information