Analysis of Simulated Data

Size: px
Start display at page:

Download "Analysis of Simulated Data"

Transcription

1 Analysis of Simulated Data

2 Media Media di una popolazione: somma di tutti i valori delle variabili della popolazione diviso il numero di unità della popolazione (N) µ N i= = 1 N X i Dove: - N = numero elementi popolazione - Xi =i-esima osservazione della variabile Xi Media di un campione: somma di tutti i valori delle variabili di un sottoinsieme della popolazione diviso il numero di unità di tale campione (n) X n i= = 1 n X i

3 Varianza Varianza della popolazione: misura che caratterizza molto bene la varibilità di una popolazione σ 2 N i= = 1 ( X µ ) i N 2 Dove: - N è il numero di osservazioni dell intera popolazione - µ è la media della popolazione - x i è l i-esimo dato statistico osservato Varianza di un campione: s 2 = n i= 1 ( ) 2 X X i n 1 Dove: - n è il numero di osservazioni del campione - X è la media del campione - x i è l i-esimo dato statistico osservato Quando n è grande le differenze tra le due formule sono minime; quando n è piccolo, le differenze sono sensibili.

4 Teorema Centrale Limite Quando la numerosità del campione diventa abbastanza grande La distribuzione delle medie campionarie approssima una normale X

5 Quando la popolazione non segue una normale Central Tendency µ = µ x Variation σ = x σ n Population Distribution σ = 10 µ = 50 X Sampling Distributions µ X = 50 X

6 Distribuzione campionaria Random variable, X, is Age of individuals Values of X: 18, 20, 22, 24 Suppose there s a population... measured in years EVERYONE is one of these 4 ages in this population A B C D T/Maker Co.

7 Caratteristiche della popolazione µ = σ = N i= 1 N X = 4 N i= 1 i 2 ( X µ ) i N = = P(X) Population Distribution A B C D (18) (20) (22) (24) Uniform Distribution X

8 Possibili campioni di dim. n = 2 1 st 2 nd Observation Obs ,18 18,20 18,22 18, ,18 20,20 20,22 20, ,18 22,20 22,22 22, ,18 24,20 24,22 24,24 16 Samples Samples Taken with Replacement 16 Sample Means 1st 2nd Observation Obs

9 Distribuzione campionaria (di tutte le medie campionarie) 16 Medie campionarie 1st 2nd Observation Obs Distribuzione delle medie campionarie P(X) _ X # nel campione = 2, # nella distrib. campionaria = 16

10 Media e deviazione standard della distrib. campionaria µ x = N i i= = = N X σ x = = N 2 ( X i µ x) i= 1 N 2 2 ( 18 21) + ( 19 21) + + ( 24 21) 16 2 = 1.58

11 Confronto popolazione/distrib. campionaria Popolazione Distr. Medie campionarie n = 2 P(X).3 µ = 21, σ = P(X).3 µ = 21 =1. 58 x σ x A B C D X _ X (18) (20) (22) (24)

12 Curva Normale: proprietà Valore approssimato della percentuale dell area compresa tra valori di deviazione standard (regola empirica). 99.7% 95% 68%

13 Confidence Interval for a Mean when you have a small sample...

14 As long as you have a large sample. A confidence interval for a population mean is: x ± Z s n where the average, standard deviation, and n depend on the sample, and Z depends on the confidence level.

15 Example Random sample of 59 students spent an average of $ on Spring 1998 textbooks. Sample standard deviation was $ ± 1.96 = ± We can be 95% confident that the average amount spent by all students was between $ and $

16 What happens if you can only take a small sample? Random sample of 15 students slept an average of 6.4 hours last night with standard deviation of 1 hour. What is the average amount all students slept last night?

17 If you have a small sample... Replace the Z value with a t value to get: x ± t s n where t comes from Student s t distribution, and depends on the sample size through the degrees of freedom n-1.

18 Student s t distribution versus Normal Z distribution T-distribution and Standard Normal Z distribution 0.4 density Z distribution T with 5 d.f Value

19 T distribution Very similar to standard normal distribution, except: t depends on the degrees of freedom n-1 more likely to get extreme t values than extreme Z values

20 Let s compare t and Z values Confidence t value with Z value level 5 d.f 90% % % For small samples, T value is larger than Z value. So, T interval is made to be longer than Z interval.

21 OK, enough theorizing! Let s get back to our example! Sample of 15 students slept an average of 6.4 hours last night with standard deviation of 1 hour. Need t with n-1 = 15-1 = 14 d.f. For 95% confidence, t 14 = x ± t s n = ± = 6.4 ±

22 That is... We can be 95% confident that average amount slept last night by all students is between 5.85 and 6.95 hours.

23 What happens as sample gets larger? T-distribution and Standard Normal Z distribution 0.4 Z distribution 0.3 density 0.2 T with 60 d.f Value

24 What happens to CI as sample gets larger? x x ± ± Z t s s n n For large samples: Z and t values become almost identical, so CIs are almost identical.

25 Example Random sample of 64 students spent an average of 3.8 hours on homework last night with a sample standard deviation of 3.1 hours. Z Confidence Intervals The assumed sigma = 3.10 Variable N Mean StDev 95.0 % CI Homework (3.037, 4.556) T Confidence Intervals Variable N Mean StDev 95.0 % CI Homework (3.022, 4.571)

26 Output analysis for single system

27 Why? Often most of emphasis is on simulation model development and programming. Very little resources (time and money) is budgeted for analyzing the output of the simulation experiment. In fact, it is not uncommon to see a single run of the simulation experiment being carried out and getting the results from the simulation model. The single run also is of arbitrary length and the output of this is considered true. Since simulation modeling is done using random parameters of different probability distributions, this single output is just one realization of these random variables.

28 Why? If the random parameters of the experiment may have a large variance, one realization of the run may differ greatly from the other. This is a real danger of making erroneous inferences about the system we are trying to simulate because we know that a single data point has practically no statistical significance!!!

29 Why? A simulation experiment is a computer-based statistical sampling experiment, hence if the results of the simulation are to have any significance and the inferences to have any confidence, appropriate statistical techniques must be used!! Most of the times output data of the simulation experiment is non-stationary and auto-correlated. Hence classical statistical techniques which require data to be IID can t be directly applied.

30 Typical output process Let Y 1, Y 2, Y m be the output stochastic process from a single simulation run. Let the realizations of these random variables over n replications be: y y y n1 y y y n2 y y y 1m 2m nm It is very common to observe that within the same run the output process is correlated. However, independence across the replications can be achieved. The output analyses depends on this independence.

31 Transient and steady-state behavior Consider the stochastic processes Y i as before. In many experiment, the distribution of the output process depends on the initial conditions to certain extent. This conditional distribution of the output stochastic process given the initial condition is called the transient distribution. If this sequence converges, as i for any initial condition, then we call the convergence distribution as steady-state distribution.

32 Types of simulation Terminating simulation o o o Non-terminating simulation Steady-state parameters Steady-state cycle parameters Others parameters

33 Terminating simulation When there is a natural event E that specifies the length of each run (replication). If we use different set of independent random variables at input, and same input conditions then the comparable output parameters are IID. Often the initial conditions of the terminating simulation affect the output parameters to a great extent. Examples of terminating simulation: 1. Banking queue example when specified that bank operates between 9 am to 5 pm. 2. Inventory planning example (calculating cost over a finite time horizon).

34 Non-terminating simulation There is no natural event E to specify the end of the run. Measure of performance for such simulations is said to be steady-state parameter if it is a characteristic of the steady-state distribution of some output process. Stochastic processes of most of the real systems do not have steady-state distributions, since the characteristics of the system change over time. On the other hand, a simulation model may have steady-state distribution, since often we assume that characteristics of the model don t change with time.

35 Non-terminating simulation Consider a stochastic process Y 1, Y 2, for a non-terminating simulation that does not have a steady-state distribution. Now lets divide the time-axis into equal-length, contiguous time intervals called cycles. Let Y i C be the random variable defined over the ith cycle. Suppose this new stochastic process has a steady-state distribution. A measure of performance is called a steady-state performance it is characteristic of Y C.

36 Non-terminating simulation For a non-terminating simulation, suppose that a stochastic process does not have a steady-state distribution. Also suppose that there is no appropriate cycle definition such that the corresponding process has a steady-state distribution. This can occur if the parameters for the model continue to change over time. In these cases, however, there will typically be a fixed amount of data describing how input parameters change over time. This provides, in effect, a terminating event E for the simulation, and, thus, the analysis techniques for terminating simulation are appropriate.

37 Statistical analysis of terminating simulation Suppose that we have n replications of terminating simulation, where each replication is terminated by the same event E and is begun by the same initial conditions. Assume that there is only one measure of performance. Let X j be the value of performance measure in jth replication j = 1, 2, n. So these are IID variables. For a bank, X j might be the average waiting time ( Wi i=1 ) over a N day from the jth replication where N is the number of customers served in a day. We can also see that N itself could be a random variable for a replication. N

38 Statistical analysis of terminating simulation For a simulation of war game X j might be the number of tanks destroyed on the jth replication. Finally for a inventory system X j could be the average cost from the jth replication. Suppose that we would like to obtain a point estimate and confidence interval for the mean E[X], where X is the random variable defined on a replication as described above. Then make n independent replications of simulation and let X j be the resulting IID variable in jth replication j = 1, 2, n.

39 Statistical analysis of terminating simulation We know that an approximate 100(1- α) confidence interval for µ = E[X] is given by: where we use a fixed sample of n replications and take the sample variance from this (S 2 (n)). X n ± t n 1,1 α / 2 ( n). n Hence this procedure is called a fixed-sample-size procedure. S 2

40 Statistical analysis of terminating simulation One disadvantage of fixed-sample-size procedure based on n replications is that the analyst has no control over the confidence interval half-length (the precision of ( )). X X n If the estimate n is such that then we say that n has an absolute error of β. X n µ = β X Suppose that we have constructed a confidence interval for µ based on fixed number of replications n. We assume that our estimate of S 2 (n) of the population variance will not change appreciably as the number of replications increase.

41 Statistical analysis of terminating simulation Then, an expression for the approximate total number of replications required to obtain an absolute error of β is given by: n * a ( i) i ( β ) min i n : t β. = i 1,1 α / 2 S 2 If this value n a* (β) > n, then we take additional replications (n a* (β) n) of the simulation, then the estimate mean E[X] based on all the replications should have an absolute error of approximately β.

42 Statistical analysis of terminating simulation Sequential procedure for estimating the confidence interval for. Let δ ( k, α) = tk 1,1 α ( k). k 1. Make k 0 replications of the simulation and set k = k 0. X n 2. Compute and δ(k, α) from the current sample. / 2 3. If δ(k, α) < β then use this as a point estimate of and stop. S X n 4. Otherwise replace k with k + 1, make an additional replication of the simulation and go to Step 1. 2

43 A method for determining when to stop Choose an acceptable value d for the standard deviation of the estimator Generate at least 100 data values Continue to generate additional data values, stopping when you have generated k values and where S is the sample standard deviation based on k values The estimate of is given by (come riportato nel libro di testo)

44 Example Consider a serving system in which no new customer are allowed to enter after 5 p.m. and we are interested in estimating the expected time at which the last customer departs the system. Suppose we want to be at least 95% certain that our estimated answer will not differ from the true value by more than 15 seconds

45 Choosing initial conditions The measures of performances for a terminating simulation depend explicitly on the state of system at time 0. Hence it is extremely important to choose initial condition with utmost care. Suppose that we want to analyze the average delay for customers who arrive and complete their delays between 12 noon and 1 pm (the busiest for any bank). Since the bank would probably be very congested by noon, starting the simulation then with no customers present (usual initial condition for any queuing problem) is not be useful. We discuss two heuristic methods for this problem.

46 Choosing initial conditions First approach Let us assume that the bank opens at 9 am with no customers present. Then we start the simulation at 9 am with no customers present and run it for 4 simulated hours. In estimating the desired expected average delay, we use only those customers who arrive and complete their delays between noon and 1 pm. The evolution of the simulation between 9 am to noon (the warm-up period ) determines the appropriate conditions for the simulation at noon. Disadvantage The main disadvantage with this approach is that 3 hours of simulated time are not used directly in estimation. One might propose a compromise and start the simulation at some other time, say 11 am with no customers present. However, there is no guarantee that the conditions in the simulation at noon will be representative of the actual conditions in the bank at noon.

47 Choosing initial conditions Second approach Collect data on the number of customers present in the bank at noon for several different days. Let p i be the proportion of these days that i customers (i = 0, 1, ) are present at noon. Then we simulate the bank from noon to 1 pm with number of customers present at noon being randomly chosen from the distribution {p i }. If more than one simulation run is required, then a different sample of {p i } is drawn for each run. So that the performance measure is IID.

48 Calcolo delle probabilità usando i dati #Clienti alle 12 #di giorni x f (x )

49 Statistical analysis of steady-state parameters Let Y 1, Y 2, Y m be the output stochastic process from a single run of a non-terminating simulation. Suppose that P(Y i <= y) = F i (y) F(y) = P(Y <= y) as i goes to. Here Y is the steady state random variable of interest with distribution function F. Then φ is a steady-state parameter if it is a characteristic of Y such as E[Y], F(Y). One problem in estimating φ is that the distribution function of Y i is different from F, since it is generally not possible to choose i to be representative of the steady state behavior.

50 Statistical analysis of steady-state parameters This causes an estimator based on observations Y 1, Y 2, Y m not to be representative. This is called the problem of initial transient. Suppose that we want to estimate the steady-state mean E[Y], which is generally given as: Most serious problem is: υ = lim E[ Y i i ]. E[ Y m ] υ for any m.

51 Statistical analysis of steady-state parameters The technique that is most commonly used is the warming up of the model or initial data deletion. The idea is to delete some number of observations from the beginning of a run and to use only the remaining observations to estimate the mean. So: m Yi i= l+ 1 Y ( m, l) = m l. Question now is: How to choose the warm-up period l? We can find the point in which the transient mean curve E[Y i ] flattens out at level ν.

52 Statistical analysis of steady-state parameters

53 Bootstrapping the Mean: An example We are interested in finding the confidence interval for a mean from a sample of only 4 observations. Assume that we are interested in the difference in income between husbands and wives: we have four cases, with the following income differences (in $1000s): 6, -3, 5, 3, for a mean of 2.75, and standard deviation of We can calculate the confidence interval: µ = X n ± t n 1,.025 S 2 ( n) n = 2.75 ± = 2.75 ± = 2.75 ± 8.66 Now we ll compare this confidence interval to one found using bootstrapping

54 Defining the Random Variable The first thing that bootstrapping does is estimate the population distribution of X from the four observations in the sample In other words, the random variable X* is defined: x* p (x* ) The mean of X* is then simply the mean of the sample X = E( X*) = 2,75

55 The Sample as the Population We now treat the sample as if it were the population, and resample from it In this case we take all possible samples with replacement, meaning that we take n n =4 4 =256 different samples Since we found all possible samples, the mean of these samples is simply the original mean The standard error of X from these samples is: * 2 ( X k X ) k = 1 SE *( X*) = n n = We now make an adjustment for the sample size n n ( ) = n SE X SE *( *) = n 1 X 2.015

56 The Sample as the Population In this example, because we used all possible resamples of our sample, the bootstrap standard error (2.015) is exactly the same as the original standard error Still, the same approach can be used for statistics for which we do not have standard error formulas, or we have small sample sizes In summary, the following analogies can be made to sampling from the population: Bootstrap observations original observations Bootstrap mean original sample mean Original sample mean unknown population mean µ Distribution of the bootstrap means unknown sampling distribution from the original sample

Output Data Analysis for a Single System

Output Data Analysis for a Single System Output Data Analysis for a Single System Chapter 9 Based on the slides provided with the textbook 2 9.1 Introduction Output data analysis is often not conducted appropriately Treating output of a single

More information

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (1)

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (1) B. Maddah INDE 504 Discrete-Event Simulation Output Analysis (1) Introduction The basic, most serious disadvantage of simulation is that we don t get exact answers. Two different runs of the same model

More information

EE/PEP 345. Modeling and Simulation. Spring Class 11

EE/PEP 345. Modeling and Simulation. Spring Class 11 EE/PEP 345 Modeling and Simulation Class 11 11-1 Output Analysis for a Single Model Performance measures System being simulated Output Output analysis Stochastic character Types of simulations Output analysis

More information

Confidence interval. Prof. Giuseppe Verlato Unit of Epidemiology & Medical Statistics, Department of Diagnostics & Public Health, University of Verona

Confidence interval. Prof. Giuseppe Verlato Unit of Epidemiology & Medical Statistics, Department of Diagnostics & Public Health, University of Verona Confidence interval Prof. Giuseppe Verlato Unit of Epidemiology & Medical Statistics, Department of Diagnostics & Public Health, University of Verona campione sample inferenza inference popolazione population

More information

Overall Plan of Simulation and Modeling I. Chapters

Overall Plan of Simulation and Modeling I. Chapters Overall Plan of Simulation and Modeling I Chapters Introduction to Simulation Discrete Simulation Analytical Modeling Modeling Paradigms Input Modeling Random Number Generation Output Analysis Continuous

More information

Network Simulation Chapter 6: Output Data Analysis

Network Simulation Chapter 6: Output Data Analysis Network Simulation Chapter 6: Output Data Analysis Prof. Dr. Jürgen Jasperneite 1 Contents Introduction Types of simulation output Transient detection When to terminate a simulation 2 Prof. Dr. J ürgen

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Quote of the Day A person with one watch knows what time it is. A person with two

More information

Output Analysis for a Single Model

Output Analysis for a Single Model Output Analysis for a Single Model Output Analysis for a Single Model Output analysis is the examination of data generated by a simulation. Its purpose is to predict the performance of a system or to compare

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 11 Output Analysis for a Single Model Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Objective: Estimate system performance via simulation If q is the system performance,

More information

Chapter 11 Estimation of Absolute Performance

Chapter 11 Estimation of Absolute Performance Chapter 11 Estimation of Absolute Performance Purpose Objective: Estimate system performance via simulation If q is the system performance, the precision of the estimator qˆ can be measured by: The standard

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

Chapter 11. Output Analysis for a Single Model Prof. Dr. Mesut Güneş Ch. 11 Output Analysis for a Single Model

Chapter 11. Output Analysis for a Single Model Prof. Dr. Mesut Güneş Ch. 11 Output Analysis for a Single Model Chapter Output Analysis for a Single Model. Contents Types of Simulation Stochastic Nature of Output Data Measures of Performance Output Analysis for Terminating Simulations Output Analysis for Steady-state

More information

2WB05 Simulation Lecture 7: Output analysis

2WB05 Simulation Lecture 7: Output analysis 2WB05 Simulation Lecture 7: Output analysis Marko Boon http://www.win.tue.nl/courses/2wb05 December 17, 2012 Outline 2/33 Output analysis of a simulation Confidence intervals Warm-up interval Common random

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 0 Output Analysis for a Single Model Purpose Objective: Estimate system performance via simulation If θ is the system performance, the precision of the

More information

Variance reduction techniques

Variance reduction techniques Variance reduction techniques Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Simulation with a given accuracy; Variance reduction techniques;

More information

Slides 12: Output Analysis for a Single Model

Slides 12: Output Analysis for a Single Model Slides 12: Output Analysis for a Single Model Objective: Estimate system performance via simulation. If θ is the system performance, the precision of the estimator ˆθ can be measured by: The standard error

More information

[Chapter 6. Functions of Random Variables]

[Chapter 6. Functions of Random Variables] [Chapter 6. Functions of Random Variables] 6.1 Introduction 6.2 Finding the probability distribution of a function of random variables 6.3 The method of distribution functions 6.5 The method of Moment-generating

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information

Variance reduction techniques

Variance reduction techniques Variance reduction techniques Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/ moltchan/modsim/ http://www.cs.tut.fi/kurssit/tlt-2706/ OUTLINE: Simulation with a given confidence;

More information

Total Quality Management (TQM)

Total Quality Management (TQM) Total Quality Management (TQM) Use of statistical techniques for controlling and improving quality and their integration in the management system Statistical Process Control (SPC) Univariate and multivariate

More information

Output Data Analysis for a Single System

Output Data Analysis for a Single System CHAPTER 9 Output Data Analysis for a Single System 9.1 Introduction... 9. Transient and Steady-State Behavior of a Stochastic Process...10 9.3 Types of Simulations with Regard to Output Analysis...1 9.4

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION. <www.ie.ncsu.edu/jwilson> May 22, 2006

ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION. <www.ie.ncsu.edu/jwilson> May 22, 2006 ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION Slide 1 Faker Zouaoui Sabre Holdings James R. Wilson NC State University May, 006 Slide From American

More information

n i n T Note: You can use the fact that t(.975; 10) = 2.228, t(.95; 10) = 1.813, t(.975; 12) = 2.179, t(.95; 12) =

n i n T Note: You can use the fact that t(.975; 10) = 2.228, t(.95; 10) = 1.813, t(.975; 12) = 2.179, t(.95; 12) = MAT 3378 3X Midterm Examination (Solutions) 1. An experiment with a completely randomized design was run to determine whether four specific firing temperatures affect the density of a certain type of brick.

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Fixed Priority Scheduling

Fixed Priority Scheduling Fixed Priority Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa January 13, 2011 Outline 1 Fixed priority 2 Priority assignment 3 Scheduling analysis 4 A necessary

More information

14 Random Variables and Simulation

14 Random Variables and Simulation 14 Random Variables and Simulation In this lecture note we consider the relationship between random variables and simulation models. Random variables play two important roles in simulation models. We assume

More information

Verification and Validation. CS1538: Introduction to Simulations

Verification and Validation. CS1538: Introduction to Simulations Verification and Validation CS1538: Introduction to Simulations Steps in a Simulation Study Problem & Objective Formulation Model Conceptualization Data Collection Model translation, Verification, Validation

More information

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators

MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators MFin Econometrics I Session 4: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators Thilo Klein University of Cambridge Judge Business School Session 4: Linear regression,

More information

Chapter 2 SIMULATION BASICS. 1. Chapter Overview. 2. Introduction

Chapter 2 SIMULATION BASICS. 1. Chapter Overview. 2. Introduction Chapter 2 SIMULATION BASICS 1. Chapter Overview This chapter has been written to introduce the topic of discreteevent simulation. To comprehend the material presented in this chapter, some background in

More information

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama

Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Qualifying Exam CS 661: System Simulation Summer 2013 Prof. Marvin K. Nakayama Instructions This exam has 7 pages in total, numbered 1 to 7. Make sure your exam has all the pages. This exam will be 2 hours

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

Continuous random variables

Continuous random variables Continuous random variables Continuous r.v. s take an uncountably infinite number of possible values. Examples: Heights of people Weights of apples Diameters of bolts Life lengths of light-bulbs We cannot

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Math 36b May 7, 2009 Contents 2 ANOVA: Analysis of Variance 16 2.1 Basic ANOVA........................... 16 2.1.1 the model......................... 17 2.1.2 treatment sum of squares.................

More information

ESTIMATION AND OUTPUT ANALYSIS (L&K Chapters 9, 10) Review performance measures (means, probabilities and quantiles).

ESTIMATION AND OUTPUT ANALYSIS (L&K Chapters 9, 10) Review performance measures (means, probabilities and quantiles). ESTIMATION AND OUTPUT ANALYSIS (L&K Chapters 9, 10) Set up standard example and notation. Review performance measures (means, probabilities and quantiles). A framework for conducting simulation experiments

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

ON THE LAW OF THE i TH WAITING TIME INABUSYPERIODOFG/M/c QUEUES

ON THE LAW OF THE i TH WAITING TIME INABUSYPERIODOFG/M/c QUEUES Probability in the Engineering and Informational Sciences, 22, 2008, 75 80. Printed in the U.S.A. DOI: 10.1017/S0269964808000053 ON THE LAW OF THE i TH WAITING TIME INABUSYPERIODOFG/M/c QUEUES OPHER BARON

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Reconstruction, prediction and. of multiple monthly stream-flow series

Reconstruction, prediction and. of multiple monthly stream-flow series Reconstruction, prediction and simulation of multiple monthly stream-flow series L. TORELLI Received on April 2nd, 1970 SUMMARY. The logarithms of monthly stream-flows are usually found to have a Normal

More information

Redacted for Privacy

Redacted for Privacy AN ABSTRACT OF THE THESIS OF Lori K. Baxter for the degree of Master of Science in Industrial and Manufacturing Engineering presented on June 4, 1990. Title: Truncation Rules in Simulation Analysis: Effect

More information

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID:

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID: Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam 1 2 3 4 5 6 7 8 9 10 7 questions. 1. [5+5] Let X and Y be independent exponential random variables where X has

More information

1. Simple Linear Regression

1. Simple Linear Regression 1. Simple Linear Regression Suppose that we are interested in the average height of male undergrads at UF. We put each male student s name (population) in a hat and randomly select 100 (sample). Then their

More information

STAT Section 2.1: Basic Inference. Basic Definitions

STAT Section 2.1: Basic Inference. Basic Definitions STAT 518 --- Section 2.1: Basic Inference Basic Definitions Population: The collection of all the individuals of interest. This collection may be or even. Sample: A collection of elements of the population.

More information

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2 ECE 341: Probability and Random Processes for Engineers, Spring 2012 Homework 13 - Last homework Name: Assigned: 04.18.2012 Due: 04.25.2012 Problem 1. Let X(t) be the input to a linear time-invariant filter.

More information

Probabilities & Statistics Revision

Probabilities & Statistics Revision Probabilities & Statistics Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 January 6, 2017 Christopher Ting QF

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Multivariate Simulations

Multivariate Simulations Multivariate Simulations Katarína Starinská starinskak@gmail.com Charles University Faculty of Mathematics and Physics Prague, Czech Republic 21.11.2011 Katarína Starinská Multivariate Simulations 1 /

More information

Warm-up Using the given data Create a scatterplot Find the regression line

Warm-up Using the given data Create a scatterplot Find the regression line Time at the lunch table Caloric intake 21.4 472 30.8 498 37.7 335 32.8 423 39.5 437 22.8 508 34.1 431 33.9 479 43.8 454 42.4 450 43.1 410 29.2 504 31.3 437 28.6 489 32.9 436 30.6 480 35.1 439 33.0 444

More information

EFFICIENT COMPUTATION OF PROBABILITIES OF EVENTS DESCRIBED BY ORDER STATISTICS AND APPLICATION TO A PROBLEM OFQUEUES

EFFICIENT COMPUTATION OF PROBABILITIES OF EVENTS DESCRIBED BY ORDER STATISTICS AND APPLICATION TO A PROBLEM OFQUEUES EFFICIENT COMPUTATION OF PROBABILITIES OF EVENTS DESCRIBED BY ORDER STATISTICS AND APPLICATION TO A PROBLEM OFQUEUES Lee K. Jones and Richard C. Larson OR 249-91 May 1991 Efficient Computation of Probabilities

More information

SEQUENTIAL ESTIMATION OF THE STEADY-STATE VARIANCE IN DISCRETE EVENT SIMULATION

SEQUENTIAL ESTIMATION OF THE STEADY-STATE VARIANCE IN DISCRETE EVENT SIMULATION SEQUENTIAL ESTIMATION OF THE STEADY-STATE VARIANCE IN DISCRETE EVENT SIMULATION Adriaan Schmidt Institute for Theoretical Information Technology RWTH Aachen University D-5056 Aachen, Germany Email: Adriaan.Schmidt@rwth-aachen.de

More information

The Expected Opportunity Cost and Selecting the Optimal Subset

The Expected Opportunity Cost and Selecting the Optimal Subset Applied Mathematical Sciences, Vol. 9, 2015, no. 131, 6507-6519 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.58561 The Expected Opportunity Cost and Selecting the Optimal Subset Mohammad

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Statistics for classification

Statistics for classification AstroInformatics Statistics for classification Una rappresentazione utile è la matrice di confusione. L elemento sulla riga i e sulla colonna j è il numero assoluto oppure la percentuale di casi della

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression EdPsych 580 C.J. Anderson Fall 2005 Simple Linear Regression p. 1/80 Outline 1. What it is and why it s useful 2. How 3. Statistical Inference 4. Examining assumptions (diagnostics)

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Since D has an exponential distribution, E[D] = 0.09 years. Since {A(t) : t 0} is a Poisson process with rate λ = 10, 000, A(0.

Since D has an exponential distribution, E[D] = 0.09 years. Since {A(t) : t 0} is a Poisson process with rate λ = 10, 000, A(0. IEOR 46: Introduction to Operations Research: Stochastic Models Chapters 5-6 in Ross, Thursday, April, 4:5-5:35pm SOLUTIONS to Second Midterm Exam, Spring 9, Open Book: but only the Ross textbook, the

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Introduction Recall that a measure of central tendency is a number which is typical of all

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

9. Linear Regression and Correlation

9. Linear Regression and Correlation 9. Linear Regression and Correlation Data: y a quantitative response variable x a quantitative explanatory variable (Chap. 8: Recall that both variables were categorical) For example, y = annual income,

More information

Inference in Regression Analysis

Inference in Regression Analysis Inference in Regression Analysis Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 4, Slide 1 Today: Normal Error Regression Model Y i = β 0 + β 1 X i + ǫ i Y i value

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

Homework 4 due on Thursday, December 15 at 5 PM (hard deadline).

Homework 4 due on Thursday, December 15 at 5 PM (hard deadline). Large-Time Behavior for Continuous-Time Markov Chains Friday, December 02, 2011 10:58 AM Homework 4 due on Thursday, December 15 at 5 PM (hard deadline). How are formulas for large-time behavior of discrete-time

More information

Stat 412/512 REVIEW OF SIMPLE LINEAR REGRESSION. Jan Charlotte Wickham. stat512.cwick.co.nz

Stat 412/512 REVIEW OF SIMPLE LINEAR REGRESSION. Jan Charlotte Wickham. stat512.cwick.co.nz Stat 412/512 REVIEW OF SIMPLE LINEAR REGRESSION Jan 7 2015 Charlotte Wickham stat512.cwick.co.nz Announcements TA's Katie 2pm lab Ben 5pm lab Joe noon & 1pm lab TA office hours Kidder M111 Katie Tues 2-3pm

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Content by Week Week of October 14 27

Content by Week Week of October 14 27 Content by Week Week of October 14 27 Learning objectives By the end of this week, you should be able to: Understand the purpose and interpretation of confidence intervals for the mean, Calculate confidence

More information

CONTENTS. Preface List of Symbols and Notation

CONTENTS. Preface List of Symbols and Notation CONTENTS Preface List of Symbols and Notation xi xv 1 Introduction and Review 1 1.1 Deterministic and Stochastic Models 1 1.2 What is a Stochastic Process? 5 1.3 Monte Carlo Simulation 10 1.4 Conditional

More information

Single gene analysis of differential expression

Single gene analysis of differential expression Single gene analysis of differential expression Giorgio Valentini DSI Dipartimento di Scienze dell Informazione Università degli Studi di Milano valentini@dsi.unimi.it Comparing two conditions Each condition

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1.(10) What is usually true about a parameter of a model? A. It is a known number B. It is determined by the data C. It is an

More information

ZOOLOGIA EVOLUZIONISTICA. a. a. 2016/2017 Federico Plazzi - Darwin

ZOOLOGIA EVOLUZIONISTICA. a. a. 2016/2017 Federico Plazzi - Darwin ZOOLOGIA EVOLUZIONISTICA a. a. 2016/2017 Federico Plazzi - federico.plazzi@unibo.it Darwin Charles Robert Darwin (1809-1882) 1. Variation Under Domestication 2. Variation Under Nature 2. Variation Under

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 9 Verification and Validation of Simulation Models Purpose & Overview The goal of the validation process is: To produce a model that represents true

More information

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop

Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Sampling Distributions of Statistics Corresponds to Chapter 5 of Tamhane and Dunlop Slides prepared by Elizabeth Newton (MIT), with some slides by Jacqueline Telford (Johns Hopkins University) 1 Sampling

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 6. A continuous random variable X has probability density function f(x) where 3 k(4 x x ), 0 x 2, f( x) = 0, otherwise, where k is a positive integer. 1 (a) Show that

More information

Post-exam 2 practice questions 18.05, Spring 2014

Post-exam 2 practice questions 18.05, Spring 2014 Post-exam 2 practice questions 18.05, Spring 2014 Note: This is a set of practice problems for the material that came after exam 2. In preparing for the final you should use the previous review materials,

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 19

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 19 EEC 686/785 Modeling & Performance Evaluation of Computer Systems Lecture 19 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org (based on Dr. Raj Jain s lecture

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974 LIMITS FOR QUEUES AS THE WAITING ROOM GROWS by Daniel P. Heyman Ward Whitt Bell Communications Research AT&T Bell Laboratories Red Bank, NJ 07701 Murray Hill, NJ 07974 May 11, 1988 ABSTRACT We study the

More information

ISyE 6644 Fall 2014 Test 3 Solutions

ISyE 6644 Fall 2014 Test 3 Solutions 1 NAME ISyE 6644 Fall 14 Test 3 Solutions revised 8/4/18 You have 1 minutes for this test. You are allowed three cheat sheets. Circle all final answers. Good luck! 1. [4 points] Suppose that the joint

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1 Regression diagnostics As is true of all statistical methodologies, linear regression analysis can be a very effective way to model data, as along as the assumptions being made are true. For the regression

More information

Basic Probability space, sample space concepts and order of a Stochastic Process

Basic Probability space, sample space concepts and order of a Stochastic Process The Lecture Contains: Basic Introduction Basic Probability space, sample space concepts and order of a Stochastic Process Examples Definition of Stochastic Process Marginal Distributions Moments Gaussian

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1. What is the difference between a deterministic model and a probabilistic model? (Two or three sentences only). 2. What is the

More information

Parametric technique

Parametric technique Regression analysis Parametric technique A parametric technique assumes that the variables conform to some distribution (i.e. gaussian) The properties of the distribution are assumed in the underlying

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

Statistics for IT Managers

Statistics for IT Managers Statistics for IT Managers 95-796, Fall 2012 Module 2: Hypothesis Testing and Statistical Inference (5 lectures) Reading: Statistics for Business and Economics, Ch. 5-7 Confidence intervals Given the sample

More information

Statistical Methods. Missing Data snijders/sm.htm. Tom A.B. Snijders. November, University of Oxford 1 / 23

Statistical Methods. Missing Data  snijders/sm.htm. Tom A.B. Snijders. November, University of Oxford 1 / 23 1 / 23 Statistical Methods Missing Data http://www.stats.ox.ac.uk/ snijders/sm.htm Tom A.B. Snijders University of Oxford November, 2011 2 / 23 Literature: Joseph L. Schafer and John W. Graham, Missing

More information

Markov Chain Model for ALOHA protocol

Markov Chain Model for ALOHA protocol Markov Chain Model for ALOHA protocol Laila Daniel and Krishnan Narayanan April 22, 2012 Outline of the talk A Markov chain (MC) model for Slotted ALOHA Basic properties of Discrete-time Markov Chain Stability

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Introduction to Statistical Inference

Introduction to Statistical Inference Introduction to Statistical Inference Dr. Fatima Sanchez-Cabo f.sanchezcabo@tugraz.at http://www.genome.tugraz.at Institute for Genomics and Bioinformatics, Graz University of Technology, Austria Introduction

More information

Imp m ortance o f Sa S mp m le S i S ze Ca C lculation Sc S ie i nti t f i ic i r easons Et E h t ic i al l r easons Ec E onomic i r easons 18-1

Imp m ortance o f Sa S mp m le S i S ze Ca C lculation Sc S ie i nti t f i ic i r easons Et E h t ic i al l r easons Ec E onomic i r easons 18-1 Importance of Sample Size Calculation Scientific reasons Ethical reasons Economic reasons 18-1 Scientific Reasons In a trial with negative results and a sufficient sample size,, the result is concrete

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information