Operational amplifiers (Op amps)
|
|
- Cynthia Stephens
- 2 years ago
- Views:
Transcription
1 Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output. (That s good.) No current flows into the input. (That s good.) The gain is infinite. (Is that good?) EE 230 op amps 1
2 How do we handle this infinite gain business? Av i In order to keep finite, then as A, v i 0. In other words, we must force the difference signal at the input to go to zero. How do we do that? With feedback, of course. Recall that the difference signal in a feedback arrangement must become very small if the gain is very big. 0, as A One input is connected to the source voltage in some fashion. The other input is connected to the feedback network. If the feedback is working properly, then v i v v _ 0. The condition of v v _ is called a virtual short at the input. This should be the case, if negative feedback is working in the circuit. EE 230 op amps 2
3 v s v v i 0 i 0 v s v v i 0 i 0 v v i Av i v A v negative feedback v i Av i v A negative feedback v s v v A v v i 0 i 0 negative feedback Don t really need the internal detail. Just use the rules. EE 230 op amps 3
4 Ideal op amp v v v non-inverting input v _ inverting input When using an op amp in a circuit: v v _ virtual short (assuming a proper negative feedback configuration.) i i _ 0 due to infinite input resistance Because R o 0, there are no voltage divider effects at output. This means that we can connect anything to the output without worrying about loading effects. (We will see later that there are potential output problems.) EE 230 op amps 4
5 Non-inverting amplifier v S Write a node equation at the inverting terminal. v v v s (virtual short due to feedback) i 0 (infinite input resistance) (Worth memorizing.) EE 230 op amps 5
6 Inverting amplifier v S Write a node equation at the inverting terminal. v v 0 (virtual ground!) i 0 (infinite input resistance) Note the negative sign! (Also worth memorizing.) EE 230 op amps 6
7 Non-inverting with gain of 10 ( 9 kω and 1kΩ) Inverting with gain of 10 ( 10 kω and 1kΩ) EE 230 op amps 7
8 Don t panic if the feedback loop gets crazier. 10 k! 10 k! v x R 4 v in i R1 1 k! i R2 R 3 1 k! i R3 i R4 ut Use the usual circuit analysis along with the op-amp rules. At the inverting terminal (note that v 0): i R1 i R2. v in v x at node x: i R2 i R3 i R4. v x v x R 3 v x R 4 ut Use the two equations to eliminate v x and solve for the gain: G ut v in R 4 R 4 R 3 Inserting the values: G 120. Big gain without big ratios. EE 230 op amps 8
9 Summing amp (weighted summer) v S3 v S2 v S1 R 3 R F At the inverting terminal: v v 0 (virtual ground). Write a node equation there. (Or use superposition.) Follow with second inverter if you don t like the negative sign. The virtually grounded inverting terminal becomes a summing node. EE 230 op amps 9
10 Difference amp We would like to amplify only the difference between va and vb. Anything this applied in common to both, will not be amplified. R2 At the inverting input: R1 vb va R3 R4 At the non-inverting input: if EE 230 v v then ( ) Difference only! (Check it.) op amps 10
11 With a difference amp, we really want to amplify only the differences between the two inputs. Any voltage that is in common should not come through (i.e. the gain for common-mode voltages should be zero.) v com v b v com v a v dif v com v dif v com R 3 R 4 If resistors are perfectly matched: G d v dif G d But if matching is imperfect: G d v dif G c v com The common-mode rejection ratio is a measure of how much of the common signal can leak through to the output. CMRR G d G c CMRR of 10,000 or better is not hard to achieve. EE 230 op amps 11
12 Unity gain buffer v s Non-inverting amp with 0 and. So G 1, meaning v s. What good is that? v 1 R o1 R i2 R o1 v 1 R i2 Connecting two circuits. If R o1 is not much smaller R i2, then much of the voltage is lost in the voltage divider, v i2 << v 1. High input resistance of op amp makes v v 1. Zero output resistance of op amp makes v i2. Since v, then v i2 v 1. The op amp served as a buffer between the two circuits, eliminated the voltage divider problem. EE 230 op amps 12
13 Simple application of unity-gain buffer You would like to use a potentiometer as a volume control or to provide a reference voltage. V S R P V S R P R P v adj R L v V S V R P adj S v adj R P R L V S R P v adj R L v RL v adj V S R P EE 230 op amps 13
14 Cascading amps The various types of circuits can serve as building blocks for more complicated circuits. R 4 v a v b R 3 1 inverting non-inverting 2 R 5 R 6 R 7 summing 3 EE 230 op amps 14
15 20 k! R5 10 k! R2 R1 vs 1 k! vo1 vo2 8 k! summing 2 k!. want vo2 / vs... Feedback loop around feedback loops!! EE 230 R3 R4 non-inverting. op amps 15
16 Integrating amplifier Use an inverting amp with a capacitor as the feedback element. vc C R vi(t) ir ic vo(t) () ( ) ( ) () () () ( ) ( ) () EE 230 () () () () ( ) ( ) The output signal, as a function of time, is proportional to the time integral of the input. op amps 16
17 v i (t) R C (t) ( ) ( ) ( ) If the input is a constant voltage, v i (t) V 1, then ( ) ( ) The output starts at whatever value it has t 0, and then ramps downward in time with slope V 1 /RC. If V 1 is negative, then the output ramps upward in time. If the input switches back and forth between two constant values (square wave), then the output ramps up and down correspondingly (sawtooth). V 1 v i (t) (t) t t V 2 t 0 EE 230 op amps 17 t 0
18 A practical concern with an integrating amp: If there is a small, but constant, DC voltage at the input (and we will see later that most op-amps have DC error voltages built in), then that will be integrated forever and the output will go to infinity. (In reality, it will saturate at the power supply limit.) to infinity C (t) and beyond! v R error 1 mv v DC o (t) v error RC t t This is a problem because at DC, the capacitor is an open circuit and the amplifier has essentially infinite DC gain. To make it better, put a resistor in parallel with the cap; >>. EE 230 op amps 18 v i (t) C (t)
19 Differentiating amplifier Can also differentiate. Switch resistor and capacitor. R v i (t) C i R i C (t) i C i R C dv C dt v R v C v 0 (t) RC dv i (t) dt However, not used much. If there is noise at the input, the differentiator tends to make it worse. The integrator, on the other hand, tends to average out the noise. EE 230 op amps 19
20 Instrumentation amplifier Recall the difference amp: R v 1 b v v a o R 3 R 4 If the ratios are matched: R 4 /R 3 /, then the circuit becomes a perfect difference amp with G d (v a v b ), where G d / and common-mode voltages are completely rejected (G c 0). But it could be better. First, the input resistances depend on the resistor values. Secondly it is difficult to adjust the gain, because the resistance ratios much remain matched. EE 230 op amps 20
21 An improvement Buffer amps can be added to increase the input resistance. Since the buffer amps have unity-gain, their outputs are equal to their input. The differencing amp on the right works exactly as before. v b v a v b v a v o (v a v b ) EE 230 op amps 21
22 Instrumentation amp A final modification turns this into a typical instrumentation amplifier. vy v vy ir3y vr4 vx vy ir4 vx R4 vy R3 v vx vx Use KVL: va va ir3x R1 R2 vo still true: R2 vo (va R1 vb ) ir3x ir3y ir4 vb ir4 (2R3 R4 ) vb R1 vb ir3xr3 ir4r4 ir3yr3 va since i 0 : EE 230 ir4 vb R3 R4 va R2 2R3 1 R4 vx vo R2 R1 2R3 1 R4 vx vy vy op amps 22
23 Adjustable instrumentation amp v y R 4 R R 3 1 R 3 v o v x 2R 3 R 4 1 v x v y EE 230 op amps 23
Operational amplifiers (Op amps)
Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also
ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits
ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform
OPERATIONAL AMPLIFIER APPLICATIONS
OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference
D is the voltage difference = (V + - V - ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually
E40M Review - Part 1
E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,
EE 321 Analog Electronics, Fall 2013 Homework #3 solution
EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [
EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above
EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)
EE100Su08 Lecture #9 (July 16 th 2008)
EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart
Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741
(Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics
Problem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
PHYS225 Lecture 9. Electronic Circuits
PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current
Operational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and
0 t < 0 1 t 1. u(t) =
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult
Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv
DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First
Frequency Dependent Aspects of Op-amps
Frequency Dependent Aspects of Op-amps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and non-inverting amplifier circuits with resistive
OPAMPs I: The Ideal Case
I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,
Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
Homework 3 Solution. Due Friday (5pm), Feb. 14, 2013
University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject
Electronics. Basics & Applications. group talk Daniel Biesinger
Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits
Figure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
Analog Computing Technique
Analog Computing Technique by obert Paz Chapter Programming Principles and Techniques. Analog Computers and Simulation An analog computer can be used to solve various types o problems. It solves them in
Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1
Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers Kevin D. Donohue, University of Kentucky Simple circuits with single loops or node-pairs can result
Midterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)
Chapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
INTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i
aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq
E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1
E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html
EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1
EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit
Lecture 4: Feedback and Op-Amps
Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,
Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors
Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,
Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters
Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties
20.2 Design Example: Countdown Timer
EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to
Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi
Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Module No. 07 Differential and Operational Amplifiers Lecture No. 39 Summing, Scaling and Averaging Amplifiers (Refer
First-order transient
EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between
A tricky node-voltage situation
A tricky node-voltage situation The node-method will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but
Series & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
Problem Set 5 Solutions
University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
Bandwidth of op amps. R 1 R 2 1 k! 250 k!
Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?
ECE2262 Electric Circuits. Chapter 5: Circuit Theorems
ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence
Homework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
Chapter 2 - DC Biasing - BJTs
Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset
Design Engineering MEng EXAMINATIONS 2016
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1
Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and
Chapter 2. - DC Biasing - BJTs
Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE
DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal
Circuits Practice Websheet 18.1
Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24
Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:
Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction
EIT Quick-Review Electrical Prof. Frank Merat
CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing
ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer
ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory
ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces
ECE2262 Electric Circuits
ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence
EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
Review of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
Switched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology
Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic Switch-Cap Integrator = [n-1] - ( / ) H(jω) = - ( / ) 1 1 - e -jωt ~ - ( / ) / jωt (z) - z -1 1 (z) = H(z) = - ( / )
At point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
ECEN 325 Electronics
ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non
Electronic Circuits Summary
Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
Module 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
ECE3050 Assignment 7
ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
Operational Amplifiers
NDSU Operational Amplifiers ECE 06 JSG Operational Amplifiers An operational amplifier is a input device with V o k(v V ) where k is a large number. For short, the following symbol is used for an differential
Time Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
Homework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
Biasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th
Lecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
VI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 17
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 17 17.1 Capacitive Touchscreen Viewing the physical structure corresponding to one pixel on the capacitive screen, we
Midterm Exam 2. Prof. Miloš Popović
Midterm Exam 2 Prof. Miloš Popović 100 min timed, closed book test. Write your name at top of every page (or initials on later pages) Aids: single page (single side) of notes, handheld calculator Work
Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback
EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,
CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers
6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:
Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday
Physics 364, Fall 2012, reading due 2012-09-20. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This
ECE Linear Circuit Analysis II
ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft
Lecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
Input and Output Impedances with Feedback
EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators First-order active filters Second-order active filters Review from Last Time Input and Output Impedances
EE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59
Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors
ECE1750, Spring Week 11 Power Electronics
ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,
Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm-1 Exam (Solution) ECE-6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions
Energy Storage Elements: Capacitors and Inductors
CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,
Thevenin equivalent circuits
Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The
Chapter 7. Chapter 7
Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important
Homework Assignment 11
Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors
EE40 Midterm Review Prof. Nathan Cheung
EE40 Midterm Review Prof. Nathan Cheung 10/29/2009 Slide 1 I feel I know the topics but I cannot solve the problems Now what? Slide 2 R L C Properties Slide 3 Ideal Voltage Source *Current depends d on
Examination paper for TFY4185 Measurement Technique/ Måleteknikk
Page 1 of 14 Department of Physics Examination paper for TFY4185 Measurement Technique/ Måleteknikk Academic contact during examination: Patrick Espy Phone: +47 41 38 65 78 Examination date: 15 August
Lecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
Chapter 19 Lecture Notes
Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC
Module 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras
Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome
Introduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
CS 436 HCI Technology Basic Electricity/Electronics Review
CS 436 HCI Technology Basic Electricity/Electronics Review *Copyright 1997-2008, Perry R. Cook, Princeton University August 27, 2008 1 Basic Quantities and Units 1.1 Charge Number of electrons or units
Biquad Filter. by Kenneth A. Kuhn March 8, 2013
by Kenneth A. Kuhn March 8, 201 The biquad filter implements both a numerator and denominator quadratic function in s thus its name. All filter outputs have identical second order denominator in s and
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize
Electromechanical devices MM2EMD. Lecture 5 Using Operational Amplifiers (opamps) in the real world
University of Nottingham Electromechanical devices MM2EMD Lecture 5 Using Operational Amplifiers (opamps) in the real world Dr. roderick.mackenzie@nottingham.ac.uk Summer 2015 @rcimackenzie Released under