MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

Size: px
Start display at page:

Download "MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139"

Transcription

1 MASSACHUSES INSIUE OF ECHNOLOGY DEPARMEN OF MAERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSES MECHANICAL PROPERIES OF MAERIALS PROBLEM SE 5 SOLUIONS 1. (Hertzber 6.2) If it takes 300 seconds for the relaxation modulus to decay to a particular value at, to what temperature must the material have been raised to effect the same decay in seconds? Usin the time-temperature equivalence relationship for amorphous polymers, t 17.44( ) lo = t ( ) lo = = K 2. (Hertzber 6.3) Calculate the relaxation time for lass and comment on its propensity for stress relaxation at room temperature. E 70GPa and η 1 GPa-s. Relaxation time is defined as the ratio of viscosity to modulus. GPa-s = η 1.4 sec E = 70 GPa = he relaxation time is a measure of the time it takes for viscous behavior to play a sinificant role in deformation. he relaxation time calculated for lass is over 400 years, indicatin that there is limited stress relaxation. hus, lass behaves essentially completely elastically. 3. Your Irish post doc asked you to determine the time for the relaxation modulus to decay to a particular value at 75 C by testin the polymer at its lass transition temperature, 0 C. She said a simple calculation usin the empirical time-temperature relationship for amorphous polymers would ive you the desired result. You find experimentally that the relaxation time is seconds for the relaxation modulus to decay to the particular value. However, the refrieration unit that was supposed to keep the temperature at 0 C (lass transition temperature) was not functionin and the test was carried out at 20 C, the ambient temperature in the laboratory. Can you use the data from this test to determine the relaxation time to decay to the specified value at 75 C? If so, what is the value? It is possible to determine the relaxation time to decay at 75 C. he relaxation time is sec. o find the relaxation time at some arbitrary temperature, we need to find the relaxation time at the lass transition temperature or the lass transition temperature plus 50 K. We are iven the lass transition temperature, = 0 K. We find the time to the particular relaxation modulus at by the empirical timetemperature relation for amorphous polymers.

2 t 17.44( ) lo = t sec 17.44(20 C 0 C) lo = t C 0 C sec t = Now we can use the time to the relaxation modulus at to compute the time to a particular relaxation modulus at a iven temperature. We do this at 75 C. t 17.44( ) lo = t t 17.44(75 C 0 C) + C C lo = sec sec t = 4. (Hertzber 6.5) he deformation response of a certain polymer can be described by the Voit model. If E = 400 MPa and η = 2 MPa-s, compute the relaxation time. Compute ε () t for times to 5τ when the steady state stress is MPa. How much creep strain takes place when t = τ and when t =? he relaxation time can be calculated by 9 τ = η E = 2 MPa sec 400MPa = 5 sec. he strain experienced by a Voit element can be expressed by the expression σ t τ ε = ( 1 e E ). he strain at the indicated times is 2 ε( t = τ) = 1.58 ε( t = 5 τ) = 2.48 ε ( t = ) = (Hertzber 6.6) Compare the fractional amount of the total deformation that would occur if t = τ when η = 2 MPa-s and η = 8 MPa-s, respectively. he relaxation time, τ, by definition is the time to reach a particular strain. herefore, for each material, at t =τ, the strains will be the same. 9 However, if one uses a time of 5 sec for the η = 8 MPa-smaterial, we can calculate the strain. τ = η E = = 9 8 MPa sec 400MPa 2 sec t τ = 0.25 ε ( t = 5 sec) = his makes intuitive sense, as the strain at a iven time for a more viscous material is lower than the low viscosity material.

3 5. o improve the description of polymer behavior, Maxwell and Voit models can be combined in series. For the four-element viscoelastic model shown below, derive an expression for the strain as a function of time for a iven applied stress. Discuss the advantaes of the four-element viscoelastic model over the Maxwell and Voit models. o find the total strain as a function of time, we can sum the elastic, viscoelastic, and viscous strain components. ε () t = ε() t + ε() t + ε() t η V E V sprin Voit dashpot σ σ t σ ε () t = + (1 e ) + t E E η M V M is defined as the relaxation time for the Voit element. he four-element viscoelastic model accounts for instantaneous strain and creep strain. Upon unloadin, the Voit element accounts for creep recovery and the sinle dashpot accounts for permanent deformation that is irrecoverable. hus, this simplistic model is much more accurate than the Maxwell or Voit elements alone. he Maxwell element is unable to account for creep recovery and the Voit element does not account for instantaneous strain or permanent deformation. 6. Sketch a lo-lo plot of relaxation modulus versus temperature for an amorphous polymer with crosslinks. a. Identify the various reions and characteristic relaxation modulus values on the plot.. CORRECION: here is no viscous portion in a cross-linked polymer. he rubbery reime should extend to the riht.

4 b. Explain the trends in relaxation modulus in the various reions in terms of the bondin in polymers. For low temperatures times, the relaxation approaches a maximum limitin value where the material exhibits lassy behavior associated with neliible molecule semental motions. In this reion, the primary carbon-carbon bonds are stretched. At intermediate temperatures, the material transitions to a reion of leathery behavior associated with short-rane molecule semental motion. At this elevated temperature, enouh thermal enery is present to break weak secondary bonds between the polymer chains that permits semental motion. At still hiher temperatures, thermal enery is reat enouh to permit complete molecule movements in the rubbery reion. Note that as the temperature is increased into the rubbery reion, the modulus increases due to entropic effects. c. How would each reime chane if the polymer had no cross-linkin? A polymer without cross-linkin would have a limited rubbery reion and experience visous flow as a liquid. Physical entanlement of polymer chains causes networks to form and restrict molecular flow. he restriction is responsible for rubbers (heavily cross-linked) havin a stable rubbery reion. See sketch in part (a). 7. Creep compliance values for polyethylene are iven. (hours) J(t) (psi -1-4 ) Consider a sample of polyethylene (cross-section 0.5 in. 0.1 in.) for the iven load history at the same test conditions as the data above. Load (lbs.) Duration (hours) a. Calculate the strain at 200 and 500 hours. 20lbs σ (0 hours) = = 400 psi 0.5in 0.1in -15lbs σ (0hours) = = 300psi 0.5in 0.1in 45lbs σ (300hours) = = 900psi 0.5in 0.1in -50 lbs σ (400 hours) = = 00 psi 0.5in 0.1in Usin the Boltzmann superposition principle, we calculate the strains. ε ( t= 200 hours) = σ(0 hours) Jt ( 0 hours) + σ(0 hours) Jt ( 0 hours) ε ( t = 200 hours) = σ(0 hours) J (200 hours) + σ(0 hours) J (0 hours) ε t = hours = ( 200 ) (400 psi)(0.72 psi ) ( 300 psi)(0.70 psi ) ε ( t = 200 hours) =

5 ε ( t= 500 hours) = σ(0hours) Jt ( 0hours) + σ(0hours) Jt ( 0hours) + σ(300 hours) J( t 300 hours) + σ(400 hours) J( t 400 hours) ε ( t = 500 hours) = σ(0hours) J (500hours) + σ(0hours) J (400hours) + σ(300 hours) J(200 hours) + σ(400 hours) J(0 hours) ε ( t = 500 hours) = (400 psi)(0.77 psi ) + ( 300 psi)(0.74 psi ) (900psi)(0.72 psi ) ( 00psi)(0.70 psi ) ε ( t = 500 hours) = b. Sketch a qualitative strain-time plot. 8. Derive the constitutive relation for the viscoelastic model shown below. Based on the confiuration, we know that the strain in the sprin k 1 is equal to the combined strain in the sprin k 2 and the dashpot η, and that the total stress is equal to the sum of the stress in the sprin k 1 and the sprin k 2. Because the sprin k 2 is in series with the dashpot η, they bear the same stress. ε = ε = ε + ε k1 k2 η σ = σ + σ = σ + σ k1 k2 k1 η Lookin at the elastic response of the sprin k 1 ives σ k1 = k1εk1 = k1ε σ = k1ε + σk2 or σk2 = σ k1ε. akin the time derivative of the first equation yields ε = ε + ε = σ k + σ η. k2 η k2 2 k2 Combinin the last two equations leads to the desired result. ε = σ k + σ η k2 2 k2

6 ( k ) k ( k ) ε = σ ε + σ ε dε 1 dσ k1 dε σ k1 = + ε dt k dt k dt η η 2 2 σ 1 dσ k 1 k 1 dε + = ε + 1+ η k2 dt η k2 dt η 9. Evaluate the viscosity of the simple lass shown below by the followin approximate procedure. Assume that half of the atoms pairs in the lass are in a position permittin an activated shear to the left (state A) and that the remainin half of the atom pairs are in the complementary position (state B). In the absence of a stress, states A and B have the same enery, F, and are separated by an activation enery of * manitude, F. he stress σ s raises the enery of atoms in state A, and lowers that of atoms in state B. he difference in enery between the two states is F = 2σ s γ Ω, where γ is the shear strain that occurs when an atom pair stretch from A to B, (which you may take to be unity) and 2Ω is the volume of two atoms. he vibration frequency (attempt frequency) of atom pairs is ν. Calculate the rate of shear, γ, of the unit volume of the liquid, subjected to a shear stress, σ s, by calculatin the nu,ber of atom pairs jumpin, per second, from A to B and from B to A. Assume that σ sω k (this means that exp( σ sω k ) 1 + σ sω k ) where k, is Boltzmann s constant and is the absolute temperature and derive an equation for the viscosity of the liquid. (You may assume that a switchin event, althouh it converts a pair of atoms in the state A into a pair in state B, also creates with the atoms surroundin it new pairs in state A, so that the fraction of atoms in state A remains constant and equal to one half.) State A State B

7

8

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

A 1. The Polymer Parameters. Webinar on Accelerated Testing of Adhesives and Polymers- Part One. Strain Energy Total. Time Domain Experiments

A 1. The Polymer Parameters. Webinar on Accelerated Testing of Adhesives and Polymers- Part One. Strain Energy Total. Time Domain Experiments A Webinar on Accelerated estin of Adhesives and Polymers- Part One Sponsored by ASC Presented by Dr. homas C. Ward Virinia ech tward@vt.edu A he Polymer Parameters Chemical Composition Molecular Weiht

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Quiz 1 Introduction to Polymers (Please answer each question even if you guess)

Quiz 1 Introduction to Polymers (Please answer each question even if you guess) 080407 Quiz 1 Introduction to Polymers (Please answer each question even if you guess) This week we explored the definition of a polymer in terms of properties. 1) The flow of polymer melts and concentrated

More information

ViscoData & ViscoShift

ViscoData & ViscoShift Introductory Theory Manual ViscoData & ViscoShift (Preliminary Version) Contents ) Preface 2) Introduction 3) Dynamic mechanical properties 4) sin ViscoShift and ViscoData 5) Concludin remarks 6) Refereces

More information

Creep. Creep behavior of viscoelastic polymeric materials

Creep. Creep behavior of viscoelastic polymeric materials B1 Version: 2.2_EN Date: 15. March 2018. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Creep Creep behavior of viscoelastic polymeric

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

What we should know about mechanics of materials

What we should know about mechanics of materials What we should know about mechanics of materials 0 John Maloney Van Vliet Group / Laboratory for Material Chemomechanics Department of Materials Science and Engineering Massachusetts Institute of Technology

More information

Quiz 1 Introduction to Polymers

Quiz 1 Introduction to Polymers 090109 Quiz 1 Introduction to Polymers In class we discussed the definition of a polymer first by comparing polymers with metals and ceramics and then by noting certain properties of polymers that distinguish

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics R. Carbone 1* 1 Dipartimento di Ingegneria dei Materiali e della Produzione sez. Tecnologie

More information

Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London

Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London Deformation of Polymers Version 2.1 Boban Tanovic, MATTER David Dunning, University of North London Assumed Pre-knowledge It is assumed that the user is familiar with the terms elasticity, stress, strain,

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance All Attendees Are Muted Questions and Answers Please type your questions into your webinar control panel We will read your questions out loud, and

More information

BIOEN LECTURE 18: VISCOELASTIC MODELS

BIOEN LECTURE 18: VISCOELASTIC MODELS BIOEN 326 2013 LECTURE 18: VISCOELASTIC MODELS Definition of Viscoelasticity. Until now, we have looked at time-independent behaviors. This assumed that materials were purely elastic in the conditions

More information

G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers"

G. R. Strobl, Chapter 5 The Physics of Polymers, 2'nd Ed. Springer, NY, (1997). J. Ferry, Viscoelastic Behavior of Polymers G. R. Strobl, Chapter 5 "The Physics of Polymers, 2'nd Ed." Springer, NY, (1997). J. Ferry, "Viscoelastic Behavior of Polymers" Chapter 3: Specific Relaxations There are many types of relaxation processes

More information

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Dynamic Finite Element Modeling of Elastomers

Dynamic Finite Element Modeling of Elastomers Dynamic Finite Element Modeling of Elastomers Jörgen S. Bergström, Ph.D. Veryst Engineering, LLC, 47A Kearney Rd, Needham, MA 02494 Abstract: In many applications, elastomers are used as a load-carrying

More information

CHAPTER 7 MECHANICAL PROPERTIES PROBLEM SOLUTIONS

CHAPTER 7 MECHANICAL PROPERTIES PROBLEM SOLUTIONS Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has

More information

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. Anelasticity. Fabio ROMANELLI

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. Anelasticity. Fabio ROMANELLI Theoretical Seismology Astrophysics and Cosmology and Earth and Environmental Physics Anelasticity Fabio ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it Intrinsic

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

SEISMOLOGY. Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI

SEISMOLOGY. Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI SEISMOLOGY Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it

More information

INTRODUCTION TO STRAIN

INTRODUCTION TO STRAIN SIMPLE STRAIN INTRODUCTION TO STRAIN In general terms, Strain is a geometric quantity that measures the deformation of a body. There are two types of strain: normal strain: characterizes dimensional changes,

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Polymer Engineering (MM3POE)

Polymer Engineering (MM3POE) Polymer Engineering (MM3POE) VISCOELASTICITY hp://www.noingham.ac.uk/~eazacl/mm3poe Viscoelasiciy 1 Conens Wha is viscoelasiciy? Fundamenals Creep & creep recovery Sress relaxaion Modelling viscoelasic

More information

Module-4. Mechanical Properties of Metals

Module-4. Mechanical Properties of Metals Module-4 Mechanical Properties of Metals Contents ) Elastic deformation and Plastic deformation ) Interpretation of tensile stress-strain curves 3) Yielding under multi-axial stress, Yield criteria, Macroscopic

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance Introduction and Review of Linear Viscoelastic Behaviors About the webinar series Past, current, and future plan for webinar series Introduction to

More information

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Continuum Mechanics. Continuum Mechanics and Constitutive Equations Continuum Mechanics Continuum Mechanics and Constitutive Equations Continuum mechanics pertains to the description of mechanical behavior of materials under the assumption that the material is a uniform

More information

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C UNVERSTY OF CALFORNA Collee of Enineerin Department of Electrical Enineerin and Computer Sciences E. Alon Homework #3 Solutions EECS 40 P. Nuzzo Use the EECS40 90nm CMOS process in all home works and projects

More information

For an imposed stress history consisting of a rapidly applied step-function jump in

For an imposed stress history consisting of a rapidly applied step-function jump in Problem 2 (20 points) MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0239 2.002 MECHANICS AND MATERIALS II SOLUTION for QUIZ NO. October 5, 2003 For

More information

Constitutive Model for High Density Polyethylene to Capture Strain Reversal

Constitutive Model for High Density Polyethylene to Capture Strain Reversal Constitutive Model for High Density Polyethylene to Capture Strain Reversal Abdul Ghafar Chehab 1 and Ian D. Moore 2 1 Research Assistant, GeoEngineering Centre at Queen s RMC, Queen s University, Kingston,

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

Period #1 : CIVIL MATERIALS COURSE OVERVIEW

Period #1 : CIVIL MATERIALS COURSE OVERVIEW Period #1 : CIVIL MATERIALS COURSE OVERVIEW A. Materials Systems to be Addressed Metals and Alloys (steel and aluminum) Portland Cement Concrete Asphalt Cement Concrete Fiber Reinforced Composites Masonry

More information

Rheology and Viscoelasticity

Rheology and Viscoelasticity Rheology and Viscoelasticity Key learning outcomes Viscoelasticity, elastic and viscous materials Storage (E ) modulus curve Basic concepts of viscosity and deformation Stress-strain curve Newtonian, dilatant,

More information

Solid Mechanics Homework Answers

Solid Mechanics Homework Answers Name: Date: Solid Mechanics Homework nswers Please show all of your work, including which equations you are using, and circle your final answer. Be sure to include the units in your answers. 1. The yield

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

The Rheology Handbook

The Rheology Handbook Thomas G. Mezger The Rheology Handbook For users of rotational and oscillatory rheometers 2nd revised edition 10 Contents Contents 1 Introduction 16 1.1 Rheology, rheometry and viscoelasticity 16 1.2 Deformation

More information

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain Question 1 i To start, we recognize the following relationships on the stress and strain γ = γ k + γ 2 1 τ = G k γ k + μ k γ k = μ 2 γ 2 Therefore, the following relationships are also true γ = γ k + γ

More information

Notes about this lecture:

Notes about this lecture: Notes about this lecture: There is a lot of stuff on the following slides!!! Make sure you can explain what the following mean: Viscous material and elastic material; viscoelastic Flow curve Newtonian

More information

Chapter 4. Glass Transition Temperature. in Polymers

Chapter 4. Glass Transition Temperature. in Polymers Glass Transition Temperature 1. Introduction in Polymers 2. Transition or State of Matters 3. Theory (WLF equation) 4. Time-Temperature Superposition Principle 5. Transition T (T ) and End-use T (T use

More information

Deformation of Polymers

Deformation of Polymers Department of Engineering Science University of Oxford Deformation of Polymers 4 Lectures for Paper C3 Prof. J.C. Tan Hilary Term 2015 1 Contents of the lectures 1. Introduction 2. Preliminaries (B5 lectures):

More information

Madrid, 8-9 julio 2013

Madrid, 8-9 julio 2013 VI CURSO DE INTRODUCCION A LA REOLOGÍA Madrid, 8-9 julio 2013 NON-LINEAR VISCOELASTICITY Prof. Dr. Críspulo Gallegos Dpto. Ingeniería Química. Universidad de Huelva & Institute of Non-Newtonian Fluid Mechanics

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS MTS ADHESIVES PROGRAMME 1996-1999 PERFORMANCE OF ADHESIVE JOINTS Project: PAJ1; Failure Criteria and their Application to Visco-Elastic/Visco-Plastic Materials Report 2 A CRITERION OF TENSILE FAILURE FOR

More information

Jessica Gwyther. Characterisation of Plasticised Nitrocellulose using NMR and Rheology

Jessica Gwyther. Characterisation of Plasticised Nitrocellulose using NMR and Rheology Jessica Gwyther Characterisation of Plasticised Nitrocellulose using NMR and Rheology 2 Project Aims Prepare 5 inert PBX binder formulations using nitrocellulose polymer and a series of nitroaromatic plasticiser

More information

Stress Relaxation in Poly(methyl methacrylate) (PMMA) During Large-Strain Compression Testing Near the Glass Transition Temperature

Stress Relaxation in Poly(methyl methacrylate) (PMMA) During Large-Strain Compression Testing Near the Glass Transition Temperature Stress Relaxation in Poly(methyl methacrylate) (PMMA) During Large-Strain Compression Testing Near the Glass Transition Temperature A Thesis Presented in Partial Fulfillment of the Requirements for Graduation

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 5 Rheology Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise Rheology is... the study of deformation and flow of

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

, to obtain a way to calculate stress from the energy function U(r).

, to obtain a way to calculate stress from the energy function U(r). BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

More information

Lab Week 4 Module α 1. Polymer chains as entropy springs: Rubber stretching experiment and XRD study. Instructor: Gretchen DeVries

Lab Week 4 Module α 1. Polymer chains as entropy springs: Rubber stretching experiment and XRD study. Instructor: Gretchen DeVries 3.014 Materials Laboratory December 9-14, 005 Lab Week 4 Module α 1 Polymer chains as entropy springs: Rubber stretching experiment and XRD study Instructor: Gretchen DeVries Objectives Review thermodynamic

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

Modeling of Nonlinear Viscoelastic Creep of Polycarbonate

Modeling of Nonlinear Viscoelastic Creep of Polycarbonate e-polymers 7, no. 7 http://www.e-polymers.org ISSN 68-79 Modeling of Nonlinear Viscoelastic Creep of Polycarbonate Wenbo Luo, * Said Jazouli, Toan Vu-Khanh College of Civil Engineering and Mechanics, Xiangtan

More information

TENSILE TESTS (ASTM D 638, ISO

TENSILE TESTS (ASTM D 638, ISO MODULE 4 The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications

More information

MATERIAL MODELS FOR CRUMB RUBBER AND TDA. California State University, Chico

MATERIAL MODELS FOR CRUMB RUBBER AND TDA. California State University, Chico MATERIAL MODELS FOR CRUMB RUBBER AND TDA California State University, Chico Waste Tire Products for CE Applications Whole Tires Tire Shreds (TDA) Crumb Rubber/Tire Buffings Whole Tires TIRE DERIVED AGGREGATE

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS 1 MECHANICAL PROPERTIES OF MATERIALS Pressure in Solids: Pressure in Liquids: Pressure = force area (P = F A ) 1 Pressure = height density gravity (P = hρg) 2 Deriving Pressure in a Liquid Recall that:

More information

Practical 2P11 Mechanical properties of polymers

Practical 2P11 Mechanical properties of polymers Practical 2P11 Mechanical properties of polymers What you should learn from this practical Science This practical will help you to understand two of the most important concepts in applied polymer science:

More information

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany Nadine Feldmann 1, Fabian Bause 1, Bernd Henning 1 1 Measurement Engineering Group, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany feldmann@emt.uni-paderborn.de Abstract The present

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

13 Solid materials Exam practice questions

13 Solid materials Exam practice questions Pages 206-209 Exam practice questions 1 a) The toughest material has the largest area beneath the curve the answer is C. b) The strongest material has the greatest breaking stress the answer is B. c) A

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii)

Eshan V. Dave, Secretary of M&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate. Glaucio H. Paulino, Chairman of M&FGM2006 (Hawaii) Asphalt Pavement Aging and Temperature Dependent Properties through a Functionally Graded Viscoelastic Model I: Development, Implementation and Verification Eshan V. Dave, Secretary of M&FGM2006 (Hawaii)

More information

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is: Problem 10.4 A prismatic bar with length L 6m and a circular cross section with diameter D 0.0 m is subjected to 0-kN compressive forces at its ends. The length and diameter of the deformed bar are measured

More information

Shear rheology of polymer melts

Shear rheology of polymer melts Shear rheology of polymer melts Dino Ferri dino.ferri@versalis.eni.com Politecnico Alessandria di Milano, 14/06/2002 22 nd October 2014 Outline - Review of some basic rheological concepts (simple shear,

More information

Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account

Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account Plasticheskie Massy, No. 1-2, 2016, pp. 30 33 Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account A.E. Dudnik, A.S. Chepurnenko, and S.V. Litvinov

More information

The 2S2P1D: An Excellent Linear Viscoelastic Model

The 2S2P1D: An Excellent Linear Viscoelastic Model The 2S2P1D: An Excellent Linear Viscoelastic Model Md. Yusoff 1, N. I., Monieur, D. 2, Airey, G. D. 1 Abstract An experimental campaign has been carried out on five different unaged and five aged penetration

More information

A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials

A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials Marc Delphin MONSIA From: Département de Physique Université

More information

Chapter 2. Rubber Elasticity:

Chapter 2. Rubber Elasticity: Chapter. Rubber Elasticity: The mechanical behavior of a rubber band, at first glance, might appear to be Hookean in that strain is close to 100% recoverable. However, the stress strain curve for a rubber

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

MP10: Process Modelling

MP10: Process Modelling MP10: Process Modelling MPhil Materials Modelling Dr James Elliott 0.1 MP10 overview 6 lectures on process modelling of metals and polymers First three lectures by JAE Introduction to polymer rheology

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHAICS PD Dr. Christian Holm PART Entropy and Temperature Fundamental assumption a closed system is equally likely to be in any of its accessible micro- states, and all accessible micro-

More information

Rheology in food analysis. Dr. Sipos Péter. Debrecen, 2014

Rheology in food analysis. Dr. Sipos Péter. Debrecen, 2014 TÁMOP-4.1.2.D-12/1/KONV-2012-0008 Szak-nyelv-tudás - Az idegen nyelvi képzési rendszer fejlesztése a Debreceni Egyetemen Rheology in food analysis Dr. Sipos Péter Debrecen, 2014 Table of contents 1. Fundamentals

More information

Malleable, Mechanically Strong, and Adaptive Elastomers. Enabled by Interfacial Exchangeable Bonds

Malleable, Mechanically Strong, and Adaptive Elastomers. Enabled by Interfacial Exchangeable Bonds Malleable, Mechanically Strong, and Adaptive Elastomers Enabled by Interfacial Exchangeable Bonds Zhenghai Tang, Yingjun Liu, Baochun Guo,*, and Liqun Zhang*, Department of Polymer Materials and Engineering,

More information

5 The Oldroyd-B fluid

5 The Oldroyd-B fluid 5 The Oldroyd-B fluid Last time we started from a microscopic dumbbell with a linear entropic spring, and derived the Oldroyd-B equations: A u = u ρ + u u = σ 2 pi + η u + u 3 + u A A u u A = τ Note that

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Course Business. Today: isostasy and Earth rheology, paper discussion

Course Business. Today: isostasy and Earth rheology, paper discussion Course Business Today: isostasy and Earth rheology, paper discussion Next week: sea level and glacial isostatic adjustment Email did you get my email today? Class notes, website Your presentations: November

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION

OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION Luca Barbaresi, Federica Morandi, Juri Belcari, Andrea Zucchelli and Alice Speranza University

More information

Estimation of damping capacity of rubber vibration isolators under harmonic excitation

Estimation of damping capacity of rubber vibration isolators under harmonic excitation Estimation of damping capacity of rubber vibration isolators under harmonic excitation Svetlana Polukoshko Ventspils University College, Engineering Research Institute VSRC, Ventspils, Latvia E-mail: pol.svet@inbox.lv

More information