Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall

Size: px
Start display at page:

Download "Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall"

Transcription

1 Vol.21 No.3 (275~282) ACTA SEISMOLOGICA SINICA May, 2008 Article ID: (2008) doi: /s Geometric effects resulting from the asymmetry of dipping fault: Hanging wall/ footwall effects WANG Dong 1), ( 王栋 ) XIE Li-li 1,2) ( 谢礼立 ) HU Jin-jun 1) ( 胡进军 ) 1) Institute of Engineering Mechanics, China Earthquake Administration, Harbin , China 2) School of Civil Engineering and Architecture, Harbin Institute of Technology, Harbin , China Abstract Root-mean-square distance D rms with characteristic of weighted-average is introduced in this article firstly. D rms can be used to capture the general proximity of a site to a dipping fault plane comparing with the rupture distance D rup and the seismogenic distance D seis. Then, using D rup, D seis and D rms, the hanging wall/footwall effects on the peak ground acceleration (PGA) during the 1999 Chi-Chi earthquake are evaluated by regression analysis. The logarithm residual shows that the PGA on hanging wall is much greater than that on footwall at the same D rup or D seis when the D rup or D seis is used as site-to-source distance measure. In contrast, there is no significant difference between the PGA on hanging wall and that on footwall at the same D rms when D rms is used. This result confirms that the hanging wall/footwall effect is mainly a geometric effect caused by the asymmetry of dipping fault. Therefore, the hanging wall/footwall effect on the near-fault ground motions can be ignored in the future attenuation analysis if the root-mean-square distance D rms is used as the site-to-source distance measure. Key words: root-mean-square distance; rupture distance; hanging wall/footwall effects; peak acceleration attenuation relationship; near-fault ground motion CLC number: P315.9 Document code: A Introduction In some great earthquake occurred in recent years, there is a remarkable characteristics in near-fault ground motions, i.e., the hanging wall/footwall (HW/FW) effect (Abrahamson and Silva, 1997; Abrahamson and Somerville, 1996; YU and GAO, 2001; Shabestari and Yamazaki, 2003; XU et al, 2003; TAO and WANG, 2003; LIU et al, 2004; Chang et al, 2004; ZHANG et al, 2006; LI and XIE, 2007). The records of strong ground motion from 1994 Northridge earthquake and 1999 Chi-Chi earthquake in Chinese Taiwan show that the ground motions on HW are much greater than those on FW (YU and GAO, 2001; Chang et al, 2004; Abrahamson and Silva, 1997; Abrahamson and Somerville, 1996). Oldham is believed to be the first man who discovered the HW/FW effects on near-fault Received ; accepted in revised form Foundation item: Basic Science Research Foundation of Institute of Engineering Mechanics, China Earthquake Administration (2006B07); Natural Science Foundation of Heilongjiang Province (E ) and Joint Seismological Science Foundation of China (C07025). Author for correspondence: wangdong@iem.ac.cn

2 276 ACTA SEISMOLOGICA SINICA Vol.21 ground motions. Oldham found that the ground motions on HW were greater than those on FW in 1899 in field survey after the great Assam, India earthquake (12 June, 1897) (Oglesby et al, 2000). Subsequently, Nason (1973), Brune (1996) and Allen (1998) also obtained the observational evidences of this effect individually during the field investigation of the 1971 San Fernando earthquake (Brune, 1996; Oglesby et al, 2000). Besides, Ruegg et al also got the same indication in 1982 when they investigated the El Asnam, Algeria earthquake (Oglesby et al, 2000). From all earthquakes mentioned above, the researchers found a mass of shattered rocks on HW together with many precarious rocks on FW. The shattered rocks on HW underwent a shock of high strain ( ), which is large enough to crush them into pieces during the intense earthquakes (Brune, 1996). However, the precarious rocks on FW can be easily overturned with the strength of a single finger, and still kept balance after so large earthquakes (Brune, 1996). All these illuminate that much intense ground motions encountered on HW side and relative lower on FW. Nevertheless, the HW/FW effects have not attracted sufficient attention due to the lack of seismic records. Thrust earthquakes typically occur on the dipping (non-vertical) faults. For dipping fault, the side with the fault-dip δ less than 90 is defined as HW and the other side as FW. The definition of HW/FW effects is as follows: the ground motions on both sides of dipping fault are not expected to be the same. Definitely speaking, the sites located above the fault rupture on the HW will have larger ground motions than those at the same rupture distance located on FW because HW sites are closer to a larger area of the source than FW sites (Abrahamson and Silva, 1997; Abrahamson and Somerville, 1996). A previous study showed the HW/FW effects were observed in Chi-Chi earthquake regardless of the distance measures (Chang et al, 2004), such as D rup, D seis and the Joyner-Boore distance D jb (the shortest horizontal distance to the vertical projection of the rupture). That is to say, the ground motion on HW is larger than that on FW so long as they have the same D rup, D seis or D jb. The distance measures widely used before in attenuation analysis, such as D rup, D seis, D jb, the epicentral distance D epc, the hypocentral distance D hyp and so on, share a common disadvantage of being a distance between the recording site and a single point selected to represent the fault plane. These distances cannot represent the general proximity from the site to the dipping fault. In other words, even for the HW and FW site Figure 1 Scheme of source-to-site distance having the same distances mentioned above, the HW site is much closer to the rupture plane than FW site in general. So it s a good choice to use the weighted average distance Δ= [ Σ D γ (ζ, x)dσ/a] 1/γ to describe the whole proximity of the site to the fault plane. In which, Σ denotes the rupture plane, A is the total area of Σ, D(ζ, x) is the distance from the site x on free surface to a point ζ on rupture plane Σ (See Figure 1), and γ is weighted coefficient. Δ is the root-mean-square distance D rms when γ = 2, in which 2 is for consideration of the geometrical attenuation of seismic wave in a homogenous space. Generally speaking, D rms has the following advantages: 1 It can represent the general proximity between the site and the rupture plane accurately; 2 It can reflect the asymmetry degree of dipping fault, that is to say, for the HW and FW site at the same D rup, the larger their D rms difference is, the more obvious

3 No.3 WANG Dong et al: HANGING WALL/FOOTWALL EFFECTS 277 the asymmetry is. The goal of this paper is to examine whether the ground motion on HW and FW will be different if the same D rms is adopted. If there is no difference, the HW/FW effect is believed to be a geometric effect caused by the asymmetry of dipping fault. Firstly, the residuals of PGA are computed by regression method using D rms. Then comparing with the residuals got from the attenuation analysis based on the D rup and D seis, the cause of the HW/FW effect is investigated taking the 1999 Chi-Chi earthquake as an example. 1 Quantitative method of the HW/FW effects Firstly, for a well-recorded earthquake such as Chi-Chi earthquake, the empirical attenuation relation of PGA for this earthquake is developed by regression method with the full data set (including the HW sites, FW sites and the neutral sites outside of HW and FW). The recorded PGA is marked as a pg-obs and the values located on the attenuation curves at the corresponding distance are marked as a pg-pred. Then the logarithm residuals ln (a pg-obs /a pg-pred ) are used to quantify the HW/FW effects on PGA. Obviously, the larger the residual is, the larger the difference between the PGA on HW and the median level of PGA at corresponding distance is. However, if the residual approaches zero, the difference disappears, which indicates that there is no HW/FW effect on PGA. 2 HW/FW effects on PGA during the Chi-Chi earthquake 2.1 Data set of strong ground motions During the 1999 Chi-Chi earthquake, a total of 441 strong ground motions are recorded. According to the quality of records, a group of 298 accelerations belonging to A, B and C class are used in this research except the D class (not suitable for scientific research). Based on the defini tion of HW and FW zone (Abrahamson and Somerville, 1996), the 11 HW sites (triangles), 69 FW sites (open circles) and the neutral sites (stars) are classified and plotted in Figure 2. The three-component PGA of 11 HW sites are listed in Table 1. Then the D rms of stations are computed according to the definition of D rms and the finite-fault model of Chi-Chi earthquake (Iwata et al, 2000) with the surface projection of fault plane shown in Figure 2 (rectangle zone) Besides, since the site conditions of HW sites (belonging to site class D according to 1997 Uniform Building Code) and FW sites (belonging to site class C, D and E according to 1997 UBC) are similar (Lee et al, 2001), coupled with the scarcity of recordings on HW, the influence of site condition is not taken into consideration in this research. 2.2 Attenuation relations and curves of PGA Since there are a great number of recordings gotten during the Chi-Chi earthquake, the earthquake-specific attenuation relations are developed. The following regression model (Chang et al, 2004) is adopted in this research: Figure 2 Surface projection of finite-fault (Iwata et al, 2000) and the locations of HW and FW sites of Chi-Chi earthquake

4 278 ACTA SEISMOLOGICA SINICA Vol.21 ln( a pg ) = a + b ln( D + c) (1) In which, a pg is PGA with unit in m s 2, D is distance measure D rup D seis or D rms in km, the coefficients a, b and c for three-component PGA estimated using the ordinary-least-squares method together with the standard deviations σ are listed in Table 2. The attenuation curves of three-component PGA are plotted in Figures 3, 4 and 5, in which open circles denote the 11 HW sites, and the solid circles represent the FW and neutral sites. The HW sites uniformly locate up and down the attenuation curves based on D rms (see Figures 3a, 4a and 5a) without bias, which shows that the HW/FW effects are insignificant. In contrast, most of the HW sites locate above the attenuation curves based on the D rup or D seis (see Figures 3b, 3c, 4b, 4c, 5b and 5c), which indicates that the HW/FW effects are significant. Table 1 Three-component peak ground acceleration on the hanging wall Station code a pg-v /m s 2 a pg-ns /m s 2 a pg-ew /m s 2 TCU TCU TCU TCU TCU TCU TCU TCU TCU TCU CHY Note: a pg-v, a pg-ns and a pg-ew denote PGA component in vertical, north-south and east-west, respectively. Table 2 Attenuation coefficients of PGA for Chi-Chi attenuation curves using different distance measures Distance Component a b c σ measures D rms a pg-v D rup D seis D rms a pg-ns D rup D seis D rms a pg-ew D rup D seis Note: a pg-v, a pg-ns, a pg-ew are the same as that in Figure 1. Figure 3 Attenuation curves of a pg-v using different source-to-site distance measure (a) D rms measure; (b) D rup measure; (c) D seis measure 2.3 Hanging wall/footwall effects The logarithm residuals of three components of PGA are plotted in Figures 6, 7 and 8. In these figures, the FW and neutral sites (solid circles) are plotted at negative distances to separate

5 No.3 WANG Dong et al: HANGING WALL/FOOTWALL EFFECTS 279 Figure 4 Attenuation curves of a pg-ew using different source-to-site distance measure (a) D rms measure; (b) D rup measure; (c) D seis measure Figure 5 Attenuation curves of a pg-ns using different source-to-site distance measure (a) D rms measure; (b) D rup measure; (c) D seis measure them from HW sites (open circles). From Figures 6a, 7a and 8a based on D rms, the HW sites distribute symmetrically around the zero line without obvious bias, which indicates the HW/FW effects on PGA are insignificant when D rms is used. However, from Figures 6b, 6c, 7b, 7c, 8b and 8c based on D rup and D seis respectively, the PGA residuals appear to be biased to positive values, i.e., most HW sites locate above the zero line, which suggests the HW/FW effects on PGA are significant when D rup or D seis is used. In fact, the residuals of 11 HW sites based on D rms measure are much smaller than those based on D rup and D seis. As a comparison, the mean values R and variances S of residuals based on different distance measures are listed in Table 3, which shows the mean values based on D rms are all less than those based on D rup and D seis without exception. All these things indicate that the PGA on HW approxi-

6 280 ACTA SEISMOLOGICA SINICA Vol.21 Figure 6 Residuals of a pg-v using different source-to-site distance measure (a) D rms measure; (b) D rup measure; (c) D seis measure Figure 7 Residuals of a pg-ew using different sourceto-site distance measure (a) D rms measure; (b) D rup measure; (c) D seis measure Figure 8 Residuals of a pg-ns using different sourceto-site distance measure (a) D rms measure; (b) D rup measure; (c) D seis measure mates to the median attenuation for Chi-Chi earthquake at corresponding distance when D rms is used, that is to say, the HW/FW effects on PGA become insignificant. Based on the analysis above, for the HW and FW site having the same degree of general proximity to the fault plane (i.e., the same D rms ), there is no significant difference in PGA of these sites. However, in the case of the HW and FW site having the same D rup or D seis, the D rms of HW site is less than that of FW site (i.e., the HW site is much closer to the large area of the fault plane than the FW site), which leads to the PGA of the HW site being larger than that of FW site. In fact, with the increase of fault-dip, the asymmetry degree of dipping fault relieves, that is, the difference of D rms between the HW and FW site located at the same D rup or D seis reduces, which results

7 No.3 WANG Dong et al: HANGING WALL/FOOTWALL EFFECTS 281 in the HW/FW effects of PGA becoming insignificant. All these show that the HW/FW effect is a geometrical effect caused by the asymmetry of dipping fault. So, the HW/FW effects on the near-fault ground motions can be ignored when the D rms is used as source-to-site distance measure, however they can not be neglected when the other distance measures are used, such as D rup and D seis Table 3 Means R and variances S of residuals of HW sites using different distance measures during Chi-Chi earthquake Vertical EW NS Distance measure R S R S R S D rms D rup D seis Discussion and conclusions The 1999 Chi-Chi earthquake occurred on dipping (non-vertical) fault, of which the fault-dip is 30 and the rupture broken up to the ground surface. The two sides of the fault (hanging wall and footwall) are obvious asymmetric relative to the rupture plane. The asymmetry includes the mass and volume difference between HW and FW, as well as the distance to the fault plane, which may be the potential causes of the HW/FW effects. Based on the regression analysis of the three components of PGA from the Chi-Chi earthquake, the following conclusions can be drawn. 1) The hanging wall/footwall effects on the PGA during the Chi-Chi earthquake is mainly a geometric effects caused by the asymmetry of dipping fault. The asymmetry mainly refers to D rms difference between the hanging wall site and footwall site at the same D rup. 2) The rupture distance D rup, the seismogenic distance D seis and the Joyner-Boore distance D jb can not accurately represent the general proximity from a site to the fault plane. For the hanging wall and footwall site at the same D rup, D seis or D jb, D rms of hanging wall site is much less than that of footwall site, which leads to the amplification of PGA on the hanging wall. The hanging wall/footwall effects on PGA are significant when D rup, D seis or D jb is used. 3) The root-mean-square distance D rms with characteristic of weighted average can accurately represent the general proximity from a site to the fault plane. Therefore, the hanging wall and footwall site at the same D rms have identical ground motions basically. The hanging wall/footwall effect on PGA is insignificant when D rms is used. 4) The hanging wall/footwall effects can be ignored when D rms is used in attenuation analysis, while they can not be neglected when the other distance measures are used, such as D rup and D seis. Acknowledgments The authors are grateful to the Central Weather Bureau of Taiwan for providing the strong ground motion records. References Abrahamson N A and Silva W J Empirical response spectral attenuation relations for shallow crustal earthquakes [J]. Seism Res Lett, 68(l): Abrahamson N A and Somerville P G Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake [J]. Bull Seism Soc Amer, 86(1B): S93-S99. Brune J N Precariously balanced rocks and ground-motion maps for southern California [J]. Bull Seism Soc Amer, 86(1A): Chang T Y, Cotton F, Tsai Y B, et al Quantification of hanging-wall effects on ground motion: Some insights from the 1999 Chi-Chi Earthquake [J]. Bull Seism Soc Amer, 94(6): Iwata T, Sckiguchi H, Irikura K Rupture process of the 1999 Chi-Chi, Taiwan, earthquake and its near-source strong ground motions [C]//Proc of International Workshop on Annual Commemoration of Chi-Chi Earthquake. Taipei, Taiwan: [s.n.]: 18-20,

8 282 ACTA SEISMOLOGICA SINICA Vol.21 Lee C T, Cheng C T, Liao C W, et al Site classification of Taiwan free-field strong-motion stations [J]. Bull Seism Soc Amer, 91: LI Shuang and XIE Li-li Progress and trend on near-field problems in civil engineering [J]. Acta Seismologica Sinica, 20(1): LIU Qi-fang, YUAN Yi-fan, JIN Xing Spatial distribution of near-fault ground motion [J]. Acta Seismologica Sinica, 17(2): Oglesby D D, Archuleta R J, Nielsen S B The three dimensional dynamics of dipping faults [J]. Bull Seism Soc Amer, 90: Shabestari K T and Yamazaki F Near-fault spatial variation in strong ground motion due to rupture directivity and hanging wall effects from the Chi-Chi, Taiwan earthquake. [J]. Earthquake Engng Struct Dyn, 32: TAO Xia-xin and WANG Guo-xin Rupture directivity and hanging wall effect in near field strong ground motion simulation [J]. Acta Seismologica Sinica, 16(2): XU Li-sheng, YU Yan-xiang, CHEN Yun-tai Advances in ground motion studies in China [J] Acta Seismologica Sinica, 16(5): YU Yan-xiang and GAO Meng-tan Effects of the hanging wall and footwall on peak acceleration during the Chi-Chi earthquake, Taiwan [J]. Acta Seismologica Sinica, 14(6): ZHANG Xiao-zhi, HU Jin-jun, XIE Li-li, et al Simulation of near-fault bedrock strong ground motion field by explicit finite element method [J]. Acta Seismologica Sinica, 19(6):

Root-mean-square distance and effects of hanging wall/footwall. Wang Dong 1 and Xie Lili 1,2

Root-mean-square distance and effects of hanging wall/footwall. Wang Dong 1 and Xie Lili 1,2 The 4 th World Conference on Earthquake Engineering October 2-7, 28, Beijing, China Root-mean-square distance and effects of hanging wall/footwall Wang Dong and Xie Lili,2 Institute of Engineering Mechanics,

More information

Directivity of near-fault ground motion generated by thrust-fault earthquake: a case study of the 1999 M w 7.6 Chi-Chi earthquake

Directivity of near-fault ground motion generated by thrust-fault earthquake: a case study of the 1999 M w 7.6 Chi-Chi earthquake October -7, 8, Beijing, China Directivity of near-fault ground motion generated by thrust-fault earthquake: a case study of the 999 M w 7.6 Chi-Chi earthquake J.J. Hu and L.L. Xie Assistant Professor,

More information

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region

Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Earthq Sci (2009)22: 277 282 277 Doi: 10.1007/s11589-009-0277-x Ground motion attenuation relations of small and moderate earthquakes in Sichuan region Lanchi Kang 1, and Xing Jin 1,2 1 Fuzhou University,

More information

CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 1999 CHI-CHI, TAIWAN EARTHQUAKE

CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 1999 CHI-CHI, TAIWAN EARTHQUAKE th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 74 CHARACTERIZATION OF DIRECTIVITY EFFECTS OBSERVED DURING 999 CHI-CHI, TAIWAN EARTHQUAKE Vietanh PHUNG, Gail

More information

Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California

Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California Bulletin of the Seismological Society of America, 9, 5, pp. 7, October 00 Comparisons of Ground Motions from the 999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California

More information

7 Ground Motion Models

7 Ground Motion Models 7 Ground Motion Models 7.1 Introduction Ground motion equations are often called attenution relations but they describe much more than just the attenutation of the ground motion; they describe the probability

More information

Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013

Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013 Updated Graizer-Kalkan GMPEs (GK13) Southwestern U.S. Ground Motion Characterization SSHAC Level 3 Workshop 2 Berkeley, CA October 23, 2013 PGA Model Our model is based on representation of attenuation

More information

Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp , December 2004

Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp , December 2004 Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp. 2198 2212, December 2004 Comparisons of Ground Motions from Five Aftershocks of the 1999 Chi-Chi, Taiwan, Earthquake with Empirical

More information

Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis

Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis Deterministic Generation of Broadband Ground Motions! with Simulations of Dynamic Ruptures on Rough Faults! for Physics-Based Seismic Hazard Analysis Zheqiang Shi and Steven M. Day! Department of Geological

More information

CAMPBELL-BOZORGNIA NEXT GENERATION ATTENUATION (NGA) RELATIONS FOR PGA, PGV AND SPECTRAL ACCELERATION: A PROGRESS REPORT

CAMPBELL-BOZORGNIA NEXT GENERATION ATTENUATION (NGA) RELATIONS FOR PGA, PGV AND SPECTRAL ACCELERATION: A PROGRESS REPORT Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 2006, San Francisco, California, USA Paper No. 906 CAMPBELL-BOZORGNIA NEXT GENERATION ATTENUATION (NGA) RELATIONS

More information

Comparisons of ground motions from the M 9 Tohoku earthquake with ground-motion prediction equations for subduction interface earthquakes

Comparisons of ground motions from the M 9 Tohoku earthquake with ground-motion prediction equations for subduction interface earthquakes Comparisons of ground motions from the M 9 Tohoku earthquake with ground-motion prediction equations for subduction interface earthquakes David M. Boore 8 March 20 Revised: 3 March 20 I used data from

More information

Statistical Analysis on the Characteristics of Normalized Response Spectra of Ground Motion Records from Wenchuan Earthquake

Statistical Analysis on the Characteristics of Normalized Response Spectra of Ground Motion Records from Wenchuan Earthquake Statistical Analysis on the Characteristics of Normalized Response Spectra of Ground Motion Records from Wenchuan Earthquake Y.Q. Yang, J.J. Hu, L.L. Xie, J.W. Dai, H.Y. Yu Key Laboratory of Earthquake

More information

Songlin Li 1, Xiaoling Lai 1 Zhixiang Yao 2 and Qing Yang 1. 1 Introduction

Songlin Li 1, Xiaoling Lai 1 Zhixiang Yao 2 and Qing Yang 1. 1 Introduction Earthq Sci (2009)22: 417 424 417 Doi: 10.1007/s11589-009-0417-3 Fault zone structures of northern and southern portions of the main central fault generated by the 2008 Wenchuan earthquake using fault zone

More information

Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics

Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics Earthq Sci (2011)24: 107 113 107 doi:10.1007/s11589-011-0774-6 Relocation of aftershocks of the Wenchuan M S 8.0 earthquake and its implication to seismotectonics Bo Zhao Yutao Shi and Yuan Gao Institute

More information

Non-Ergodic Probabilistic Seismic Hazard Analyses

Non-Ergodic Probabilistic Seismic Hazard Analyses Non-Ergodic Probabilistic Seismic Hazard Analyses M.A. Walling Lettis Consultants International, INC N.A. Abrahamson University of California, Berkeley SUMMARY A method is developed that relaxes the ergodic

More information

INVESTIGATION ON ATTENUATION CHARACTERISTICS OF STRONG GROUND MOTIONS IN CHINA AND HONG KONG

INVESTIGATION ON ATTENUATION CHARACTERISTICS OF STRONG GROUND MOTIONS IN CHINA AND HONG KONG INVESTIGATION ON ATTENUATION CHARACTERISTICS OF STRONG GROUND MOTIONS IN CHINA AND HONG KONG Y L WONG 1 And John X ZHAO SUMMARY We present qualitative evidence that strong-motion attenuation characteristics

More information

Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan

Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan Ground-Motion Attenuation Relationships for Subduction- Zone Earthquakes in Northern Taiwan Lin, P.S., Lee, C.T. Bulletin of the Seismology Society of America (2008) Presenter: Yang Pei-Xin Adviser: Lee

More information

GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING

GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING Prepared for the PEER Methodology Testbeds Project by Paul Somerville and Nancy Collins URS Corporation, Pasadena, CA March 7, Site Conditions The

More information

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL 1 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL Hideo AOCHI

More information

STUDY ON THE BI-NORMALIZED EARTHQUAKE ACCELERATION RESPONSE SPECTRA

STUDY ON THE BI-NORMALIZED EARTHQUAKE ACCELERATION RESPONSE SPECTRA th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. 59 STUDY ON THE BI-NORMALIZED EARTHQUAKE ACCELERATION RESPONSE SPECTRA XU Longjun, XIE Lili, SUMMARY The determination

More information

Updated NGA-West2 Ground Motion Prediction Equations for Active Tectonic Regions Worldwide

Updated NGA-West2 Ground Motion Prediction Equations for Active Tectonic Regions Worldwide Updated NGA-West2 Ground Motion Prediction Equations for Active Tectonic Regions Worldwide Kenneth W. Campbell 1 and Yousef Bozorgnia 2 1. Corresponding Author. Vice President, EQECAT, Inc., 1130 NW 161st

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING

GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING GROUND MOTION TIME HISTORIES FOR THE VAN NUYS BUILDING Prepared for the PEER Methodology Testbeds Project by Paul Somerville and Nancy Collins URS Corporation, Pasadena, CA. Preliminary Draft, Feb 11,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara ESTIMATION OF SITE EFFECTS BASED ON RECORDED DATA AND

More information

Single-Station Phi Using NGA-West2 Data

Single-Station Phi Using NGA-West2 Data SSHAC Level 3 Southwestern U.S. Ground Motion Characterization WS-2, October 24, 23 Berkeley, CA Single-Station Phi Using NGA-West2 Data Linda Al Atik Proponent Expert Outline Background, terminology and

More information

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA

DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA DIRECT HAZARD ANALYSIS OF INELASTIC RESPONSE SPECTRA ABSTRACT Y. Bozorgnia, M. Hachem, and K.W. Campbell Associate Director, PEER, University of California, Berkeley, California, USA Senior Associate,

More information

Strong Ground Motion Characteristics of the Chi-Chi, Taiwan Earthquake of September 21, 1999

Strong Ground Motion Characteristics of the Chi-Chi, Taiwan Earthquake of September 21, 1999 Earthquake Engineering and Engineering Seismology 1 Volume 2, Number 1, March 2000, pp. 1 21 Strong Ground Motion Characteristics of the Chi-Chi, Taiwan Earthquake of September 21, 1999 Yi-Ben Tsai 1)

More information

Relationships between ground motion parameters and landslides induced by Wenchuan earthquake

Relationships between ground motion parameters and landslides induced by Wenchuan earthquake Earthq Sci (2010)23: 233 242 233 Doi: 10.1007/s11589-010-0719-5 Relationships between ground motion parameters and landslides induced by Wenchuan earthquake Xiuying Wang 1, Gaozhong Nie 2 and Dengwei Wang

More information

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake.

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake. 2.2 Strong Ground Motion 2.2.1 Strong Ground Motion Network The world densest digital strong ground motion network of Taiwan with the station mesh of 3 km in the urban areas (Shin et al., 2) monitored

More information

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes

Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,/3,00 Di#erences in Earthquake Source and Ground Motion Characteristics between Surface and Buried Crustal Earthquakes Paul Somerville* and Arben Pitarka

More information

THE USE OF INPUT ENERGY FOR SEISMIC HAZARD ASSESSMENT WITH DIFFERENT DUCTILITY LEVEL

THE USE OF INPUT ENERGY FOR SEISMIC HAZARD ASSESSMENT WITH DIFFERENT DUCTILITY LEVEL th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. 8 THE USE OF INPUT ENERGY FOR SEISMIC HAZARD ASSESSMENT WITH DIFFERENT DUCTILITY LEVEL Mao-Sheng GONG And Li-Li

More information

NEXT GENERATION ATTENUATION (NGA) EMPIRICAL GROUND MOTION MODELS: CAN THEY BE USED IN EUROPE?

NEXT GENERATION ATTENUATION (NGA) EMPIRICAL GROUND MOTION MODELS: CAN THEY BE USED IN EUROPE? First European Conference on Earthquake Engineering and Seismology (a joint event of the 13 th ECEE & 30 th General Assembly of the ESC) Geneva, Switzerland, 3-8 September 2006 Paper Number: 458 NEXT GENERATION

More information

Beyond Sa GMRotI : Conversion to Sa Arb, Sa SN, and Sa MaxRot

Beyond Sa GMRotI : Conversion to Sa Arb, Sa SN, and Sa MaxRot Bulletin of the Seismological Society of America, Vol. 97, No. 5, pp. 1511 1524, October 2007, doi: 10.1785/0120070007 Beyond Sa GMRotI : Conversion to Sa Arb, Sa SN, and Sa MaxRot by Jennie A. Watson-Lamprey

More information

Spatial Correlation of Ground Motions in Seismic Hazard Assessment

Spatial Correlation of Ground Motions in Seismic Hazard Assessment Spatial Correlation of Ground Motions in Seismic Hazard Assessment Taojun Liu tliu82@uwo.ca Department of Civil & Environmental Engineering University of Western Ontario London, Ontario, Canada 1 Outline

More information

Precarious Rocks Methodology and Preliminary Results

Precarious Rocks Methodology and Preliminary Results FINAL TECHNICAL REPORT Precarious Rocks Methodology and Preliminary Results James N. Brune, Rasool Anooshehpoor, Yuehua Zeng, and John G. Anderson Seismological Laboratory University of Nevada, Reno Reno,

More information

A Comparative Study of the Least Squares Method and the Genetic Algorithm in Deducing Peak Ground Acceleration Attenuation Relationships

A Comparative Study of the Least Squares Method and the Genetic Algorithm in Deducing Peak Ground Acceleration Attenuation Relationships Terr. Atmos. Ocean. Sci., Vol. 1, No. 6, 869-878, December 010 doi: 10.3319/.010.0.10.01(T) A Comparative Study of the Least Squares Method and the Genetic Algorithm in Deducing eak Ground Acceleration

More information

Rupture directivity effects during the April 15, 2016 Kumamoto. Mw7.0 earthquake in Japan

Rupture directivity effects during the April 15, 2016 Kumamoto. Mw7.0 earthquake in Japan Rupture directivity effects during the April 15, 16 Kumamoto Mw7. earthquake in Japan Junju Xie 1, Paolo Zimmaro, Xiaojun Li 1*, Zengping Wen 1 1 Institute of Geophysics, China Earthquake Administration,

More information

An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra

An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra Brian S.-J. Chiou a) and Robert R. Youngs, b) M.EERI We present a model for estimating horizontal ground motion

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Update of the AS08 Ground-Motion Prediction Equations Based on the NGA-West2 Data Set Norman A. Abrahamson Pacific Gas & Electric Company San Francisco, California

More information

Comment on Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? by Julian J. Bommer and Norman A.

Comment on Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? by Julian J. Bommer and Norman A. Comment on Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? by Julian J. Bommer and Norman A. Abrahamson Zhenming Wang Kentucky Geological Survey 8 Mining and

More information

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac

THE NATURE OF SITE RESPONSE DURING EARTHQUAKES. Mihailo D. Trifunac THE NATURE OF SITE RESPONSE DURING EARTHQUAKES Mihailo D. Trifunac Dept. of Civil Eng., Univ. of Southern California, Los Angeles, CA 90089, U.S.A. http://www.usc.edu/dept/civil_eng/earthquale_eng/ What

More information

NEW ATTENUATION FORMULA OF EARTHQUAKE GROUND MOTIONS PASSING THROUGH THE VOLCANIC FRONT

NEW ATTENUATION FORMULA OF EARTHQUAKE GROUND MOTIONS PASSING THROUGH THE VOLCANIC FRONT th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 7 NEW ATTENUATION FORMULA OF EARTHQUAKE GROUND MOTIONS PASSING THROUGH THE VOLCANIC FRONT Nobuo TAKAI, Gaku

More information

Comparison of NGA-West2 GMPEs

Comparison of NGA-West2 GMPEs Comparison of NGA-West2 GMPEs Nick Gregor, a) M.EERI, Norman A. Arahamson, ) M.EERI, Gail M. Atkinson, c) M.EERI, David M. Boore, d) Yousef Bozorgnia, e) M.EERI, Kenneth W. Campell, f) M.EERI, Brian S.-J.

More information

GMPEs for Active Crustal Regions: Applicability for Controlling Sources

GMPEs for Active Crustal Regions: Applicability for Controlling Sources GMPEs for Active Crustal Regions: Applicability for Controlling Sources Jonathan P. Stewart University of California, Los Angeles March 19, 2013 Oakland Airport Hilton Outline GMPEs considered GMPE parameter

More information

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例

Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Site specific seismic hazard assessment a case study of Guanyin offshore wind farm 場址特定地震危害度評估 - 以觀音離岸風力發電廠為例 Supervisor : Dr. Chyi-Tyi Lee and Dr. Kuo-Fong Ma Speaker : Jia-Cian Gao 2018/04/26 1 1. A

More information

A GEOTECHNICAL SEISMIC SITE RESPONSE EVALUATION PROCEDURE

A GEOTECHNICAL SEISMIC SITE RESPONSE EVALUATION PROCEDURE A GEOTECHNICAL SEISMIC SITE RESPONSE EVALUATION PROCEDURE Adrian RODRIGUEZ-MAREK 1, Jonathan D BRAY 2 And Norman A ABRAHAMSON 3 SUMMARY A simplified empirically-based seismic site response evaluation procedure

More information

Ground Motion Prediction Equation Hazard Sensitivity Results for Palo Verde Nuclear Generating Station Site (PVNGS)

Ground Motion Prediction Equation Hazard Sensitivity Results for Palo Verde Nuclear Generating Station Site (PVNGS) Ground Motion Prediction Equation Hazard Sensitivity Results for Palo Verde Nuclear Generating Station Site (PVNGS) M.Walling SWUS GMC Workshop 3 March 11, 2013 Hazard ground motion prediction equation

More information

Some Problems Related to Empirical Predictions of Strong Motion

Some Problems Related to Empirical Predictions of Strong Motion Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,/-,/2 Some Problems Related to Empirical Predictions of Strong Motion Saburoh Midorikawa + * + Center for Urban Earthquake Engineering, Tokyo Institute

More information

Hazard Feedback using the. current GMPEs for DCPP. Nick Gregor. PG&E DCPP SSHAC Study. SWUS GMC Workshop 2 October 22, 2013

Hazard Feedback using the. current GMPEs for DCPP. Nick Gregor. PG&E DCPP SSHAC Study. SWUS GMC Workshop 2 October 22, 2013 1 Hazard Feedback using the current GMPEs for DCPP Nick Gregor PG&E DCPP SSHAC Study SWUS GMC Workshop 2 October 22, 2013 PGA Hazard By Source 0.5 Hz 2 Deaggregation AEP = 10-4 PGA 0.5 Hz 3 4 Base Case

More information

Ground-Motion Prediction Equations (GMPEs) from a Global Dataset: The PEER NGA Equations

Ground-Motion Prediction Equations (GMPEs) from a Global Dataset: The PEER NGA Equations Ground-Motion Prediction Equations (GMPEs) from a Global Dataset: The PEER NGA Equations David M. Boore U.S. Geological Survey Abstract The PEER NGA ground-motion prediction equations (GMPEs) were derived

More information

and P. M. Smit currently at: National Emergency Operations Centre, CH-8044 Zürich, Switzerland. November 9, 2004

and P. M. Smit currently at: National Emergency Operations Centre, CH-8044 Zürich, Switzerland. November 9, 2004 Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration N. N. Ambraseys,

More information

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING

STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING STUDYING THE IMPORTANT PARAMETERS IN EARTHQUAKE SIMULATION BASED ON STOCHASTIC FINITE FAULT MODELING H. Moghaddam 1, N. Fanaie 2* and H. Hamzehloo 1 Professor, Dept. of civil Engineering, Sharif University

More information

Main controlling factors of hydrocarbon accumulation in Sujiatun oilfield of Lishu rift and its regularity in enrichment

Main controlling factors of hydrocarbon accumulation in Sujiatun oilfield of Lishu rift and its regularity in enrichment 35 3 2016 9 GLOBAL GEOLOGY Vol. 35 No. 3 Sept. 2016 1004 5589 2016 03 0785 05 130062 P618. 130. 2 A doi 10. 3969 /j. issn. 1004-5589. 2016. 03. 019 Main controlling factors of hydrocarbon accumulation

More information

Pacific Earthquake Engineering Research Center

Pacific Earthquake Engineering Research Center Pacific Earthquake Engineering Research Center Task 3: Characterization of Site Response General Site Categories Adrian Rodriguez-Marek Jonathan D. Bray University of California, Berkeley Norman Abrahamson

More information

Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake

Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake Bulletin of the Seismological Society of America, 91, 5, pp. 1255 1266, October 2001 Why 1G Was Recorded at TCU129 Site During the 1999 Chi-Chi, Taiwan, Earthquake by Kuo-Liang Wen,* Han-Yih Peng, Yi-Ben

More information

Tomographic imaging of P wave velocity structure beneath the region around Beijing

Tomographic imaging of P wave velocity structure beneath the region around Beijing 403 Doi: 10.1007/s11589-009-0403-9 Tomographic imaging of P wave velocity structure beneath the region around Beijing Zhifeng Ding Xiaofeng Zhou Yan Wu Guiyin Li and Hong Zhang Institute of Geophysics,

More information

Ground Motion Prediction Equations: Past, Present, and Future

Ground Motion Prediction Equations: Past, Present, and Future Ground Motion Prediction Equations: Past, Present, and Future The 2014 William B. Joyner Lecture David M. Boore As presented at the SMIP15 meeting, Davis, California, 22 October 2015 The William B. Joyner

More information

Seismic hazard analysis of Tianjin area based on strong ground motion prediction

Seismic hazard analysis of Tianjin area based on strong ground motion prediction Earthq Sci (2010)23: 369 375 369 Doi: 10.1007/s11589-010-0734-6 Seismic hazard analysis of Tianjin area based on strong ground motion prediction Zhao Boming School of Civil Engineering, Beijing Jiaotong

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Zhang Yue 1, Guo Wei 2, Wang Xin 3, Li Jiawu 4 1 School of High way, Chang an University, Xi an, Shanxi, China,

Zhang Yue 1, Guo Wei 2, Wang Xin 3, Li Jiawu 4 1 School of High way, Chang an University, Xi an, Shanxi, China, The Eighth Asia-Pacific Conference on Wind Engineering, December 10 14, 2013, Chennai, India Analysis of Two Kinds of Boundary Conditions for Simulating Horizontally Homogenous Atmosphere Boundary Layer

More information

INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA

INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA INTRODUCTION AND PRELIMINARY ANALYSIS OF STRONG MOTION RECORDINGS FROM THE 12 MAY 2005 Ms8.0 WENCHUAN EARTHQUAKE OF CHINA Li Xiaojun 1, Zhou Zhenghua 1, Huang Moh 3, Wen Ruizhi 1, Yu Haiyin 1, Lu Dawei

More information

SPECTRA FOR VERTICAL EARTHQUAKE GROUND MOTION

SPECTRA FOR VERTICAL EARTHQUAKE GROUND MOTION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. 9 SPECTRA FOR VERTICAL EARTHQUAKE GROUND MOTION Amr S. Elnashai, Liangcai He and Ahmed Elgamal SUMMARY The vertical

More information

ATTENUATION OF PEAK HORIZONTAL AND VERTICAL ACCELERATION IN THE DINARIDES AREA

ATTENUATION OF PEAK HORIZONTAL AND VERTICAL ACCELERATION IN THE DINARIDES AREA ATTENUATION OF PEAK HORIZONTAL AND VERTICAL ACCELERATION IN THE DINARIDES AREA MARIJAN HERAK, SNJEZANA MARKUSIC AND INES IVANtic University of Zagreb, Zagreb, Croatia Summary: Peak acceleration attenuation

More information

Spatial distribution of ground shaking

Spatial distribution of ground shaking Spatial distribution of ground shaking D.J. Dowrick & D.A. Rhoades Institute of Geological & Nuclear Sciences, Lower Hutt. 2005 NZSEE Conference ABSTRACT: In empirical models of attenuation of strong motion,

More information

Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp , December 2004

Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp , December 2004 Bulletin of the Seismological Society of America, Vol. 94, No. 6, pp. 1993 2003, December 2004 Precarious Rock and Overturned Transformer Evidence for Ground Shaking in the M s 7.7 Kern County Earthquake:

More information

Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory

Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory Directivity in NGA Earthquake Ground Motions: Analysis Using Isochrone Theory Paul Spudich, a) M.EERI, and Brian S. J. Chiou b) We present correction factors that may be applied to the ground motion prediction

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Identification of Site Parameters that Improve Predictions of Site Amplification Ellen M. Rathje Sara Navidi Department of Civil, Architectural, and Environmental

More information

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS

THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS Bulletin of the Seismological Society of America, Vol. 79, No. 6, pp. 1984-1988, December 1989 THE EFFECT OF DIRECTIVITY ON THE STRESS PARAMETER DETERMINED FROM GROUND MOTION OBSERVATIONS BY DAVID M. BOORE

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra Brian S.-J. Chiou California Department of Transportation and Robert

More information

PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION

PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION PEAK GROUND HORIZONTAL ACCELERATION ATTENUATION RELATIONSHIP FOR LOW MAGNITUDES AT SHORT DISTANCES IN SOUTH INDIAN REGION C.Srinivasan 1, M.L.Sharma 2, J. Kotadia 2 and Y.A.Willy 1 1. National Institute

More information

ATTENUATION FUNCTION RELATIONSHIP OF SUBDUCTION MECHANISM AND FAR FIELD EARTHQUAKE

ATTENUATION FUNCTION RELATIONSHIP OF SUBDUCTION MECHANISM AND FAR FIELD EARTHQUAKE ATTENUATION FUNCTION RELATIONSHIP OF SUBDUCTION MECHANISM AND FAR FIELD EARTHQUAKE Rozaimi Mohd Noor 1, Saffuan Wan Ahmad 2, Azlan Adnan 1 and Ramli Nazir 1 1 Faculty of Civil Engineering, Universiti Teknologi

More information

Maximum Direction to Geometric Mean Spectral Response Ratios using the Relevance Vector Machine

Maximum Direction to Geometric Mean Spectral Response Ratios using the Relevance Vector Machine Maximum Direction to Geometric Mean Spectral Response Ratios using the Relevance Vector Machine Y. Dak Hazirbaba, J. Tezcan, Q. Cheng Southern Illinois University Carbondale, IL, USA SUMMARY: The 2009

More information

Deterministic Seismic Hazard Assessment of Quetta, Pakistan

Deterministic Seismic Hazard Assessment of Quetta, Pakistan Deterministic Seismic Hazard Assessment of Quetta, Pakistan M.A. Shah Micro Seismic Studies Programme, Islamabad, Pakistan Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan M.

More information

Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan

Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes in Taiwan Bulletin of the Seismological Society of America, Vol. 95, No. 3, pp. 1045 1058, June 2005, doi: 10.1785/0120040162 Attenuation Relationships of Peak Ground Acceleration and Velocity for Crustal Earthquakes

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara BOREHOLE DATA AND SITE AMPLIFICATIONS IN THE TAIPEI METROPOLITAN

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

GROUND MOTIONS FROM LARGE EARTHQUAKES (MW³7) ON THE SANTA MONICA MOUNTAIN THRUST AND HOLLYWOOD-SANTA MONICA-MALIBU FAULTS

GROUND MOTIONS FROM LARGE EARTHQUAKES (MW³7) ON THE SANTA MONICA MOUNTAIN THRUST AND HOLLYWOOD-SANTA MONICA-MALIBU FAULTS GROUND MOTIONS FROM LARGE EARTHQUAKES (MW³) ON THE SANTA MONICA MOUNTAIN THRUST AND HOLLYWOOD-SANTA MONICA-MALIBU FAULTS C K SAIKIA And P G SOMMERVILLE SUMMARY We have simulated ground motion parameters

More information

Updating the Chiou and YoungsNGAModel: Regionalization of Anelastic Attenuation

Updating the Chiou and YoungsNGAModel: Regionalization of Anelastic Attenuation Updating the Chiou and YoungsNGAModel: Regionalization of Anelastic Attenuation B. Chiou California Department of Transportation R.R. Youngs AMEC Environment & Infrastructure SUMMARY: (10 pt) Ground motion

More information

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No.

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No. A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA Wenjie Jiao, 1 Winston Chan, 1 and Chunyong Wang 2 Multimax Inc., 1 Institute of Geophysics, China Seismological Bureau 2 Sponsored by Defense

More information

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA Mukat L SHARMA 1 SUMMARY An attenuation relationship for peak vertical ground

More information

What Are Recorded In A Strong-Motion Record?

What Are Recorded In A Strong-Motion Record? What Are ecorded In A Strong-Motion ecord? H.C. Chiu Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan F.J. Wu Central Weather Bureau, Taiwan H.C. Huang Institute of Earthquake, National Chung-Chen

More information

VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT

VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT VALIDATION AGAINST NGA EMPIRICAL MODEL OF SIMULATED MOTIONS FOR M7.8 RUPTURE OF SAN ANDREAS FAULT L.M. Star 1, J. P. Stewart 1, R.W. Graves 2 and K.W. Hudnut 3 1 Department of Civil and Environmental Engineering,

More information

Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters

Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters Bulletin of the Seismological Society of America, Vol. 101, No. 4, pp. 1859 1870, August 2011, doi: 10.1785/0120100144 Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using

More information

2/8/2016 Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world

2/8/2016 Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world Temblor.net Earthquake News & Blog Magnitude-6.3 earthquake near Tainan, Taiwan, highlights the danger of blind thrust faults around the world 6 February 2016 Quake Insight Revised The 5 Feb 2016 M=6.3

More information

ON STRONG GROUND MOTION AND MACRO-SEISMIC INTENSITY OF LUSHAN MS7.0 EARTHQUAKE

ON STRONG GROUND MOTION AND MACRO-SEISMIC INTENSITY OF LUSHAN MS7.0 EARTHQUAKE ON STRONG GROUND MOTION AND MACRO-SEISMIC INTENSITY OF LUSHAN MS7. EARTHQUAKE Yushi WANG, Xiaojun LI 2 ABSTRACT We analyzed the strong-motion records and macro-seismic intensity of Lushan Ms7. (Mw6.6 by

More information

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES T. Sasatani 1, S. Noguchi, T. Maeda 3, and N. Morikawa 4 1 Professor, Graduate School of Engineering, Hokkaido University,

More information

Spatial distribution of strong shaking near the 2-D source of large shallow New Zealand earthquakes

Spatial distribution of strong shaking near the 2-D source of large shallow New Zealand earthquakes Spatial distribution of strong shaking near the 2-D source of large shallow New Zealand earthquakes D.J. Dowrick 1 & D. A. Rhoades 2 1 Tauranga, New Zealand 2 GNS Science, Lower Hutt, New Zealand. 2007

More information

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT Shunroku YAMAMOTO SUMMARY Waveform simulations of the 995 Hyogo-ken Nanbu earthquake were carried out to study

More information

Uncertainties in a probabilistic model for seismic hazard analysis in Japan

Uncertainties in a probabilistic model for seismic hazard analysis in Japan Uncertainties in a probabilistic model for seismic hazard analysis in Japan T. Annaka* and H. Yashiro* * Tokyo Electric Power Services Co., Ltd., Japan ** The Tokio Marine and Fire Insurance Co., Ltd.,

More information

Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and New Zealand

Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and New Zealand 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Assessment of Seismic Design Motions in Areas of Low Seismicity: Comparing Australia and

More information

RECORD OF REVISIONS. Page 2 of 17 GEO. DCPP.TR.14.06, Rev. 0

RECORD OF REVISIONS. Page 2 of 17 GEO. DCPP.TR.14.06, Rev. 0 Page 2 of 17 RECORD OF REVISIONS Rev. No. Reason for Revision Revision Date 0 Initial Report - this work is being tracked under Notification SAPN 50638425-1 8/6/2014 Page 3 of 17 TABLE OF CONTENTS Page

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara PERIOD-DEPENDENT SITE AMPLIFICATION FOR THE 2008 IWATE-MIYAGI

More information

Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters

Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters Hybrid Empirical Ground-Motion Prediction Equations for Eastern North America Using NGA Models and Updated Seismological Parameters by Shahram Pezeshk, 1 Arash Zandieh, 1 and Behrooz Tavakoli 2 1 Department

More information

Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake

Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 155 170, February 2004 Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal

More information

Codal provisions of seismic hazard in Northeast India

Codal provisions of seismic hazard in Northeast India Codal provisions of seismic hazard in Northeast India Sandip Das 1, Vinay K. Gupta 1, * and Ishwer D. Gupta 2 1 Department of Civil Engineering, Indian Institute of Technology, Kanpur 208 016, India 2

More information

CHARACTERIZING SPATIAL CROSS-CORRELATION BETWEEN GROUND- MOTION SPECTRAL ACCELERATIONS AT MULTIPLE PERIODS. Nirmal Jayaram 1 and Jack W.

CHARACTERIZING SPATIAL CROSS-CORRELATION BETWEEN GROUND- MOTION SPECTRAL ACCELERATIONS AT MULTIPLE PERIODS. Nirmal Jayaram 1 and Jack W. Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering Compte Rendu de la 9ième Conférence Nationale Américaine et 10ième Conférence Canadienne de Génie Parasismique

More information

Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning

Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic slip partitioning Journal of Structural Geology 25 (2003) 345±350 www.elsevier.com/locate/jsg Reconstruction of fault slip of the September 21st, 1999, Taiwan earthquake in the asphalted surface of a car park, and co-seismic

More information

Summary of the Abrahamson & Silva NGA Ground-Motion Relations

Summary of the Abrahamson & Silva NGA Ground-Motion Relations Summary of the Abrahamson & Silva NGA Ground-Motion Relations Norman Abrahamson, a) M.EERI, and Walter Silva, b) M.EERI Empirical ground-motion models for the rotation-independent average horizontal component

More information

Usability of the Next Generation Attenuation Equations for Seismic Hazard Assessment in Malaysia

Usability of the Next Generation Attenuation Equations for Seismic Hazard Assessment in Malaysia Azlan Adnan, Patrick Liq Yee Tiong, Yue Eng Chow/ International Journal of Engineering Vol. 2 Issue 1, Jan-Feb 212, pp.639-644 Usability of the Next Generation Attenuation Equations for Seismic Hazard

More information