Ranking of nodes in graphs

Size: px
Start display at page:

Download "Ranking of nodes in graphs"

Transcription

1 Ranking of nodes in graphs Alejandro Ribeiro & Cameron Finucane Dept. of Electrical and Systems Engineering University of Pennsylvania October 3, 200 Stoch. Systems Analysis Ranking of nodes in graphs

2 Ranking of nodes in graphs: Random walk Ranking of nodes in graphs: Random walk Ranking of nodes in graphs: Markov chain Stoch. Systems Analysis Ranking of nodes in graphs 2

3 Graphs Graph A set of J nodes j =,..., J Connected by a set of edges E defined as ordered pairs (i, j) In figure nodes are j =, 2, 3, 4, 5, edges E = {(, 2), (, 5),(2, 3), (2, 5), (3, 4),... (3, 6), (4, 5), (4, 6), (5, 4)} Websites and links The web. People and friendship Social network Stoch. Systems Analysis Ranking of nodes in graphs 3

4 How well connected nodes are? Q: Which node is the most connected? A: Define most connected Can define most connected in different ways Node rankings to measure website quality, social influence There are two important connectivity indicators How many nodes point to a link (outgoing links irrelevant) How Important are the links that point to a node Stoch. Systems Analysis Ranking of nodes in graphs 4

5 Connectivity ranking Insight There is information in the structure of the network Knowledge is distributed through the network The network (not the nodes) know the rankings Idea exploited by Google s PageRank c to rank webpages... by social scientists to study trust & reputation in social networks... by ISI to rank scientific papers, transactions & magazines... No one points to Only points to 2 Only 2 points to 3, but 2 more important than 4 as high as 5 with less links 2 3 Links to 5 have lower rank Same for 6 Stoch. Systems Analysis Ranking of nodes in graphs 5

6 Preliminary definitions Graph G = (V, E) sets of vertices V = {, 2,..., J} and edges E Edges (elements of E) are ordered pairs (i, j) We say there is a connection from i to j Outgoing neighborhood of i is the set of nodes j to which i points n(i) := {j : (i, j) E} Incoming neighborhood, n (i) is the set of nodes that point to i: n (i) := {j : (j, i) E} Connected graph There is a path from any node to any other node Stoch. Systems Analysis Ranking of nodes in graphs 6

7 Definition of rank Agent A chooses node i, e.g., web page, at random for initial visit Next visit randomly chosen between links in the neighborhood n(i) All neighbors chosen with equal probability If reach a dead end because node i has no neighbors Chose next visit at random equiprobably among all nodes Redefine graph G = (V, E) adding edges from dead ends to all nodes Restrict attention to connected (modified) graphs Rank of node i is the average number of visits of A to i Stoch. Systems Analysis Ranking of nodes in graphs 7

8 Equiprobable random walk Formally, let A n be the node visited at time n Define transition probability P ij from node i into node j P ij := P [ A n+ = j A n = i ] Next visit equiprobable among neighbors P ij = #[n(i)] = N i, Defined number of neighbors N i = #[n(i)] for all j n(i) /2 /2 5 4 /2 /2 /2 /2 2 3 /2 /2 6 /5 /5 /5 /5 /5 to to 2 to 3 to 4 to 5 Still have a graph But also a MC Red (not blue) circles Stoch. Systems Analysis Ranking of nodes in graphs 8

9 Formal definition of rank Consider variable I {A m = i} to indicate visit to state i at time m. Rank r i of i-th node defined as time average of number of visits, i.e., r i := lim n n n I {A m = i} m= Define vector of ranks r := [r, r 2,..., r J ] T Rank r i can be approximated by average r ni at time n r ni := n n I {A m = i} m= Since lim n r ni = r i, it holds r ni r i for n sufficiently large Define vector of approximate ranks r n := [r n, r n2,..., r nj ] T If modified graph is connected, rank independent of initial visit Stoch. Systems Analysis Ranking of nodes in graphs 9

10 Algorithm Output : Vector r(i) with ranking of node i Input : Vector N(i) containing number of neighbors of i Input : Matrix N(i, k) containing indices j of neighbors of i m = ; r=zeros(j,); % Initialize time and ranks A 0 = random( unid,j); % Draw first visit uniformly at random while m < n do jump = random( unid,n Am ); % Neighbor uniformly at random A m = N(A m, jump); % Jump to selected neighbor r(a m ) = r(a m ) + ; % Update ranking for A m m = m + ; end r = r/n; % Normalize by number of iterations n Stoch. Systems Analysis Ranking of nodes in graphs 0

11 Example: Social graph Asked students taking ESE303 about homework collaboration Created (crude) graph of the social network of students in this class Used ranking algorithm to understand connectedness E.g., If I want to know how well students are coping with the class it is best to ask people with higher connectivity ranking 2009 data Students in 200 don t show up in class in enough numbers Stoch. Systems Analysis Ranking of nodes in graphs

12 Ranked class graph Harish Venkatesan Jacci Jeffries Pallavi Yerramilli Xiang-Li Lim Thomas Cassel Owen Tian Eric Lamb Daniela Savoia Ceren Dumaz Priya Takiar Lindsey Eatough Sugyan Lohiaa Ankit Aggarwal Lisa Zheng Madhur Agarwal Anthony Dutcher Robert Feigenberg Carolina Lee Aarti Kochhar Ciara Kennedy Amanda Smith Saksham Karwal Michael Harker Amanda Zwarenstein Ranga Ramachandran Varun Balan Katie Joo Shahid Bosan Pia Ramchandani Jesse Beyroutey Rebecca Gittler Ivan Levcovitz Jane Kim Paul Deren Alexandra Malikova Jihyoung Ahn Chris Setian Charles Jeon Ella Kim Aditya Kaji Stoch. Systems Analysis Ranking of nodes in graphs 2

13 Convergence metrics Recall r is vector of ranks and r n of rank iterates By definition lim r n = r. How fast r n converges to r (r given)? n Can measure by distance between r and r n ( J ) /2 ζ n := r r n 2 = (r ni r i ) 2 If interest is only on largest ranked nodes, e.g., a web search Denote r (i) as the index of the i-th highest ranked node Similarly, r (i) n i= is the index of the i-th highest ranked node at time n First element wrongly ranked at time n ξ n := min r (i) r n (i) i Stoch. Systems Analysis Ranking of nodes in graphs 3

14 Evaluation of convergence metrics 0 Distance correctly ranked nodes Distance gets close to 0 2 in approx iterations time (n) 4 2 First element wrongly ranked Bad: Two largest ranks in iterations Awful: Six best ranks in iterations correctly ranked nodes Convergence appears (very) slow time (n) Stoch. Systems Analysis Ranking of nodes in graphs 4

15 When does this algorithm converge? Can confidently claim convergence not until 0 5 iterations True for particular case. Slow convergence inherent to algorithm Example has 40 nodes, want to use in network with 0 9 nodes correctly ranked nodes time (n) x 0 5 Use fact that this process is a MC to obtain faster algorithm Stoch. Systems Analysis Ranking of nodes in graphs 5

16 Ranking of nodes in graphs: Markov chain Ranking of nodes in graphs: Random walk Ranking of nodes in graphs: Markov chain Stoch. Systems Analysis Ranking of nodes in graphs 6

17 Limit probabilities Recall definition of rank r i := lim t t t I{A(u) = i} u= Rank is time average of number of state visits in a MC Can be equally obtained from limiting probabilities Recall transition probabilities P ij = N i, for all j n(i) Stationary distribution π = [π, π,..., π J ] T solution of π i = j n (i) P ji π j = π j N j j n (i) Plus normalization equation J i= π i = As per ergodicity r = π for all i Stoch. Systems Analysis Ranking of nodes in graphs 7

18 Matrix notation, eigenvalue problem As always, can define matrix P with elements P ij π i = J P ji π j = P ji π j j n (i) j= for all i Right hand side is just definition of a matrix product leading to π = P T π, π T = Also added normalization equation Can solve as system of linear equations or eigenvalue problem on P T Non-iterative method Convergence not an issue But requires matrix P available at a central location Computationally costly (matrix P with 0 9 rows and columns) All methods are costly to compute exact solution This one is costly to find even approximate solution Stoch. Systems Analysis Ranking of nodes in graphs 8

19 What are limit probabilities? Let p i (n) denote probability of agent A visiting node i at time t p i (n) := P [A n = i] Probabilities at time n + and n can be related P [A n+ = i] = P [ A n = i An = i ] P [A n = j] j n (i) Which is, of course, probability propagation in a MC p i (n + ) = P ji p j (n) j n (i) By definition limit probabilities are (let p(n) = [p (n),..., p J (n)] T ) lim p(n) = π = r n Compute ranks from limit of probability propagation Stoch. Systems Analysis Ranking of nodes in graphs 9

20 Probability propagation Can also write probability propagation in matrix form p i (n + ) = J P ji p j (n) = P ji p j (n) j n (i) j= for all i Right hand side is just definition of a matrix product leading to p(n + ) = P T p(n) Can approximate rank by probability distribution r = lim n p(n) p(n) for n sufficiently large Stoch. Systems Analysis Ranking of nodes in graphs 20

21 Algorithm Algorithm is just a recursive matrix product Output : Vector r(i) with ranking of node i Input : Matrix P containing transition probabilities m = ; % Initialize time r=(/j)ones(j,); % Initial distribution uniform across all nodes while m < n do r = P T r; % Probability propagation m = m + ; end Stoch. Systems Analysis Ranking of nodes in graphs 2

22 Interpretation of probability propagation Why does the random walk converges so slow? What does it take to obtain a time average r ni close to r i? Need to register a large number of agent visits to every state Back of hand: 40 nodes, some 00 visits to each iters. Idea: Unleash a large number of agents K r i = lim n n n m= K K I {A km = i} k= Visits are now spread over time and space Converges K times faster (depends agents initial distribution) But haven t changed computational cost Stoch. Systems Analysis Ranking of nodes in graphs 22

23 Interpretation of prob. propagation (continued) What happens if we unleash infinite number of agents K? n K r i = lim lim I {A km = i} n n K K m= Using law of large numbers and expected value of indicator function n n r i = lim E [I {A m = i}] = lim P [A m = i] n n n n m= Graph walk is a MC, then r i = lim n n k= m= lim P [A m = i] = lim p i(m) exists, and m m n m= p i (m) = lim n p i(n) Probability propagation Unleashing infinite number of agents Interpretation true for any MC Stoch. Systems Analysis Ranking of nodes in graphs 23

24 Distance to rank Initialize with uniform probability distribution p(0) = (/J) Distance between p(n) and r Distance time (n) Distance is 0 2 in approximately 30 iterations, 0 4 in 40 iterations Convergence is two orders of magnitude faster than random walk Stoch. Systems Analysis Ranking of nodes in graphs 24

25 Number of nodes correctly ranked Rank of highest ranked node that is wrongly ranked by time n correctly ranked nodes time (n) Not bad: All nodes correctly ranked in 20 iterations Good: Ten best ranks in 80 iterations Great: Four best ranks in 20 iterations Stoch. Systems Analysis Ranking of nodes in graphs 25

26 Distributed algorithm to compute ranks Nodes want to compute their rank r i Can communicate with neighbors only (incoming + outgoing) Access to neighborhood information only Recall probability update p i (n + ) = Uses local information only j n (i) P ji p j (n) = j n (i) Algorithm. Nodes keep local rank estimates p i (n) N j p j (n) Receive rank (probability) estimates p j (n) from neighbors j n (i) Update local rank estimate p i (n + ) = j n (i) p j(n)/n j Communicate rank estimate p i (n + ) to outgoing neighbors j n(i) Need only know number of neighbors of my neighbors Stoch. Systems Analysis Ranking of nodes in graphs 26

27 Distributed implementation of random walk Can communicate with neighbors only (incoming + outgoing) But cannot access neighborhood information Pass agent around Local rank estimates r i (n) and counter with number of visits V i Algorithm run by node i at time n if Agent received from neighbor then V i = V i + Choose random neighbor Send agent to chosen neighbor end n = n + ; r i (n) = V i /n; Speed up convergence by generating many agents to pass around Stoch. Systems Analysis Ranking of nodes in graphs 27

28 Comparison of different algoithms Random walk implementation Most secure & robust. No information shared with other nodes Implementation can be distributed Convergence exceedingly slow System of linear equations Least security and robustness. Graph in central server Distributed implementation not clear Non-iterative method, convergence not a problem But computationally costly to obtain approximate solutions Probability propagation, matrix powers Somewhat secure/robust. Info. shared with neighbors only Implementation can be distributed Convergence rate acceptable (orders of magnitude faster than RW) Stoch. Systems Analysis Ranking of nodes in graphs 28

PageRank: Ranking of nodes in graphs

PageRank: Ranking of nodes in graphs PageRank: Ranking of nodes in graphs Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October

More information

Centrality Measures and Link Analysis

Centrality Measures and Link Analysis Centrality Measures and Link Analysis Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ February

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Markov chains (week 6) Solutions

Markov chains (week 6) Solutions Markov chains (week 6) Solutions 1 Ranking of nodes in graphs. A Markov chain model. The stochastic process of agent visits A N is a Markov chain (MC). Explain. The stochastic process of agent visits A

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algorithms for Data Science Arya Mazumdar University of Massachusetts at Amherst Fall 2018 Lecture 4 Markov Chain & Pagerank Homework Announcement Show your work in the homework Write the

More information

Uncertainty and Randomization

Uncertainty and Randomization Uncertainty and Randomization The PageRank Computation in Google Roberto Tempo IEIIT-CNR Politecnico di Torino tempo@polito.it 1993: Robustness of Linear Systems 1993: Robustness of Linear Systems 16 Years

More information

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS

DATA MINING LECTURE 13. Link Analysis Ranking PageRank -- Random walks HITS DATA MINING LECTURE 3 Link Analysis Ranking PageRank -- Random walks HITS How to organize the web First try: Manually curated Web Directories How to organize the web Second try: Web Search Information

More information

Online Social Networks and Media. Link Analysis and Web Search

Online Social Networks and Media. Link Analysis and Web Search Online Social Networks and Media Link Analysis and Web Search How to Organize the Web First try: Human curated Web directories Yahoo, DMOZ, LookSmart How to organize the web Second try: Web Search Information

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

A Note on Google s PageRank

A Note on Google s PageRank A Note on Google s PageRank According to Google, google-search on a given topic results in a listing of most relevant web pages related to the topic. Google ranks the importance of webpages according to

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged.

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged. Web Data Mining PageRank, University of Szeged Why ranking web pages is useful? We are starving for knowledge It earns Google a bunch of money. How? How does the Web looks like? Big strongly connected

More information

PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper)

PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper) PageRank: The Math-y Version (Or, What To Do When You Can t Tear Up Little Pieces of Paper) In class, we saw this graph, with each node representing people who are following each other on Twitter: Our

More information

Link Analysis. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Link Analysis. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Link Analysis Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 The Web as a Directed Graph Page A Anchor hyperlink Page B Assumption 1: A hyperlink between pages

More information

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine

CS 277: Data Mining. Mining Web Link Structure. CS 277: Data Mining Lectures Analyzing Web Link Structure Padhraic Smyth, UC Irvine CS 277: Data Mining Mining Web Link Structure Class Presentations In-class, Tuesday and Thursday next week 2-person teams: 6 minutes, up to 6 slides, 3 minutes/slides each person 1-person teams 4 minutes,

More information

Link Analysis Ranking

Link Analysis Ranking Link Analysis Ranking How do search engines decide how to rank your query results? Guess why Google ranks the query results the way it does How would you do it? Naïve ranking of query results Given query

More information

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson)

Web Ranking. Classification (manual, automatic) Link Analysis (today s lesson) Link Analysis Web Ranking Documents on the web are first ranked according to their relevance vrs the query Additional ranking methods are needed to cope with huge amount of information Additional ranking

More information

Graph Models The PageRank Algorithm

Graph Models The PageRank Algorithm Graph Models The PageRank Algorithm Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 The PageRank Algorithm I Invented by Larry Page and Sergey Brin around 1998 and

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu How to organize/navigate it? First try: Human curated Web directories Yahoo, DMOZ, LookSmart

More information

Link Mining PageRank. From Stanford C246

Link Mining PageRank. From Stanford C246 Link Mining PageRank From Stanford C246 Broad Question: How to organize the Web? First try: Human curated Web dictionaries Yahoo, DMOZ LookSmart Second try: Web Search Information Retrieval investigates

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2019 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1.

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Stationary Distributions Monday, September 28, 2015 2:02 PM No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Homework 1 due Friday, October 2 at 5 PM strongly

More information

Data and Algorithms of the Web

Data and Algorithms of the Web Data and Algorithms of the Web Link Analysis Algorithms Page Rank some slides from: Anand Rajaraman, Jeffrey D. Ullman InfoLab (Stanford University) Link Analysis Algorithms Page Rank Hubs and Authorities

More information

Updating PageRank. Amy Langville Carl Meyer

Updating PageRank. Amy Langville Carl Meyer Updating PageRank Amy Langville Carl Meyer Department of Mathematics North Carolina State University Raleigh, NC SCCM 11/17/2003 Indexing Google Must index key terms on each page Robots crawl the web software

More information

Distributed Randomized Algorithms for the PageRank Computation Hideaki Ishii, Member, IEEE, and Roberto Tempo, Fellow, IEEE

Distributed Randomized Algorithms for the PageRank Computation Hideaki Ishii, Member, IEEE, and Roberto Tempo, Fellow, IEEE IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 9, SEPTEMBER 2010 1987 Distributed Randomized Algorithms for the PageRank Computation Hideaki Ishii, Member, IEEE, and Roberto Tempo, Fellow, IEEE Abstract

More information

The PageRank Problem, Multi-Agent. Consensus and Web Aggregation

The PageRank Problem, Multi-Agent. Consensus and Web Aggregation The PageRank Problem, Multi-Agent Consensus and Web Aggregation A Systems and Control Viewpoint arxiv:32.904v [cs.sy] 6 Dec 203 Hideaki Ishii and Roberto Tempo PageRank is an algorithm introduced in 998

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

Complex Social System, Elections. Introduction to Network Analysis 1

Complex Social System, Elections. Introduction to Network Analysis 1 Complex Social System, Elections Introduction to Network Analysis 1 Complex Social System, Network I person A voted for B A is more central than B if more people voted for A In-degree centrality index

More information

Data Mining Recitation Notes Week 3

Data Mining Recitation Notes Week 3 Data Mining Recitation Notes Week 3 Jack Rae January 28, 2013 1 Information Retrieval Given a set of documents, pull the (k) most similar document(s) to a given query. 1.1 Setup Say we have D documents

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 10 Graphs II Rainer Gemulla, Pauli Miettinen Jul 4, 2013 Link analysis The web as a directed graph Set of web pages with associated textual content Hyperlinks between webpages

More information

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano

Google PageRank. Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano Google PageRank Francesco Ricci Faculty of Computer Science Free University of Bozen-Bolzano fricci@unibz.it 1 Content p Linear Algebra p Matrices p Eigenvalues and eigenvectors p Markov chains p Google

More information

Page rank computation HPC course project a.y

Page rank computation HPC course project a.y Page rank computation HPC course project a.y. 2015-16 Compute efficient and scalable Pagerank MPI, Multithreading, SSE 1 PageRank PageRank is a link analysis algorithm, named after Brin & Page [1], and

More information

CS 188: Artificial Intelligence Fall Recap: Inference Example

CS 188: Artificial Intelligence Fall Recap: Inference Example CS 188: Artificial Intelligence Fall 2007 Lecture 19: Decision Diagrams 11/01/2007 Dan Klein UC Berkeley Recap: Inference Example Find P( F=bad) Restrict all factors P() P(F=bad ) P() 0.7 0.3 eather 0.7

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mark Schmidt University of British Columbia Winter 2018 Last Time: Monte Carlo Methods If we want to approximate expectations of random functions, E[g(x)] = g(x)p(x) or E[g(x)]

More information

Distributed Systems Gossip Algorithms

Distributed Systems Gossip Algorithms Distributed Systems Gossip Algorithms He Sun School of Informatics University of Edinburgh What is Gossip? Gossip algorithms In a gossip algorithm, each node in the network periodically exchanges information

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 Web pages are not equally important www.joe-schmoe.com

More information

Math 304 Handout: Linear algebra, graphs, and networks.

Math 304 Handout: Linear algebra, graphs, and networks. Math 30 Handout: Linear algebra, graphs, and networks. December, 006. GRAPHS AND ADJACENCY MATRICES. Definition. A graph is a collection of vertices connected by edges. A directed graph is a graph all

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008

Announcements. CS 188: Artificial Intelligence Fall VPI Example. VPI Properties. Reasoning over Time. Markov Models. Lecture 19: HMMs 11/4/2008 CS 88: Artificial Intelligence Fall 28 Lecture 9: HMMs /4/28 Announcements Midterm solutions up, submit regrade requests within a week Midterm course evaluation up on web, please fill out! Dan Klein UC

More information

IS4200/CS6200 Informa0on Retrieval. PageRank Con+nued. with slides from Hinrich Schütze and Chris6na Lioma

IS4200/CS6200 Informa0on Retrieval. PageRank Con+nued. with slides from Hinrich Schütze and Chris6na Lioma IS4200/CS6200 Informa0on Retrieval PageRank Con+nued with slides from Hinrich Schütze and Chris6na Lioma Exercise: Assump0ons underlying PageRank Assump0on 1: A link on the web is a quality signal the

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example

Announcements. CS 188: Artificial Intelligence Fall Markov Models. Example: Markov Chain. Mini-Forward Algorithm. Example CS 88: Artificial Intelligence Fall 29 Lecture 9: Hidden Markov Models /3/29 Announcements Written 3 is up! Due on /2 (i.e. under two weeks) Project 4 up very soon! Due on /9 (i.e. a little over two weeks)

More information

UpdatingtheStationary VectorofaMarkovChain. Amy Langville Carl Meyer

UpdatingtheStationary VectorofaMarkovChain. Amy Langville Carl Meyer UpdatingtheStationary VectorofaMarkovChain Amy Langville Carl Meyer Department of Mathematics North Carolina State University Raleigh, NC NSMC 9/4/2003 Outline Updating and Pagerank Aggregation Partitioning

More information

Link Analysis. Stony Brook University CSE545, Fall 2016

Link Analysis. Stony Brook University CSE545, Fall 2016 Link Analysis Stony Brook University CSE545, Fall 2016 The Web, circa 1998 The Web, circa 1998 The Web, circa 1998 Match keywords, language (information retrieval) Explore directory The Web, circa 1998

More information

Computing PageRank using Power Extrapolation

Computing PageRank using Power Extrapolation Computing PageRank using Power Extrapolation Taher Haveliwala, Sepandar Kamvar, Dan Klein, Chris Manning, and Gene Golub Stanford University Abstract. We present a novel technique for speeding up the computation

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu March 16, 2016 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Slides based on those in:

Slides based on those in: Spyros Kontogiannis & Christos Zaroliagis Slides based on those in: http://www.mmds.org High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering

More information

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

LINK ANALYSIS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS LINK ANALYSIS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Retrieval evaluation Link analysis Models

More information

CS 188: Artificial Intelligence Spring 2009

CS 188: Artificial Intelligence Spring 2009 CS 188: Artificial Intelligence Spring 2009 Lecture 21: Hidden Markov Models 4/7/2009 John DeNero UC Berkeley Slides adapted from Dan Klein Announcements Written 3 deadline extended! Posted last Friday

More information

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10

PageRank. Ryan Tibshirani /36-662: Data Mining. January Optional reading: ESL 14.10 PageRank Ryan Tibshirani 36-462/36-662: Data Mining January 24 2012 Optional reading: ESL 14.10 1 Information retrieval with the web Last time we learned about information retrieval. We learned how to

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016

Lecture 15: MCMC Sanjeev Arora Elad Hazan. COS 402 Machine Learning and Artificial Intelligence Fall 2016 Lecture 15: MCMC Sanjeev Arora Elad Hazan COS 402 Machine Learning and Artificial Intelligence Fall 2016 Course progress Learning from examples Definition + fundamental theorem of statistical learning,

More information

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 1 Outline Outline Dynamical systems. Linear and Non-linear. Convergence. Linear algebra and Lyapunov functions. Markov

More information

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505

INTRODUCTION TO MCMC AND PAGERANK. Eric Vigoda Georgia Tech. Lecture for CS 6505 INTRODUCTION TO MCMC AND PAGERANK Eric Vigoda Georgia Tech Lecture for CS 6505 1 MARKOV CHAIN BASICS 2 ERGODICITY 3 WHAT IS THE STATIONARY DISTRIBUTION? 4 PAGERANK 5 MIXING TIME 6 PREVIEW OF FURTHER TOPICS

More information

IR: Information Retrieval

IR: Information Retrieval / 44 IR: Information Retrieval FIB, Master in Innovation and Research in Informatics Slides by Marta Arias, José Luis Balcázar, Ramon Ferrer-i-Cancho, Ricard Gavaldá Department of Computer Science, UPC

More information

The Theory behind PageRank

The Theory behind PageRank The Theory behind PageRank Mauro Sozio Telecom ParisTech May 21, 2014 Mauro Sozio (LTCI TPT) The Theory behind PageRank May 21, 2014 1 / 19 A Crash Course on Discrete Probability Events and Probability

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models

Today. Next lecture. (Ch 14) Markov chains and hidden Markov models Today (Ch 14) Markov chains and hidden Markov models Graphical representation Transition probability matrix Propagating state distributions The stationary distribution Next lecture (Ch 14) Markov chains

More information

DS504/CS586: Big Data Analytics Graph Mining II

DS504/CS586: Big Data Analytics Graph Mining II Welcome to DS504/CS586: Big Data Analytics Graph Mining II Prof. Yanhua Li Time: 6-8:50PM Thursday Location: AK233 Spring 2018 v Course Project I has been graded. Grading was based on v 1. Project report

More information

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming

Lecture 14: Random Walks, Local Graph Clustering, Linear Programming CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 14: Random Walks, Local Graph Clustering, Linear Programming Lecturer: Shayan Oveis Gharan 3/01/17 Scribe: Laura Vonessen Disclaimer: These

More information

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides

Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Thanks to Jure Leskovec, Stanford and Panayiotis Tsaparas, Univ. of Ioannina for slides Web Search: How to Organize the Web? Ranking Nodes on Graphs Hubs and Authorities PageRank How to Solve PageRank

More information

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa

Introduction to Search Engine Technology Introduction to Link Structure Analysis. Ronny Lempel Yahoo Labs, Haifa Introduction to Search Engine Technology Introduction to Link Structure Analysis Ronny Lempel Yahoo Labs, Haifa Outline Anchor-text indexing Mathematical Background Motivation for link structure analysis

More information

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte

Wiki Definition. Reputation Systems I. Outline. Introduction to Reputations. Yury Lifshits. HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Reputation Systems I HITS, PageRank, SALSA, ebay, EigenTrust, VKontakte Yury Lifshits Wiki Definition Reputation is the opinion (more technically, a social evaluation) of the public toward a person, a

More information

The Static Absorbing Model for the Web a

The Static Absorbing Model for the Web a Journal of Web Engineering, Vol. 0, No. 0 (2003) 000 000 c Rinton Press The Static Absorbing Model for the Web a Vassilis Plachouras University of Glasgow Glasgow G12 8QQ UK vassilis@dcs.gla.ac.uk Iadh

More information

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University.

Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University. Slide source: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org #1: C4.5 Decision Tree - Classification (61 votes) #2: K-Means - Clustering

More information

Link Analysis. Leonid E. Zhukov

Link Analysis. Leonid E. Zhukov Link Analysis Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis and Visualization

More information

At the boundary states, we take the same rules except we forbid leaving the state space, so,.

At the boundary states, we take the same rules except we forbid leaving the state space, so,. Birth-death chains Monday, October 19, 2015 2:22 PM Example: Birth-Death Chain State space From any state we allow the following transitions: with probability (birth) with probability (death) with probability

More information

1998: enter Link Analysis

1998: enter Link Analysis 1998: enter Link Analysis uses hyperlink structure to focus the relevant set combine traditional IR score with popularity score Page and Brin 1998 Kleinberg Web Information Retrieval IR before the Web

More information

Pseudocode for calculating Eigenfactor TM Score and Article Influence TM Score using data from Thomson-Reuters Journal Citations Reports

Pseudocode for calculating Eigenfactor TM Score and Article Influence TM Score using data from Thomson-Reuters Journal Citations Reports Pseudocode for calculating Eigenfactor TM Score and Article Influence TM Score using data from Thomson-Reuters Journal Citations Reports Jevin West and Carl T. Bergstrom November 25, 2008 1 Overview There

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

Modelling data networks stochastic processes and Markov chains

Modelling data networks stochastic processes and Markov chains Modelling data networks stochastic processes and Markov chains a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) November 2016 Available online

More information

Sequential Decision Problems

Sequential Decision Problems Sequential Decision Problems Michael A. Goodrich November 10, 2006 If I make changes to these notes after they are posted and if these changes are important (beyond cosmetic), the changes will highlighted

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 References 1 L. Freeman, Centrality in Social Networks: Conceptual Clarification, Social Networks, Vol. 1, 1978/1979, pp. 215 239. 2 S. Wasserman

More information

Monte Carlo methods in PageRank computation: When one iteration is sufficient

Monte Carlo methods in PageRank computation: When one iteration is sufficient Monte Carlo methods in PageRank computation: When one iteration is sufficient Nelly Litvak (University of Twente, The Netherlands) e-mail: n.litvak@ewi.utwente.nl Konstantin Avrachenkov (INRIA Sophia Antipolis,

More information

Discrete-time Consensus Filters on Directed Switching Graphs

Discrete-time Consensus Filters on Directed Switching Graphs 214 11th IEEE International Conference on Control & Automation (ICCA) June 18-2, 214. Taichung, Taiwan Discrete-time Consensus Filters on Directed Switching Graphs Shuai Li and Yi Guo Abstract We consider

More information

Lecture 11 October 11, Information Dissemination through Social Networks

Lecture 11 October 11, Information Dissemination through Social Networks CS 284r: Incentives and Information in Networks Fall 2013 Prof. Yaron Singer Lecture 11 October 11, 2013 Scribe: Michael Tingley, K. Nathaniel Tucker 1 Overview In today s lecture we will start the second

More information

Machine Learning CPSC 340. Tutorial 12

Machine Learning CPSC 340. Tutorial 12 Machine Learning CPSC 340 Tutorial 12 Random Walk on Graph Page Rank Algorithm Label Propagation on Graph Assume a strongly connected graph G = (V, A) Label Propagation on Graph Assume a strongly connected

More information

Propp-Wilson Algorithm (and sampling the Ising model)

Propp-Wilson Algorithm (and sampling the Ising model) Propp-Wilson Algorithm (and sampling the Ising model) Danny Leshem, Nov 2009 References: Haggstrom, O. (2002) Finite Markov Chains and Algorithmic Applications, ch. 10-11 Propp, J. & Wilson, D. (1996)

More information

A Tunable Mechanism for Identifying Trusted Nodes in Large Scale Distributed Networks

A Tunable Mechanism for Identifying Trusted Nodes in Large Scale Distributed Networks A Tunable Mechanism for Identifying Trusted Nodes in Large Scale Distributed Networks Joydeep Chandra 1, Ingo Scholtes 2, Niloy Ganguly 1, Frank Schweitzer 2 1 - Dept. of Computer Science and Engineering,

More information

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))]

Review: TD-Learning. TD (SARSA) Learning for Q-values. Bellman Equations for Q-values. P (s, a, s )[R(s, a, s )+ Q (s, (s ))] Review: TD-Learning function TD-Learning(mdp) returns a policy Class #: Reinforcement Learning, II 8s S, U(s) =0 set start-state s s 0 choose action a, using -greedy policy based on U(s) U(s) U(s)+ [r

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

Algebraic Representation of Networks

Algebraic Representation of Networks Algebraic Representation of Networks 0 1 2 1 1 0 0 1 2 0 0 1 1 1 1 1 Hiroki Sayama sayama@binghamton.edu Describing networks with matrices (1) Adjacency matrix A matrix with rows and columns labeled by

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

Markov Chains. October 5, Stoch. Systems Analysis Markov chains 1

Markov Chains. October 5, Stoch. Systems Analysis Markov chains 1 Markov Chains Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/ October 5, 2011 Stoch. Systems

More information

The PageRank Computation in Google: Randomization and Ergodicity

The PageRank Computation in Google: Randomization and Ergodicity The PageRank Computation in Google: Randomization and Ergodicity Roberto Tempo CNR-IEIIT Consiglio Nazionale delle Ricerche Politecnico di Torino roberto.tempo@polito.it Randomization over Networks - 1

More information

Finding central nodes in large networks

Finding central nodes in large networks Finding central nodes in large networks Nelly Litvak University of Twente Eindhoven University of Technology, The Netherlands Woudschoten Conference 2017 Complex networks Networks: Internet, WWW, social

More information

The Second Eigenvalue of the Google Matrix

The Second Eigenvalue of the Google Matrix The Second Eigenvalue of the Google Matrix Taher H. Haveliwala and Sepandar D. Kamvar Stanford University {taherh,sdkamvar}@cs.stanford.edu Abstract. We determine analytically the modulus of the second

More information

Designing Information Devices and Systems I Fall 2018 Homework 5

Designing Information Devices and Systems I Fall 2018 Homework 5 Last Updated: 08-09-9 0:6 EECS 6A Designing Information Devices and Systems I Fall 08 Homework 5 This homework is due September 8, 08, at 3:59. Self-grades are due October, 08, at 3:59. Submission Format

More information

Combating Web Spam with TrustRank

Combating Web Spam with TrustRank Combating Web Spam with rustrank Authors: Gyöngyi, Garcia-Molina, and Pederson Published in: Proceedings of the 0th VLDB Conference Year: 00 Presentation by: Rebecca Wills Date: April, 00 Questions we

More information

25.1 Markov Chain Monte Carlo (MCMC)

25.1 Markov Chain Monte Carlo (MCMC) CS880: Approximations Algorithms Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla Topic: Approx counting/sampling, MCMC methods Date: 4/4/07 The previous lecture showed that, for self-reducible problems,

More information

1 Searching the World Wide Web

1 Searching the World Wide Web Hubs and Authorities in a Hyperlinked Environment 1 Searching the World Wide Web Because diverse users each modify the link structure of the WWW within a relatively small scope by creating web-pages on

More information