# Tuning Method of PI Controller with Desired Damping Coefficient for a First-order Lag Plus Deadtime System

Save this PDF as:

Size: px
Start display at page:

Download "Tuning Method of PI Controller with Desired Damping Coefficient for a First-order Lag Plus Deadtime System"

## Transcription

2 PID' Brescia (Italy), March 8-0, 0 FrA.. CHARACTERISTICS OF POLES FOR PI CONTROL SYSTEM Expanding Eq. (), G cl (s) can be expressed as a ratio of polynomials, and the orders of the numerator polynomial and the denominator one are and 4, respectively. In pole assignment design it is attempted to assign a pair of conjugate complex poles of the closed-loop system equal to the dominant poles, and the PI parameters should be chosen so that the damping coefficient of the dominant poles leads to better response. In this current analysis it is desirable that the order of the denominator polynomial should be to obtain satisfactory control performance.. Close-loop transfer function with integral time fixed Considering the closed-loop transfer function given by Eq. () and letting the integral time T i be the time constant T, the order of the denominator polynomial can be easily reduced through the pole-zero cancellation. As a result the closedloop transfer function G cl (s) is given by G cl(s) G cl(s) where A = T/L and T i = T. Ts L s 6Ls L s 6Ls Ts L s 6Ls L s 6Ls A (Ls) 6(Ls) (Ls) 6 A(Ls) 6 A(Ls) A In this case we find that the closed-loop zeros of Eq. () are practically kept constant, and cannot be adjustable by the controller. On the contrary, it is useful that the closed-loop poles should be assigned in accordance with the required design criteria. Eq. () indicates major great advantage on the PI controller that the proportional gain becomes the only one adjustable parameter because the integral time T i is kept fixed. Therefore, the pole-assignment for the PI controller gives the simple problem solving the four parameters, namely,, T, and L.. Relations of poles to damping coefficient To get some insight into the relations between poles and damping coefficient, let us investigate the following simplified characteristic equation given in the denominator polynomial of Eq. (): () L s al s bls c 0 (4) where a =6 /A, b = 6 /A, and c = /A. The closed-loop poles are the roots of Eq. (4) and the polezero configuration may be varied significantly. Many simple feedback loops, however, will be given by a real pole s and complex pair of poles s and s in case that P 0 (discussed later), which can be computed by (p, 0) φ Im. (α, βj) Re. (α, βj) φ φ (p, 0) (a) 0º φ < 90º (b) 90º < φ 80º Im. Fig. Angle φ between a line connecting real pole and oscillatory poles, and real axis s L Q R a p s, L Q R a j Q R j Re. In this process the following interim parameters have been introduced: M b a 9, N a 9ab 7c, P M N 4 Q P N, R P N. According to Eq. () both real and oscillatory roots can be given by the function of /L. Writing the real and imaginary parts of oscillatory roots as α and β we get the damping coefficient ζ through straightforward calculations as Q R (Q R) a a (Q R) (). (6) Notice that ζ can be determined by a, b, and c only, regardless of L. Since Q and R are the functions of a, b, and c, all of these parameters are the functions of /A, so that ζ can be easily obtained as the function of /A.. Effects of the real pole on the oscillatory poles The damping coefficient can be determined by a set of the real pole and the oscillatory poles. Thus, if the damping coefficient of the closed-loop response is assumed to be equal to that of oscillatory poles, the real pole may be neglected by assigning far from the oscillatory poles of concern. To examine the effects of the real pole on the oscillatory poles, we define the angle φ between the real axis and the connecting line of real pole and the oscillatory poles, as shown in Fig.. From Eq. (), the angle φ is given by,

3 PID' Brescia (Italy), March 8-0, 0 FrA. ( Q R) tan tan, (7) p ( Q R) where φ normally varies within the range from 0º to 90º (0º φ < 90º). In case that φ is gets over the range (90º < φ 80º), φ is given by, 80. (8) According to Eq. (7), (8) φ is the function of /A as well as ζ. In the previous paper ), if φ is less than 0º (φ 0º) on third-order system consisted of real pole and oscillatory poles, it has been clarified that the effects of real pole can be neglected. Thus, when specifying ζ of oscillatory poles, it is necessary to examine if the condition for φ of less than 0º is satisfied. As a result, the value of φ affects the response (over damped or oscillation) of the control system. 4. PI PARAMETERS FOR DESIRED DAMPING COEFFICIENT 4. for desired coefficient ζ To derive for the desired damping coefficient ζ, Eq. (6) can be varied with /A. The relation between ζ and /A is shown as in Fig.. It can be seen that there exist three regions as /A increases. The first region means the region where the oscillatory poles join the real axis at the junction point as /A increases. The Second region means the region where all three poles become real. The third region means the region where the oscillatory poles moves from the separation point to the stability limit at the imaginary axis. The behaviors for these three regions are depicted as shown in Fig. 4. Next let us consider how Eq. (7) and (8) are varied with /A. The relation of φ to /A can be obtained as shown in Fig.. When looking at Fig. corresponding to Fig., φ is less than 0º in the third region and the damping coefficient ζ of oscillatory poles can be desired as the damping coefficient ζ of a step response in this region. Therefore, for the desired damping coefficient ζ can be calculated by using the region (0.68 /A <.8). In region in Fig., /A can be determined uniquely when ζ is desired. Thus, Eq. (9) can be obtained by replacing /A by / A ( ) (9) where is the function of ζ. for desired ζ is shown in Table. From Eq. (0), for the desired damping coefficient ζ can be given by ( ) A/ (0) From Eq. (0) and the results shown in Table, for the desired damping coefficient ζ can be found to be a completely linear function of A/, as shown in Fig. 6.

4 PID' Brescia (Italy), March 8-0, 0 FrA. 4. Validation for the pure deadtime system In section 4., we proposed the PI tuning method based on the damping coefficient ζ of oscillatory poles. So that it is response of ζ = 0. is required for this plant, the proportional gain = 6.6 can be obtained from Fig. 6. Then the integral time T i = 0 can be found as T i = T. The step responses for the desired ζ = 0. and.0 are shown in Fig. 7(a), (c) respectively. Because the damping coefficient of step responses for the desired ζ =.0 cannot be obtained from the amplitude ratio, the damping coefficient is assumed to be ζ = 0.. An enlarged figure of the step responses desired as ζ = 0. is shown in Fig. 7(b). In this figure, the dashed line is the step responses for first order lag plus deadtime system approximated by the second-order Padé equation. In the calculation of the damping coefficient of the step responses from amplitude ratio, it is found that the step response corresponds approximately to the damping coefficient desired by oscillatory poles. In this figure, the solid lines show the step responses for firstorder lag plus deadtime system with pure deadtime, and it can be found that the step response (solid line) almost corresponds to the step response (dashed line). Thus, it can be concluded that this parameter method is also effective for pure deadtime. As additional consideration, the plant which the deadtime is larger than the time constant, =, A = 0. (T << L) is considered. For this plant, the step responses for the desired ζ = 0. and.0 are shown in Fig. 8(a), (c) respectively, and enlarged figure of Fig. 8 (a) is shown in Fig. 8(b). In case that T << L, the step response for the desired damping coefficient can be obtained successfully as well as T >> L. 4. Comparison with PMM (Partial Model Matching) Table shows PI parameters obtained by the proposed method and PMM (Partial Model Matching method, proposed by itamori, 98) for ζ =.0. As you can see Table, both PI parameters are about the same. This result is significantly interesting. Since the zero of the controller compensates the pole of the plant in the proposed method, it can be considered that the pole-zero cancellation also occurs in the PMM. In the future, we will discuss about the other damping coefficients. Fig. 9 shows pole-zero maps for the closed-loop system (the characteristics of the plant is A =.) using PI controller. In Fig. 9(a), the PI parameters are decided by using the proposed method, and the PI parameters are determined by using the PMM in Fig. 9(b). Fig. 0 shows the results of the step response for both control systems.

5 PID' Brescia (Italy), March 8-0, 0 FrA. Table : Comparison of PI parameters Plant Proposed PMM T L T/L T i T i (=) (ζ=.0) It can be seen from Fig. 9 that the control system with the PMM cannot achieve pole-zero cancellation for the plant (A = ) that the deadtime L is the same as the time constant T. However, in this situation, the non-oscillation response can be obtained. And, both responses are the almost same by comparing the response using the proposed method with that using the PMM. In addition, Fig. shows pole-zero maps for the closed-loop system (the characteristics of the plant is A = 0.) using PI controller. In Fig. (a), the PI parameters are decided by using the proposed method, and the PI parameters are determined by using the PMM in Fig. (b). Fig. shows the results of the step response for both control systems. In this case, the both characteristics (the pole-zero map and the step response) are the about perfectly same. Moreover, although the both response between Fig. 0 and Fig. are the same, the speed of the response depends on the value of the deadtime L.. CONCLUSIONS We proposed PI controller tuning method for first-order lag plus deadtime system. On the assumption that the integral time T i is chosen equal to the time constant T of a plant to degenerate the order of the closed-loop transfer function, we obtained the following conclusions. ) The step response desired by ζ of oscillatory poles can be approximated the equivalent response of second-order system since real pole can be almost neglected. ) A proportional gain for the desired damping coefficient is an exactly linear function of A/ (A = T/L). ) We demonstrated an applicability of the tuning method of PI controller for the given damping coefficient. REFERENCES J.G. Ziegler and N.B. Nichols (94). Optimum Setting for Automatic Controllers, Trans. ASME, Vol. 64, pp R. uwata (987). An Improved Ultimate Sensitivity Method and PID; I-PD Control Characteristics, Transaction of SICE, Vol., No. 4, pp.-9. Y. Okada, Y. Yamakawa, T. Yamazaki, S. urosu (006). Tuning Method of PI Controller for Given Damping Coefficient, SICE-ICASE International Joint Conference, pp. 84, SP07-4. T. itamori (98). A Method of Control System Design Based upon Partial nowledge about Controlled Processes, Transaction of SICE, Vol., No. 4, pp. 49-.

### Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

### 6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

### K c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables: 30

1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS

### A Simple PID Control Design for Systems with Time Delay

Industrial Electrical Engineering and Automation CODEN:LUTEDX/(TEIE-7266)/1-16/(2017) A Simple PID Control Design for Systems with Time Delay Mats Lilja Division of Industrial Electrical Engineering and

### PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion

Archives of Control Sciences Volume 6LXII, 016 No. 1, pages 5 17 PID control of FOPDT plants with dominant dead time based on the modulus optimum criterion JAN CVEJN The modulus optimum MO criterion can

### IMC based automatic tuning method for PID controllers in a Smith predictor configuration

Computers and Chemical Engineering 28 (2004) 281 290 IMC based automatic tuning method for PID controllers in a Smith predictor configuration Ibrahim Kaya Department of Electrical and Electronics Engineering,

### IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION K. M. Yanev A. Obok Opok Considering marginal control systems, a useful technique, contributing to the method of multi-stage compensation is suggested. A

### EE3CL4: Introduction to Linear Control Systems

1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

### Cascade Control of a Continuous Stirred Tank Reactor (CSTR)

Journal of Applied and Industrial Sciences, 213, 1 (4): 16-23, ISSN: 2328-4595 (PRINT), ISSN: 2328-469 (ONLINE) Research Article Cascade Control of a Continuous Stirred Tank Reactor (CSTR) 16 A. O. Ahmed

### A Note on Bode Plot Asymptotes based on Transfer Function Coefficients

ICCAS5 June -5, KINTEX, Gyeonggi-Do, Korea A Note on Bode Plot Asymptotes based on Transfer Function Coefficients Young Chol Kim, Kwan Ho Lee and Young Tae Woo School of Electrical & Computer Eng., Chungbuk

### PD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada

PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closed-loop

### Solutions for Tutorial 10 Stability Analysis

Solutions for Tutorial 1 Stability Analysis 1.1 In this question, you will analyze the series of three isothermal CSTR s show in Figure 1.1. The model for each reactor is the same at presented in Textbook

### Proportional plus Integral (PI) Controller

Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on

### Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),

### Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system

ACTA IMEKO ISSN: 1 870X July 017, Volume 6 Number, 65 69 Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system Yuji Yamakawa 1, Takanori Yamazaki 1

### 7.2 Controller tuning from specified characteristic polynomial

192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic

### Task 1 (24%): PID-control, the SIMC method

Final Exam Course SCE1106 Control theory with implementation (theory part) Wednesday December 18, 2014 kl. 9.00-12.00 SKIP THIS PAGE AND REPLACE WITH STANDARD EXAM FRONT PAGE IN WORD FILE December 16,

### CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 11-1 Road Map of the Lecture XI Controller Design and PID

### EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller

### MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

Journal of Engineering Science and Technology Vol. 1, No. 8 (215) 113-1115 School of Engineering, Taylor s University MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

### Open Loop Tuning Rules

Open Loop Tuning Rules Based on approximate process models Process Reaction Curve: The process reaction curve is an approximate model of the process, assuming the process behaves as a first order plus

### EE 422G - Signals and Systems Laboratory

EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

### CHAPTER 3 TUNING METHODS OF CONTROLLER

57 CHAPTER 3 TUNING METHODS OF CONTROLLER 3.1 INTRODUCTION This chapter deals with a simple method of designing PI and PID controllers for first order plus time delay with integrator systems (FOPTDI).

### Compensator Design to Improve Transient Performance Using Root Locus

1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

### Chapter 6 - Solved Problems

Chapter 6 - Solved Problems Solved Problem 6.. Contributed by - James Welsh, University of Newcastle, Australia. Find suitable values for the PID parameters using the Z-N tuning strategy for the nominal

### Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

### Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

### IC6501 CONTROL SYSTEMS

DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

### CHAPTER 10: STABILITY &TUNING

When I complete this chapter, I want to be able to do the following. Determine the stability of a process without control Determine the stability of a closed-loop feedback control system Use these approaches

### Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

Appendix J Additional Closed-Loop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. Closed-Loop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain

### Transient Response of a Second-Order System

Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

### ADAPTIVE PID CONTROLLER WITH ON LINE IDENTIFICATION

Journal of ELECTRICAL ENGINEERING, VOL. 53, NO. 9-10, 00, 33 40 ADAPTIVE PID CONTROLLER WITH ON LINE IDENTIFICATION Jiří Macháče Vladimír Bobál A digital adaptive PID controller algorithm which contains

### Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

### STABILITY OF CLOSED-LOOP CONTOL SYSTEMS

CHBE320 LECTURE X STABILITY OF CLOSED-LOOP CONTOL SYSTEMS Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 10-1 Road Map of the Lecture X Stability of closed-loop control

### CONTINUOUS WEIGHING ON A CONVEYOR BELT WITH FIR FILTER

CONTINUOUS WEIGHING ON A CONVEYOR BELT WITH FIR FILTER Ryosuke Tasaki 1, Takanori Yamazaki 2, Hideo Ohnishi 3, Masaaki Kobayashi 3, Shigeru Kurosu 4 1 Dept. of Mechanical Eng., Kyoto Institute of Technology,

### Second Order and Higher Order Systems

Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical second-order control system to a step input. In terms of damping ratio and natural

### CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

### Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales

Continuous Mass Measurement in Checkweighers and Conveyor Belt Scales Takanori YAMAZAKI*, Yoshiharu SAKURAI**, Hideo OHNISHI*** Masaaki KOBAYASHI***, Shigeru KUROSU** *Tokyo Metropolitan College of Technology,

### Model-based PID tuning for high-order processes: when to approximate

Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 2-5, 25 ThB5. Model-based PID tuning for high-order processes: when to approximate

### Course roadmap. Step response for 2nd-order system. Step response for 2nd-order system

ME45: Control Systems Lecture Time response of nd-order systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer

### Laboratory Exercise 1 DC servo

Laboratory Exercise DC servo Per-Olof Källén ø 0,8 POWER SAT. OVL.RESET POS.RESET Moment Reference ø 0,5 ø 0,5 ø 0,5 ø 0,65 ø 0,65 Int ø 0,8 ø 0,8 Σ k Js + d ø 0,8 s ø 0 8 Off Off ø 0,8 Ext. Int. + x0,

### ECE 388 Automatic Control

Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr

### Outline. Classical Control. Lecture 5

Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

### Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore A Fundamental Problem in Control Systems Poles of open

### AN INTRODUCTION TO THE CONTROL THEORY

Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

### Ch 14: Feedback Control systems

Ch 4: Feedback Control systems Part IV A is concerned with sinle loop control The followin topics are covered in chapter 4: The concept of feedback control Block diaram development Classical feedback controllers

### Tuning Rules for Proportional Resonant Controllers

Tuning Rules for Proportional Resonant Controllers Luís Fernando Alves Pereira and Alexandre Sanfelice Bazanella, Senior Member, IEEE Abstract In this paper we propose a particular structure for resonant

### Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

### Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming

Robust Loop Shaping Controller Design for Spectral Models by Quadratic Programming Gorka Galdos, Alireza Karimi and Roland Longchamp Abstract A quadratic programming approach is proposed to tune fixed-order

### Closed Loop Identification Of A First Order Plus Dead Time Process Model Under PI Control

Dublin Institute of Technology RROW@DIT Conference papers School of Electrical and Electronic Engineering -6- Closed Loop Identification Of First Order Plus Dead Time Process Model Under PI Control Tony

### Course Summary. The course cannot be summarized in one lecture.

Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: Steady-State Error Unit 7: Root Locus Techniques

### MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

### Methods for analysis and control of dynamical systems Lecture 4: The root locus design method

Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline

### A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

### Unit 8: Part 2: PD, PID, and Feedback Compensation

Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

### Linear Control Systems Lecture #3 - Frequency Domain Analysis. Guillaume Drion Academic year

Linear Control Systems Lecture #3 - Frequency Domain Analysis Guillaume Drion Academic year 2018-2019 1 Goal and Outline Goal: To be able to analyze the stability and robustness of a closed-loop system

### Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

### Research Article On PID Controller Design by Combining Pole Placement Technique with Symmetrical Optimum Criterion

Mathematical Problems in Engineering Volume 23, Article ID 36827, 8 pages http://dx.doi.org/.55/23/36827 Research Article On PID Controller Design by Combining Pole Placement Technique with Symmetrical

### Professional Portfolio Selection Techniques: From Markowitz to Innovative Engineering

Massachusetts Institute of Technology Sponsor: Electrical Engineering and Computer Science Cosponsor: Science Engineering and Business Club Professional Portfolio Selection Techniques: From Markowitz to

### Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

### Improved Autotuning Using the Shape Factor from Relay Feedback

Article Subscriber access provided by NATIONAL TAIWAN UNIV Improved Autotuning Using the Shape Factor from Relay Feedback T. Thyagarajan, and Cheng-Ching Yu Ind. Eng. Chem. Res., 2003, 42 (20), 4425-4440

### Model based control design

Model based control design Alf Isaksson September, 999 Supplied as supplement to course book in Automatic Control Basic course (Reglerteknik AK) Objective: To introduce some general approaches to model

### Fall 2003 BMI 226 / CS 426 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS

Notes LL-1 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS Notes LL-2 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS The PID controller was patented in 1939 by Albert

### PID Tuning of Plants With Time Delay Using Root Locus

San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2011 PID Tuning of Plants With Time Delay Using Root Locus Greg Baker San Jose State University

### arxiv: v1 [cs.sy] 30 Nov 2017

Disturbance Observer based Control of Integrating Processes with Dead-Time using PD controller Sujay D. Kadam SysIDEA Lab, IIT Gandhinagar, India. arxiv:1711.11250v1 [cs.sy] 30 Nov 2017 Abstract The work

### Methods for analysis and control of. Lecture 4: The root locus design method

Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March

### EEE 550 ADVANCED CONTROL SYSTEMS

UNIVERSITI SAINS MALAYSIA Semester I Examination Academic Session 2007/2008 October/November 2007 EEE 550 ADVANCED CONTROL SYSTEMS Time : 3 hours INSTRUCTION TO CANDIDATE: Please ensure that this examination

### EECE 460 : Control System Design

EECE 460 : Control System Design SISO Pole Placement Guy A. Dumont UBC EECE January 2011 Guy A. Dumont (UBC EECE) EECE 460: Pole Placement January 2011 1 / 29 Contents 1 Preview 2 Polynomial Pole Placement

### Automatic Control (TSRT15): Lecture 7

Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward

### Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz*

Ind. Eng. Chem. Res. 996, 35, 3437-344 3437 PROCESS DESIGN AND CONTROL Improved Filter Design in Internal Model Control Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and

### University of Science and Technology, Sudan Department of Chemical Engineering.

ISO 91:28 Certified Volume 3, Issue 6, November 214 Design and Decoupling of Control System for a Continuous Stirred Tank Reactor (CSTR) Georgeous, N.B *1 and Gasmalseed, G.A, Abdalla, B.K (1-2) University

### Chapter 12. Feedback Control Characteristics of Feedback Systems

Chapter 1 Feedbac Control Feedbac control allows a system dynamic response to be modified without changing any system components. Below, we show an open-loop system (a system without feedbac) and a closed-loop

### ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

ECEN 67 (ESS) Op-Amps Stability and Frequency Compensation Techniques Analog & Mixed-Signal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative

### SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

### Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

### Anisochronic First Order Model and Its Application to Internal Model Control

Anisochronic First Order Model and Its Application to Internal Model Control Vyhlídal, Tomáš Ing., Czech Technical University, Inst. of Instrumentation and Control Eng., Technická 4, Praha 6, 66 7, vyhlidal@student.fsid.cvut.cz

### Chapter 5 The SIMC Method for Smooth PID Controller Tuning

Chapter 5 The SIMC Method for Smooth PID Controller Tuning Sigurd Skogestad and Chriss Grimholt 5.1 Introduction Although the proportional-integral-derivative (PID) controller has only three parameters,

### Chapter 7: Time Domain Analysis

Chapter 7: Time Domain Analysis Samantha Ramirez Preview Questions How do the system parameters affect the response? How are the parameters linked to the system poles or eigenvalues? How can Laplace transforms

### ECE317 : Feedback and Control

ECE317 : Feedback and Control Lecture : Routh-Hurwitz stability criterion Examples Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling

### Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

### Answers to multiple choice questions

Answers to multiple choice questions Chapter 2 M2.1 (b) M2.2 (a) M2.3 (d) M2.4 (b) M2.5 (a) M2.6 (b) M2.7 (b) M2.8 (c) M2.9 (a) M2.10 (b) Chapter 3 M3.1 (b) M3.2 (d) M3.3 (d) M3.4 (d) M3.5 (c) M3.6 (c)

### CHAPTER 6 CLOSED LOOP STUDIES

180 CHAPTER 6 CLOSED LOOP STUDIES Improvement of closed-loop performance needs proper tuning of controller parameters that requires process model structure and the estimation of respective parameters which

### ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II

ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

### Robust QFT-based PI controller for a feedforward control scheme

Integral-Derivative Control, Ghent, Belgium, May 9-11, 218 ThAT4.4 Robust QFT-based PI controller for a feedforward control scheme Ángeles Hoyo José Carlos Moreno José Luis Guzmán Tore Hägglund Dep. of

### Sinusoidal Forcing of a First-Order Process. / τ

Frequency Response Analysis Chapter 3 Sinusoidal Forcing of a First-Order Process For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, xt = A

### ( ) Frequency Response Analysis. Sinusoidal Forcing of a First-Order Process. Chapter 13. ( ) sin ω () (

1 Frequency Response Analysis Sinusoidal Forcing of a First-Order Process For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, xt = A tis: sin

### Virtual Reference Feedback Tuning for non-linear systems

Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 2-5, 25 ThA9.6 Virtual Reference Feedback Tuning for non-linear systems

### Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes Emmanuel Edet Technology and Innovation Centre University of Strathclyde 99 George Street Glasgow, United Kingdom emmanuel.edet@strath.ac.uk

### a. Closed-loop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a

Root Locus Simple definition Locus of points on the s- plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation

### Dynamic Matrix controller based on Sliding Mode Control.

AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08, Harvard, Massachusetts, USA, March -, 008 Dynamic Matrix controller based on Sliding Mode Control. OSCAR CAMACHO 1 LUÍS VALVERDE. EDINZO IGLESIAS..

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

### TUNING-RULES FOR FRACTIONAL PID CONTROLLERS

TUNING-RULES FOR FRACTIONAL PID CONTROLLERS Duarte Valério, José Sá da Costa Technical Univ. of Lisbon Instituto Superior Técnico Department of Mechanical Engineering GCAR Av. Rovisco Pais, 49- Lisboa,

### YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab

### Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=

### Design of a Lead Compensator

Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of

### 1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

### CM 3310 Process Control, Spring Lecture 21

CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic Single-Input/Single-Output (SISO) Feedback Figure