CIRCUITS AND ELECTRONICS. The Digital Abstraction

Size: px
Start display at page:

Download "CIRCUITS AND ELECTRONICS. The Digital Abstraction"

Transcription

1 6.002 CIRCUITS AND ELECTRONICS The Digital Abstraction

2 Review Discretize matter by agreeing to observe the lumped matter discipline Lumped Circuit Abstraction Analysis tool kit: KVL/KCL, node method, superposition, Thévenin, Norton (remember superposition, Thévenin, Norton apply only for linear circuits)

3 Today Discretize value Digital abstraction Interestingly, we will see shortly that the tools learned in the previous three lectures are sufficient to analyze simple digital circuits Reading: Chapter 5 of Agarwal & Lang

4 But first, why digital? In the past Analog signal processing R V + V + 2 R 2 V 0 V and V 2 might represent the outputs of two sensors, for example. By superposition, V R R 2 0 = V + V2 R + R2 R + R2 If R = R 2, V 0 V = + V 2 2 The above is an adder circuit.

5 Noise Problem t add noise on this wire Receiver: huh? noise hampers our ability to distinguish between small differences in value e.g. between 3.V and 3.2V.

6 Value Discretization Restrict values to be one of two HIGH 5V TRUE LOW 0V FALSE 0 like two digits 0 and Why is this discretization useful? (Remember, numbers larger than can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 0 has decimal value 5.)

7 Digital System sender V S noise V N V N = 0V V R receiver 5V 2.5V 0V V S 0 0 HIGH LOW t V R 0 0 5V 2.5V 0V t With noise V S 0 0 5V 2.5V 0V V N = 0. 2V t 0.2V t V S V t

8 Digital System Better noise immunity Lots of noise margin For : noise margin 5V to 2.5V = 2.5V For 0 : noise margin 0V to 2.5V = 2.5V

9 Voltage Thresholds and Logic Values 5V sender 2.5V receiver V

10 But, but, but What about 2.5V? Hmmm create no man s land or forbidden region For example, 5V sender V H 3V forbidden region 2V V L receiver 0 0 0V V 5V H 0 0V V L

11 But, but, but Where s the noise margin? What if the sender sent : V H? Hold the sender to tougher standards! 5V V 0H sender 0 V 0L 0V V IH V IL receiver 0

12 But, but, but Where s the noise margin? What if the sender sent : V H? Hold the sender to tougher standards! 5V V 0H sender Noise margins V IH receiver V IL 0 V 0L 0 0V noise margin: V IH - V 0H 0 noise margin: V IL - V 0L

13 5V V 0H V IH V IL 0 0 sender V 0L 0V t 5V V 0H V IH V IL 0 0 receiver V 0L 0V t Digital systems follow static discipline: if inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds.

14 Processing digital signals Recall, we have only two values,0 Map naturally to logic: T, F Can also represent numbers

15 Processing digital signals Boolean Logic If X is true and Y is true Then Z is true else Z is false. Z = X AND Y Z = X Y Boolean equation X, Y, Z are digital signals 0, X Y Z AND gate Truth table representation: X Y Enumerate all input combinations Z

16 Combinational gate abstraction Adheres to static discipline Outputs are a function of inputs alone. Digital logic designers do not have to care about what is inside a gate.

17 Demo X Y Z Noise X Y Z Z = X Y

18 Examples for recitation X t Y t Z t Z = X Y

19 In recitation Another example of a gate If (A is true) OR (B is true) then C is true else C is false C = A + B A B Boolean equation OR C More gates OR gate B B X Y Z Inverter NAND Z = X Y

20 Boolean Identities X = X X 0 = X X + = X + 0 = X = 0 0 = AB + AC = A (B + C) Digital Circuits Implement: output = A + B C B C A B C output

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL.

XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL. 2017-18 XI STANDARD [ COMPUTER SCIENCE ] 5 MARKS STUDY MATERIAL HALF ADDER 1. The circuit that performs addition within the Arithmetic and Logic Unit of the CPU are called adders. 2. A unit that adds two

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Midterm01 Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Thursday Oct. 5 th In normal lecture (13:00-14:15)

More information

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1 Lab 3 Revisited Zener diodes R C 6.091 IAP 2008 Lecture 4 1 Lab 3 Revisited +15 Voltage regulators 555 timers 270 1N758 0.1uf 5K pot V+ V- 2N2222 0.1uf V o. V CC V Vin s = 5 V Vc V c Vs 1 e t = RC Threshold

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates.

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates. DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS AIM To design and implement encoders and decoders using logic gates. COMPONENTS REQUIRED S.No Components Specification Quantity 1. Digital IC Trainer

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Slides for Lecture 19

Slides for Lecture 19 Slides for Lecture 19 ENEL 353: Digital Circuits Fall 2013 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 23 October, 2013 ENEL 353

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

1 Boolean Algebra Simplification

1 Boolean Algebra Simplification cs281: Computer Organization Lab3 Prelab Our objective in this prelab is to lay the groundwork for simplifying boolean expressions in order to minimize the complexity of the resultant digital logic circuit.

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Describe and use algorithms for integer operations based on their expansions Relate algorithms for integer

More information

Building a Computer Adder

Building a Computer Adder Logic Gates are used to translate Boolean logic into circuits. In the abstract it is clear that we can build AND gates that perform the AND function and OR gates that perform the OR function and so on.

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

Digital Logic Design ENEE x. Lecture 14

Digital Logic Design ENEE x. Lecture 14 Digital Logic Design ENEE 244-010x Lecture 14 Announcements Homework 6 due today Agenda Last time: Binary Adders and Subtracters (5.1, 5.1.1) Carry Lookahead Adders (5.1.2, 5.1.3) This time: Decimal Adders

More information

CS61c: Representations of Combinational Logic Circuits

CS61c: Representations of Combinational Logic Circuits CS61c: Representations of Combinational Logic Circuits J. Wawrzynek March 5, 2003 1 Introduction Recall that synchronous systems are composed of two basic types of circuits, combination logic circuits,

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table. The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or

More information

Digital Logic (2) Boolean Algebra

Digital Logic (2) Boolean Algebra Digital Logic (2) Boolean Algebra Boolean algebra is the mathematics of digital systems. It was developed in 1850 s by George Boole. We will use Boolean algebra to minimize logic expressions. Karnaugh

More information

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table Lesson Objectives In this lesson, you will learn about What are combinational circuits Design procedure of combinational circuits Examples of combinational circuit design Combinational Circuits Logic circuit

More information

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC GATES. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Eperiment and Design of Electronics LOGIC GATES Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Boolean algebra Logic gates Karnaugh maps

More information

R TH + V TH. Vport. + Rport V TH

R TH + V TH. Vport. + Rport V TH Massachusetts Institute of Technology Department of Electrical Engineering and omputer Science 6.002 í Electronic ircuits Homework è3 Solution Handout F9827 Exercise 31: When a particular network having

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 8: February 9, 016 MOS Inverter: Static Characteristics Lecture Outline! Voltage Transfer Characteristic (VTC) " Static Discipline Noise Margins!

More information

CIRCUITS AND ELECTRONICS. Introduction and Lumped Circuit Abstraction

CIRCUITS AND ELECTRONICS. Introduction and Lumped Circuit Abstraction 6.002 CIRCUITS AND ELECTRONICS Introduction and Lumped Circuit Abstraction ADMINISTRIVIA Lecturer: Prof. Anant Agarwal Textbook: Agarwal and Lang (A&L) Readings are important! Handout no. 3 Web site http://web.mit.edu/6.002/www/fall00

More information

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1 E40M Binary Numbers M. Horowitz, J. Plummer, R. Howe 1 Reading Chapter 5 in the reader A&L 5.6 M. Horowitz, J. Plummer, R. Howe 2 Useless Box Lab Project #2 Adding a computer to the Useless Box alows us

More information

Digital Logic. Lecture 5 - Chapter 2. Outline. Other Logic Gates and their uses. Other Logic Operations. CS 2420 Husain Gholoom - lecturer Page 1

Digital Logic. Lecture 5 - Chapter 2. Outline. Other Logic Gates and their uses. Other Logic Operations. CS 2420 Husain Gholoom - lecturer Page 1 Lecture 5 - Chapter 2 Outline Other Logic Gates and their uses Other Logic Operations CS 2420 Husain Gholoom - lecturer Page 1 Digital logic gates CS 2420 Husain Gholoom - lecturer Page 2 Buffer A buffer

More information

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers 6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:

More information

Computer organization

Computer organization Computer organization Levels of abstraction Assembler Simulator Applications C C++ Java High-level language SOFTWARE add lw ori Assembly language Goal 0000 0001 0000 1001 0101 Machine instructions/data

More information

Additional Gates COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

Additional Gates COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Additional Gates COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Additional Gates and Symbols Universality of NAND and NOR gates NAND-NAND

More information

L2: Combinational Logic Design (Construction and Boolean Algebra)

L2: Combinational Logic Design (Construction and Boolean Algebra) L2: Combinational Logic Design (Construction and Boolean Algebra) Acknowledgements: Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, Contemporary Logic Design (second edition), Pearson

More information

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life...

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life... Part 1: Digital Logic and Gates Analog vs Digital waveforms An analog signal assumes a continuous range of values: v(t) ANALOG A digital signal assumes discrete (isolated, separate) values Usually there

More information

SAMPLE EXAMINATION PAPER

SAMPLE EXAMINATION PAPER IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

Intro To Digital Logic

Intro To Digital Logic Intro To Digital Logic 1 Announcements... Project 2.2 out But delayed till after the midterm Midterm in a week Covers up to last lecture + next week's homework & lab Nick goes "H-Bomb of Justice" About

More information

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System?

14:332:231 DIGITAL LOGIC DESIGN. Why Binary Number System? :33:3 DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 3 Lecture #: Binary Number System Complement Number Representation X Y Why Binary Number System? Because

More information

Chapter 1 :: From Zero to One

Chapter 1 :: From Zero to One Chapter 1 :: From Zero to One Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 1- Chapter 1 :: Topics Background The Game Plan The Art of Managing

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

Lecture 6: Time-Dependent Behaviour of Digital Circuits

Lecture 6: Time-Dependent Behaviour of Digital Circuits Lecture 6: Time-Dependent Behaviour of Digital Circuits Two rather different quasi-physical models of an inverter gate were discussed in the previous lecture. The first one was a simple delay model. This

More information

10/14/2009. Reading: Hambley Chapters

10/14/2009. Reading: Hambley Chapters EE40 Lec 14 Digital Signal and Boolean Algebra Prof. Nathan Cheung 10/14/2009 Reading: Hambley Chapters 7.1-7.4 7.4 Slide 1 Analog Signals Analog: signal amplitude is continuous with time. Amplitude Modulated

More information

CS 226: Digital Logic Design

CS 226: Digital Logic Design CS 226: Digital Logic Design 0 1 1 I S 0 1 0 S Department of Computer Science and Engineering, Indian Institute of Technology Bombay. 1 of 29 Objectives In this lecture we will introduce: 1. Logic functions

More information

Switches: basic element of physical implementations

Switches: basic element of physical implementations Combinational logic Switches Basic logic and truth tables Logic functions Boolean algebra Proofs by re-writing and by perfect induction Winter 200 CSE370 - II - Boolean Algebra Switches: basic element

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

CMOS Technology Worksheet

CMOS Technology Worksheet CMOS Technology Worksheet Concept Inventory: Notes: PFET, NFET: voltage controlled switches CMOS composition rules: complementary pullup and pulldown CMOS gates are naturally inverting t PD and t CD timing

More information

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr.

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr. Chapter 4 Dr. Panos Nasiopoulos Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. Sequential: In addition, they include storage elements Combinational

More information

Introduction to Computer Engineering ECE 203

Introduction to Computer Engineering ECE 203 Introduction to Computer Engineering ECE 203 Northwestern University Department of Electrical Engineering and Computer Science Teacher: Robert Dick Office: L477 Tech Email: dickrp@ece.northwestern.edu

More information

EGC221: Digital Logic Lab

EGC221: Digital Logic Lab Division of Engineering Programs EGC221: Digital Logic Lab Experiment #1 Basic Logic Gate Simulation Student s Name: Student s Name: Reg. no.: Reg. no.: Semester: Fall 2016 Date: 07 September 2016 Assessment:

More information

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture) COSC 243 Introduction to Logic And Combinatorial Logic 1 Overview This Lecture Introduction to Digital Logic Gates Boolean algebra Combinatorial Logic Source: Chapter 11 (10 th edition) Source: J.R. Gregg,

More information

UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits

UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits 2 Wawrzynek, Garcia 2004 c UCB UC Berkeley College of Engineering, EECS Department CS61C: Representations of Combinational Logic Circuits 1 Introduction Original document by J. Wawrzynek (2003-11-15) Revised

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 1A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 1A EEC 16B esigning Information evices and ystems II pring 2018 J. Roychowdhury and M. Maharbiz iscussion 1A 1 igit Bases (N) p is used to indicate that the number N is expressed in base p. For example, (N)

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

Combinational Logic Design Combinational Functions and Circuits

Combinational Logic Design Combinational Functions and Circuits Combinational Logic Design Combinational Functions and Circuits Overview Combinational Circuits Design Procedure Generic Example Example with don t cares: BCD-to-SevenSegment converter Binary Decoders

More information

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive

EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive EECS150 - Digital Design Lecture 19 - Combinational Logic Circuits : A Deep Dive March 30, 2010 John Wawrzynek Spring 2010 EECS150 - Lec19-cl1 Page 1 Boolean Algebra I (Representations of Combinational

More information

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter 1 Integrated Circuit Design ELCT 701 (Winter 017) Lecture : Resistive Load Inverter Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg Digital Inverters Introduction 3 Digital Inverter: Introduction

More information

S C F F F T T F T T S C B F F F F F T F T F F T T T F F T F T T T F T T T

S C F F F T T F T T S C B F F F F F T F T F F T T T F F T F T T T F T T T EECS 270, Winter 2017, Lecture 1 Page 1 of 6 Use pencil! Say we live in the rather black and white world where things (variables) are either true (T) or false (F). So if S is Mark is going to the Store

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 2.4 Application: Digital Logic Circuits Copyright Cengage Learning. All rights reserved. Application:

More information

Gates and Flip-Flops

Gates and Flip-Flops Gates and Flip-Flops Chris Kervick (11355511) With Evan Sheridan and Tom Power December 2012 On a scale of 1 to 10, how likely is it that this question is using binary?...4? What s a 4? Abstract The operation

More information

Binary Logic and Gates

Binary Logic and Gates 1 COE 202- Digital Logic Binary Logic and Gates Dr. Abdulaziz Y. Barnawi COE Department KFUPM 2 Outline Introduction Boolean Algebra Elements of Boolean Algebra (Binary Logic) Logic Operations & Logic

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 4 Following the slides of Dr. Ahmed H. Madian محرم 439 ه Winter 28

More information

Signals and Systems Digital Logic System

Signals and Systems Digital Logic System Signals and Systems Digital Logic System Prof. Wonhee Kim Chapter 2 Design Process for Combinational Systems Step 1: Represent each of the inputs and outputs in binary Step 1.5: If necessary, break the

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017 UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 2-2016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

Every time has a value associated with it, not just some times. A variable can take on any value within a range

Every time has a value associated with it, not just some times. A variable can take on any value within a range Digital Logic Circuits Binary Logic and Gates Logic Simulation Boolean Algebra NAND/NOR and XOR gates Decoder fundamentals Half Adder, Full Adder, Ripple Carry Adder Analog vs Digital Analog Continuous»

More information

Digital Electronics Final Examination. Part A

Digital Electronics Final Examination. Part A Digital Electronics Final Examination Part A Spring 2009 Student Name: Date: Class Period: Total Points: /50 Converted Score: /40 Page 1 of 13 Directions: This is a CLOSED BOOK/CLOSED NOTES exam. Select

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS151/251A V. Stojanovic, J. Wawrzynek Fall 2015 10/13/15 Midterm Exam Name: ID

More information

Introduction to Digital Logic

Introduction to Digital Logic Introduction to Digital Logic Lecture 15: Comparators EXERCISES Mark Redekopp, All rights reserved Adding Many Bits You know that an FA adds X + Y + Ci Use FA and/or HA components to add 4 individual bits:

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model ECE 34 Electronic Circuits Lecture 35 CMOS Delay Model Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 34 Jose Schutt Aine 1 Digital Circuits V IH : Input

More information

COMBINATIONAL LOGIC FUNCTIONS

COMBINATIONAL LOGIC FUNCTIONS COMBINATIONAL LOGIC FUNCTIONS Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends only on the present

More information

ECE/CS 250: Computer Architecture. Basics of Logic Design: Boolean Algebra, Logic Gates. Benjamin Lee

ECE/CS 250: Computer Architecture. Basics of Logic Design: Boolean Algebra, Logic Gates. Benjamin Lee ECE/CS 250: Computer Architecture Basics of Logic Design: Boolean Algebra, Logic Gates Benjamin Lee Slides based on those from Alvin Lebeck, Daniel Sorin, Andrew Hilton, Amir Roth, Gershon Kedem Admin

More information

Looking at a two binary digit sum shows what we need to extend addition to multiple binary digits.

Looking at a two binary digit sum shows what we need to extend addition to multiple binary digits. A Full Adder The half-adder is extremely useful until you want to add more that one binary digit quantities. The slow way to develop a two binary digit adders would be to make a truth table and reduce

More information

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS Outline NMOS inverter with resistor pull-up The inverter NMOS inverter with current-source pull-up Complementary MOS (CMOS) inverter Static analysis

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Lecture 3: Boolean Algebra

Lecture 3: Boolean Algebra Lecture 3: Boolean Algebra Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University Overview

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

Digital Electronics. Part A

Digital Electronics. Part A Digital Electronics Final Examination Part A Winter 2004-05 Student Name: Date: lass Period: Total Points: Multiple hoice Directions: Select the letter of the response which best completes the item or

More information

Mealy & Moore Machines

Mealy & Moore Machines Mealy & Moore Machines Moore Machine is a finite-state machine whose output values are determined solely by its current state and can be defined as six elements (S, S 0, Σ, Λ, T, G), consisting of the

More information

Chapter 3 Combinational Logic Design

Chapter 3 Combinational Logic Design Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 1- Implementation Technology and Logic Design Overview Part 1-Implementation Technology and Logic Design Design Concepts

More information

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC.

Ex: Boolean expression for majority function F = A'BC + AB'C + ABC ' + ABC. Boolean Expression Forms: Sum-of-products (SOP) Write an AND term for each input combination that produces a 1 output. Write the input variable if its value is 1; write its complement otherwise. OR the

More information

Propositional Logic: Equivalence

Propositional Logic: Equivalence Propositional Logic: Equivalence Alice Gao Lecture 5 Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek 1/42 Outline Propositional Logic:

More information

UNIVERSITI TENAGA NASIONAL. College of Information Technology

UNIVERSITI TENAGA NASIONAL. College of Information Technology UNIVERSITI TENAGA NASIONAL College of Information Technology BACHELOR OF COMPUTER SCIENCE (HONS.) FINAL EXAMINATION SEMESTER 2 2012/2013 DIGITAL SYSTEMS DESIGN (CSNB163) January 2013 Time allowed: 3 hours

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

ECE/CS 250 Computer Architecture

ECE/CS 250 Computer Architecture ECE/CS 250 Computer Architecture Basics of Logic Design: Boolean Algebra, Logic Gates (Combinational Logic) Tyler Bletsch Duke University Slides are derived from work by Daniel J. Sorin (Duke), Alvy Lebeck

More information

CHAPTER 7. Exercises 17/ / /2 2 0

CHAPTER 7. Exercises 17/ / /2 2 0 CHAPTER 7 Exercises E7. (a) For the whole part, we have: Quotient Remainders 23/2 /2 5 5/2 2 2/2 0 /2 0 Reading the remainders in reverse order, we obtain: 23 0 = 0 2 For the fractional part we have 2

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

Implementation of Boolean Logic by Digital Circuits

Implementation of Boolean Logic by Digital Circuits Implementation of Boolean Logic by Digital Circuits We now consider the use of electronic circuits to implement Boolean functions and arithmetic functions that can be derived from these Boolean functions.

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates EE 330 Lecture 36 Digital Circuits Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates Review from Last Time The basic logic gates It suffices to characterize

More information

ECE 250 / CPS 250 Computer Architecture. Basics of Logic Design Boolean Algebra, Logic Gates

ECE 250 / CPS 250 Computer Architecture. Basics of Logic Design Boolean Algebra, Logic Gates ECE 250 / CPS 250 Computer Architecture Basics of Logic Design Boolean Algebra, Logic Gates Benjamin Lee Slides based on those from Andrew Hilton (Duke), Alvy Lebeck (Duke) Benjamin Lee (Duke), and Amir

More information

Chapter 7 Logic Circuits

Chapter 7 Logic Circuits Chapter 7 Logic Circuits Goal. Advantages of digital technology compared to analog technology. 2. Terminology of Digital Circuits. 3. Convert Numbers between Decimal, Binary and Other forms. 5. Binary

More information

Review: Additional Boolean operations

Review: Additional Boolean operations Review: Additional Boolean operations Operation: NAND (NOT-AND) NOR (NOT-OR) XOR (exclusive OR) Expressions: (xy) = x + y (x + y) = x y x y = x y + xy Truth table: x y (xy) x y (x+y) x y x y 0 0 1 0 1

More information

Lecture 4 Modeling, Analysis and Simulation in Logic Design. Dr. Yinong Chen

Lecture 4 Modeling, Analysis and Simulation in Logic Design. Dr. Yinong Chen Lecture 4 Modeling, Analysis and Simulation in Logic Design Dr. Yinong Chen The Engineering Design Process Define Problem and requirement Research Define Alternative solutions CAD Modeling Analysis Simulation

More information

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April

CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April CSE 140L Spring 2010 Lab 1 Assignment Due beginning of the class on 14 th April Objective - Get familiar with the Xilinx ISE webpack tool - Learn how to design basic combinational digital components -

More information

Lecture 21: Boolean Logic. To Wrap up AVR

Lecture 21: Boolean Logic. To Wrap up AVR 18 100 Lecture 21: oolean Logic S 15 L21 1 James C. Hoe Dept of ECE, CMU pril 7, 2015 Today s Goal: Introduce oolean logic nnouncements: Read Rizzoni 12.3 and 11.5 HW8 due Thursday Office Hours: Wed 12:30~2:30

More information

Numbers and Arithmetic

Numbers and Arithmetic Numbers and Arithmetic See: P&H Chapter 2.4 2.6, 3.2, C.5 C.6 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register file alu

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 3 Additional Gates and Circuits Overview Part 1 Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra

More information

Propositional Logic. Logical Expressions. Logic Minimization. CNF and DNF. Algebraic Laws for Logical Expressions CSC 173

Propositional Logic. Logical Expressions. Logic Minimization. CNF and DNF. Algebraic Laws for Logical Expressions CSC 173 Propositional Logic CSC 17 Propositional logic mathematical model (or algebra) for reasoning about the truth of logical expressions (propositions) Logical expressions propositional variables or logical

More information

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence CSE 311: Foundations of Computing Lecture 3: Digital Circuits & Equivalence Homework #1 You should have received An e-mail from [cse311a/cse311b] with information pointing you to look at Canvas to submit

More information

EECS Variable Logic Functions

EECS Variable Logic Functions EECS150 Section 1 Introduction to Combinational Logic Fall 2001 2-Variable Logic Functions There are 16 possible functions of 2 input variables: in general, there are 2**(2**n) functions of n inputs X

More information

XOR - XNOR Gates. The graphic symbol and truth table of XOR gate is shown in the figure.

XOR - XNOR Gates. The graphic symbol and truth table of XOR gate is shown in the figure. XOR - XNOR Gates Lesson Objectives: In addition to AND, OR, NOT, NAND and NOR gates, exclusive-or (XOR) and exclusive-nor (XNOR) gates are also used in the design of digital circuits. These have special

More information

CIRCUITS AND ELECTRONICS. State and Memory

CIRCUITS AND ELECTRONICS. State and Memory 6.002 RUTS AND ELETRONS State and Memory ite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 ircuits and Electronics, Spring 2007. MT OpenourseWare (http://ocw.mit.edu/), Massachusetts nstitute

More information