Operational amplifiers (Op amps)


 Cynthia Stephens
 1 years ago
 Views:
Transcription
1 Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output. (That s good.) No current flows into the input. (That s good.) The gain is infinite. (Is that good?) EE 230 op amps 1
2 How do we handle this infinite gain business? Av i In order to keep finite, then as A, v i 0. In other words, we must force the difference signal at the input to go to zero. How do we do that? With feedback, of course. Recall that the difference signal in a feedback arrangement must become very small if the gain is very big. 0, as A One input is connected to the source voltage in some fashion. The other input is connected to the feedback network. If the feedback is working properly, then v i v v _ 0. The condition of v v _ is called a virtual short at the input. This should be the case, if negative feedback is working in the circuit. EE 230 op amps 2
3 v s v v i 0 i 0 v s v v i 0 i 0 v v i Av i v A v negative feedback v i Av i v A negative feedback v s v v A v v i 0 i 0 negative feedback Don t really need the internal detail. Just use the rules. EE 230 op amps 3
4 Ideal op amp v v v noninverting input v _ inverting input When using an op amp in a circuit: v v _ virtual short (assuming a proper negative feedback configuration.) i i _ 0 due to infinite input resistance Because R o 0, there are no voltage divider effects at output. This means that we can connect anything to the output without worrying about loading effects. (We will see later that there are potential output problems.) EE 230 op amps 4
5 Noninverting amplifier v S Write a node equation at the inverting terminal. v v v s (virtual short due to feedback) i 0 (infinite input resistance) (Worth memorizing.) EE 230 op amps 5
6 Inverting amplifier v S Write a node equation at the inverting terminal. v v 0 (virtual ground!) i 0 (infinite input resistance) Note the negative sign! (Also worth memorizing.) EE 230 op amps 6
7 Noninverting with gain of 10 ( 9 kω and 1kΩ) Inverting with gain of 10 ( 10 kω and 1kΩ) EE 230 op amps 7
8 Don t panic if the feedback loop gets crazier. 10 k! 10 k! v x R 4 v in i R1 1 k! i R2 R 3 1 k! i R3 i R4 ut Use the usual circuit analysis along with the opamp rules. At the inverting terminal (note that v 0): i R1 i R2. v in v x at node x: i R2 i R3 i R4. v x v x R 3 v x R 4 ut Use the two equations to eliminate v x and solve for the gain: G ut v in R 4 R 4 R 3 Inserting the values: G 120. Big gain without big ratios. EE 230 op amps 8
9 Summing amp (weighted summer) v S3 v S2 v S1 R 3 R F At the inverting terminal: v v 0 (virtual ground). Write a node equation there. (Or use superposition.) Follow with second inverter if you don t like the negative sign. The virtually grounded inverting terminal becomes a summing node. EE 230 op amps 9
10 Difference amp We would like to amplify only the difference between va and vb. Anything this applied in common to both, will not be amplified. R2 At the inverting input: R1 vb va R3 R4 At the noninverting input: if EE 230 v v then ( ) Difference only! (Check it.) op amps 10
11 With a difference amp, we really want to amplify only the differences between the two inputs. Any voltage that is in common should not come through (i.e. the gain for commonmode voltages should be zero.) v com v b v com v a v dif v com v dif v com R 3 R 4 If resistors are perfectly matched: G d v dif G d But if matching is imperfect: G d v dif G c v com The commonmode rejection ratio is a measure of how much of the common signal can leak through to the output. CMRR G d G c CMRR of 10,000 or better is not hard to achieve. EE 230 op amps 11
12 Unity gain buffer v s Noninverting amp with 0 and. So G 1, meaning v s. What good is that? v 1 R o1 R i2 R o1 v 1 R i2 Connecting two circuits. If R o1 is not much smaller R i2, then much of the voltage is lost in the voltage divider, v i2 << v 1. High input resistance of op amp makes v v 1. Zero output resistance of op amp makes v i2. Since v, then v i2 v 1. The op amp served as a buffer between the two circuits, eliminated the voltage divider problem. EE 230 op amps 12
13 Simple application of unitygain buffer You would like to use a potentiometer as a volume control or to provide a reference voltage. V S R P V S R P R P v adj R L v V S V R P adj S v adj R P R L V S R P v adj R L v RL v adj V S R P EE 230 op amps 13
14 Cascading amps The various types of circuits can serve as building blocks for more complicated circuits. R 4 v a v b R 3 1 inverting noninverting 2 R 5 R 6 R 7 summing 3 EE 230 op amps 14
15 20 k! R5 10 k! R2 R1 vs 1 k! vo1 vo2 8 k! summing 2 k!. want vo2 / vs... Feedback loop around feedback loops!! EE 230 R3 R4 noninverting. op amps 15
16 Integrating amplifier Use an inverting amp with a capacitor as the feedback element. vc C R vi(t) ir ic vo(t) () ( ) ( ) () () () ( ) ( ) () EE 230 () () () () ( ) ( ) The output signal, as a function of time, is proportional to the time integral of the input. op amps 16
17 v i (t) R C (t) ( ) ( ) ( ) If the input is a constant voltage, v i (t) V 1, then ( ) ( ) The output starts at whatever value it has t 0, and then ramps downward in time with slope V 1 /RC. If V 1 is negative, then the output ramps upward in time. If the input switches back and forth between two constant values (square wave), then the output ramps up and down correspondingly (sawtooth). V 1 v i (t) (t) t t V 2 t 0 EE 230 op amps 17 t 0
18 A practical concern with an integrating amp: If there is a small, but constant, DC voltage at the input (and we will see later that most opamps have DC error voltages built in), then that will be integrated forever and the output will go to infinity. (In reality, it will saturate at the power supply limit.) to infinity C (t) and beyond! v R error 1 mv v DC o (t) v error RC t t This is a problem because at DC, the capacitor is an open circuit and the amplifier has essentially infinite DC gain. To make it better, put a resistor in parallel with the cap; >>. EE 230 op amps 18 v i (t) C (t)
19 Differentiating amplifier Can also differentiate. Switch resistor and capacitor. R v i (t) C i R i C (t) i C i R C dv C dt v R v C v 0 (t) RC dv i (t) dt However, not used much. If there is noise at the input, the differentiator tends to make it worse. The integrator, on the other hand, tends to average out the noise. EE 230 op amps 19
20 Instrumentation amplifier Recall the difference amp: R v 1 b v v a o R 3 R 4 If the ratios are matched: R 4 /R 3 /, then the circuit becomes a perfect difference amp with G d (v a v b ), where G d / and commonmode voltages are completely rejected (G c 0). But it could be better. First, the input resistances depend on the resistor values. Secondly it is difficult to adjust the gain, because the resistance ratios much remain matched. EE 230 op amps 20
21 An improvement Buffer amps can be added to increase the input resistance. Since the buffer amps have unitygain, their outputs are equal to their input. The differencing amp on the right works exactly as before. v b v a v b v a v o (v a v b ) EE 230 op amps 21
22 Instrumentation amp A final modification turns this into a typical instrumentation amplifier. vy v vy ir3y vr4 vx vy ir4 vx R4 vy R3 v vx vx Use KVL: va va ir3x R1 R2 vo still true: R2 vo (va R1 vb ) ir3x ir3y ir4 vb ir4 (2R3 R4 ) vb R1 vb ir3xr3 ir4r4 ir3yr3 va since i 0 : EE 230 ir4 vb R3 R4 va R2 2R3 1 R4 vx vo R2 R1 2R3 1 R4 vx vy vy op amps 22
23 Adjustable instrumentation amp v y R 4 R R 3 1 R 3 v o v x 2R 3 R 4 1 v x v y EE 230 op amps 23
Operational amplifiers (Op amps)
Operational amplifiers (Op amps) Recall the basic twoport model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also
More informationECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OPAMP) Circuits
ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OPAMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform
More informationOPERATIONAL AMPLIFIER APPLICATIONS
OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Noninverting Configuration (Chapter 2.3) 2.4 Difference
More informationD is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationE40M Review  Part 1
E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,
More informationEE 321 Analog Electronics, Fall 2013 Homework #3 solution
EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [
More informationEE201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6) None of above
EE201, Review Probs Test 1 page1 Spring 98 EE201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) 2V (4) 1V (5) 1V (6)
More informationEE100Su08 Lecture #9 (July 16 th 2008)
EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart
More informationThe equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =
The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational
More informationOperational Amplifier (OpAmp) Operational Amplifiers. OPAmp: Components. Internal Design of LM741
(OpAmp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics
More informationProblem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationPHYS225 Lecture 9. Electronic Circuits
PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More information0 t < 0 1 t 1. u(t) =
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult
More informationDesigning Information Devices and Systems I Spring 2018 Lecture Notes Note 20
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 20 Design Example Continued Continuing our analysis for countdown timer circuit. We know for a capacitor C: I = C dv
More informationDESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OPAMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 Email: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OPAMP It consists of two stages: First
More informationFrequency Dependent Aspects of Opamps
Frequency Dependent Aspects of Opamps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and noninverting amplifier circuits with resistive
More informationHomework 3 Solution. Due Friday (5pm), Feb. 14, 2013
University of California, Berkeley Spring 2013 EE 42/100 Prof. K. Pister Homework 3 Solution Due Friday (5pm), Feb. 14, 2013 Please turn the homework in to the drop box located next to 125 Cory Hall (labeled
More informationOPAMPs I: The Ideal Case
I: The Ideal Case The basic composition of an operational amplifier (OPAMP) includes a high gain differential amplifier, followed by a second high gain amplifier, followed by a unity gain, low impedance,
More informationSystematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers. Kevin D. Donohue, University of Kentucky 1
Systematic methods for labeling circuits and finding a solvable set of equations, Operational Amplifiers Kevin D. Donohue, University of Kentucky Simple circuits with single loops or nodepairs can result
More informationChapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTCAL ENGNEENG Subject
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationElectronics. Basics & Applications. group talk Daniel Biesinger
Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications  RC circuits
More informationFigure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
More informationAnalog Computing Technique
Analog Computing Technique by obert Paz Chapter Programming Principles and Techniques. Analog Computers and Simulation An analog computer can be used to solve various types o problems. It solves them in
More informationMidterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationINTRODUCTION TO ELECTRONICS
INTRODUCTION TO ELECTRONICS Basic Quantities Voltage (symbol V) is the measure of electrical potential difference. It is measured in units of Volts, abbreviated V. The example below shows several ways
More informationStart with the transfer function for a secondorder highpass. s 2. ω o. Q P s + ω2 o. = G o V i
aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq
More informationE40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1
E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863866. Reader, Chapter 8 Noninverting Amp http://www.electronicstutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronicstutorials.ws/opamp/opamp_2.html
More informationEIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1
EIT Review Electrical Circuits DC Circuits Lecturer: Russ Tatro Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1 Session Outline Basic Concepts Basic Laws Methods of Analysis Circuit
More informationLecture 4: Feedback and OpAmps
Lecture 4: Feedback and OpAmps Last time, we discussed using transistors in smallsignal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,
More informationUnit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors
Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,
More informationLecture 6, ATIK. Switchedcapacitor circuits 2 S/H, Some nonideal effects Continuoustime filters
Lecture 6, ATIK Switchedcapacitor circuits 2 S/H, Some nonideal effects Continuoustime filters What did we do last time? Switched capacitor circuits The basics Chargeredistribution analysis Nonidealties
More information20.2 Design Example: Countdown Timer
EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to
More informationA tricky nodevoltage situation
A tricky nodevoltage situation The nodemethod will always work you can always generate enough equations to determine all of the node voltages. The method we have outlined well in almost all cases, but
More informationElectronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi
Electronics Prof. D C Dube Department of Physics Indian Institute of Technology Delhi Module No. 07 Differential and Operational Amplifiers Lecture No. 39 Summing, Scaling and Averaging Amplifiers (Refer
More informationFirstorder transient
EIE209 Basic Electronics Firstorder transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between
More informationSeries & Parallel Resistors 3/17/2015 1
Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the singleloop circuit as shown in figure. The two resistors are in series, since the same current i flows in both
More informationProblem Set 5 Solutions
University of California, Berkeley Spring 01 EE /0 Prof. A. Niknejad Problem Set 5 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationBandwidth of op amps. R 1 R 2 1 k! 250 k!
Bandwidth of op amps An experiment  connect a simple noninverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?
More informationECE2262 Electric Circuits. Chapter 5: Circuit Theorems
ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationChapter 2  DC Biasing  BJTs
Objectives Chapter 2  DC Biasing  BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationDesign Engineering MEng EXAMINATIONS 2016
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
More informationELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems  C3 13/05/ DDC Storey 1
Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and
More informationQuick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V Odm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1
Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V Odm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V Odm is the differential output offset
More informationChapter 2.  DC Biasing  BJTs
Chapter 2.  DC Biasing  BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented
More informationDEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE
DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE NAME. Section 1 2 3 UNIVERSITY OF LAHORE Department of Computer engineering Linear Circuit Analysis Laboratory Manual 2 Compiled by Engr. Ahmad Bilal
More informationReview of Circuit Analysis
Review of Circuit Analysis Fundamental elements Wire Resistor Voltage Source Current Source Kirchhoff s Voltage and Current Laws Resistors in Series Voltage Division EE 42 Lecture 2 1 Voltage and Current
More informationECE 220 Laboratory 4 Volt Meter, Comparators, and Timer
ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer Michael W. Marcellin Please follow all rules, procedures and report requirements as described at the beginning of the document entitled ECE 220 Laboratory
More informationCircuits Practice Websheet 18.1
Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10Ω resistors? a. 24
More informationWhereas the diode was a 1junction device, the transistor contains two junctions. This leads to two possibilities:
Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: ntype (favor e), ptype (favor holes) for conduction Whereas the diode was a junction
More informationEIT QuickReview Electrical Prof. Frank Merat
CIRCUITS 4 The power supplied by the 0 volt source is (a) 2 watts (b) 0 watts (c) 2 watts (d) 6 watts (e) 6 watts 4Ω 2Ω 0V i i 2 2Ω 20V Call the clockwise loop currents i and i 2 as shown in the drawing
More informationECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance
ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations OpAmp Integrator and OpAmp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationECE2262 Electric Circuits
ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence
More informationSwitched Capacitor Circuits II. Dr. Paul Hasler Georgia Institute of Technology
Switched Capacitor Circuits II Dr. Paul Hasler Georgia Institute of Technology Basic SwitchCap Integrator = [n1]  ( / ) H(jω) =  ( / ) 1 1  e jωt ~  ( / ) / jωt (z)  z 1 1 (z) = H(z) =  ( / )
More informationAt point G V = = = = = = RB B B. IN RB f
Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module 2 DC Circuit Lesson 5 Nodevoltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s
More informationECEN 325 Electronics
ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationECE3050 Assignment 7
ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linearlog scales for the phase plots. On the magnitude
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationOperational Amplifiers
NDSU Operational Amplifiers ECE 06 JSG Operational Amplifiers An operational amplifier is a input device with V o k(v V ) where k is a large number. For short, the following symbol is used for an differential
More informationTime Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
More informationMidterm Exam 2. Prof. Miloš Popović
Midterm Exam 2 Prof. Miloš Popović 100 min timed, closed book test. Write your name at top of every page (or initials on later pages) Aids: single page (single side) of notes, handheld calculator Work
More informationDesigning Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Opamps in Negative Feedback
EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Opamps in Negative Feedback In the last note, we saw that can use an opamp as a comparator. However,
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationBiasing the CE Amplifier
Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC baseemitter voltage (note: normally plot vs. base current, so we must return to EbersMoll): I C I S e V BE V th I S e V th
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationVI. Transistor amplifiers: Biasing and Small Signal Model
VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.
More informationDesigning Information Devices and Systems I Spring 2018 Lecture Notes Note 17
EECS 16A Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 17 17.1 Capacitive Touchscreen Viewing the physical structure corresponding to one pixel on the capacitive screen, we
More informationPhysics 364, Fall 2012, reading due your answers to by 11pm on Thursday
Physics 364, Fall 2012, reading due 20120920. Email your answers to ashmansk@hep.upenn.edu by 11pm on Thursday Course materials and schedule are at http://positron.hep.upenn.edu/p364 Assignment: This
More informationCIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers
6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:
More informationECE Linear Circuit Analysis II
ECE 202  Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft
More informationLecture 7: Transistors and Amplifiers
Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many
More informationInput and Output Impedances with Feedback
EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators Firstorder active filters Secondorder active filters Review from Last Time Input and Output Impedances
More informationEE 321 Analog Electronics, Fall 2013 Homework #8 solution
EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various
More informationUNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS
UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal
More informationDC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15Mar / 59
Contents Three States of Operation BJT DC Analysis FixedBias Circuit EmitterStabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors
More informationECE1750, Spring Week 11 Power Electronics
ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dcdc converter,
More informationGeorgia Institute of Technology School of Electrical and Computer Engineering. Midterm1 Exam (Solution)
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm1 Exam (Solution) ECE6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions
More informationEnergy Storage Elements: Capacitors and Inductors
CHAPTER 6 Energy Storage Elements: Capacitors and Inductors To this point in our study of electronic circuits, time has not been important. The analysis and designs we have performed so far have been static,
More informationHomework Assignment 11
Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuoustime active filters. (3 points) Continuous time filters use resistors
More informationThevenin equivalent circuits
Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The
More informationChapter 7. Chapter 7
Chapter 7 Combination circuits Most practical circuits have combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components. An important
More informationModule 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
More informationEE40 Midterm Review Prof. Nathan Cheung
EE40 Midterm Review Prof. Nathan Cheung 10/29/2009 Slide 1 I feel I know the topics but I cannot solve the problems Now what? Slide 2 R L C Properties Slide 3 Ideal Voltage Source *Current depends d on
More informationExamination paper for TFY4185 Measurement Technique/ Måleteknikk
Page 1 of 14 Department of Physics Examination paper for TFY4185 Measurement Technique/ Måleteknikk Academic contact during examination: Patrick Espy Phone: +47 41 38 65 78 Examination date: 15 August
More informationPOLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems
POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this
More informationLecture 5: Using electronics to make measurements
Lecture 5: Using electronics to make measurements As physicists, we re not really interested in electronics for its own sake We want to use it to measure something often, something too small to be directly
More informationChapter 19 Lecture Notes
Chapter 19 Lecture Notes Physics 2424  Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1e t/(rc) ] q = q 0 e t/(rc τ = RC
More informationAnalog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras
Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No  42 Fully Differential Single Stage Opamp Hello and welcome
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationBiquad Filter. by Kenneth A. Kuhn March 8, 2013
by Kenneth A. Kuhn March 8, 201 The biquad filter implements both a numerator and denominator quadratic function in s thus its name. All filter outputs have identical second order denominator in s and
More informationCS 436 HCI Technology Basic Electricity/Electronics Review
CS 436 HCI Technology Basic Electricity/Electronics Review *Copyright 19972008, Perry R. Cook, Princeton University August 27, 2008 1 Basic Quantities and Units 1.1 Charge Number of electrons or units
More informationR 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. CC Tsai
Chapter 07 SeriesParallel Circuits The SeriesParallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit
More information