UCLA STAT 110B Applied Statistics for Engineering and the Sciences

 Jerome Farmer
 7 months ago
 Views:
Transcription
1 UCLA STAT 110B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig Categorical Data Categorical Data is that which couts the umber of outcomes fallig ito various categories. Biomial Experimet cosists of two categories Multiomial Experimet cosist of more tha two categories Slide 1 Slide Biomial Experimet Biomial Distributio Pdf, E[X], Var[X] idepedet trials Two possible outcomes (S) success ad (F) failure p Probability of success o each trial X Number of successes i trials Slide 3 Slide 4 Multiomial Experimet Multiomial Cot d idepedet trials results i oe of k possible categories labeled 1,, k p i the probability of a trial resultig i the ith category, where p 1 + +p k 1 N i umber of trials resultig i the ith category, where N 1 + +N k The radom variables N 1,,N k have a multiomial distributio p(,..., ) 1 k! 1 p1 1! k! p k k Slide 5 Slide 6
2 Multiomial Cot d Testig Goodess of Fit with Specified Cell Probabilities Expected Value: E[N i ] p i E i Variace: Var [N i ] p i q i Covariace: Cov [N i, N ] p i p Slide 7 We wish to test whether the cell probabilities are specified by p 1o,, p ko where p 1o + +p ko 1. We will use a test statistic to compare the observed cell cout N i to the expected cell cout uder H o, E i p o i H o :p 1 p 1o, (ad)., (ad) H a : Some p i p i o Slide 8 p k p k o X Test Statistic N Slide 9 E E k ( i i ) i 1 i This is a Pearso s goodessoffit statistic Reectio Regio: X > χ α where χ is the chisquared distributio with k1 degrees of freedom. Geeral Rule: We wat p io 5 for all cells Example A study is ru to see whether the public favors the costructio of a ew dam. It is thought that 40% favor dam costructio, 30% are eutral, 0% oppose the dam, ad the rest have ot thought about it. A radom sample of 150 idividuals are iterviewed resultig i 4 i favor, 61 eutral, 33 opposed, ad the rest have ot though about it. Does the data idicate that the stated proportios are icorrect? Use α0.01. Slide 10 Example Cot d H o : p 1 0.4, p 0.3, p 3 0., p H a : At least oe probability is ot as specified Test Statistic: X Reectio Regio: X > χ 0.01, Slide 11 Favor Neutral Oppose Uaware Total i pio Ei (4 60) (61 45) (33 30) X (14 15) Sice X > χ 0.01,3, 11.34, we reect H o. Coclude that at least oe of the true proportios differs from that hypothesized Slide 1
3 Goodess of Fit for Distributios (Cotiuous ad Discrete) Uses the cocept of Maximum Likelihood Estimatios (MLE) The rage of a hypothesized distributio is divided ito a set of k itervals (cells). After fidig the MLE of ukow parameters, the cell probabilities are calculated ad the χ test performed Foud i may computer packages  SOCR Testig Normality May test procedures that we have developed rely o the assumptio of Normality. There are may test for Normality of data. Oe uses the ormal to provide cell probabilities for the chisquare goodessoffit test. A better test is based o the Normal Probability Plot Slide 13 Slide 14 Testig Normality Cot d RyaJoier Test Recall: The NPP should be approx liear for ormal data, ad the correlatio coefficiet is a measure of liearity. If r is much less tha oe, we would coclude that the data does t come from a Normal distributio. Slide Order the data x (1),,x (). Compute the ormal percetiles y i Φ 1 i Compute the correlatio coefficiet, R, for the (y i,x (i) ) pairs ad look up the distributio table for the RyaJoier Statistics, A.1. Slide 16 RyaJoier Test Example 4. State the Null ad Alterative Hypotheses H o : The populatio is ormal H a : The populatio is ot ormal 5. Specify alpha ad obtai critical values from Table A.1. Compare R to this value Slide 17 Cosider the followig data. Use the Rya Joier test to test the assumptio of ormality at α ; Raw Data Normal(0,1) radom sample: Slide
4 Example Corr(N(0,1), Data) H o : Data is Normal For higher cofidece, smaller Type I error α, we eed smaller Correlatios, R(N,D) R ~ RyaJoier (α,) RJ(0.01,4) RJ(0.10,4) R 1 Sice R o R o > Critical Value Strog Correlatio Ca t Reect H o Slide 19 α Ascedig Order Stats: N(0,1) Data Testig Homogeeity of Populatios *We wish to compare I multiomial populatios, each with J categories. * Take i samples from the ith populatio Let N be the umber of observatios from the i th populatio i the th category. Hece, Σ N i Place the data i a I x J table Slide 0 Table Category 1. J Total J 1. 1 J. Pop I I1 I. IJ I. Total.1...J Correspodig to each cell, there is a cell probability p probability ad outcome for the i th populatio falls ito the th category, where Σ p 1 Category 1. J 1 p11 p1. p1j p1 p pj Pop I pi1 pi. pij Slide 1 Slide Test H o : p 1 p p I, 1,,J H a : Some p p i Uder H o, the commo cell probability p is estimated by pˆ Test Cot d The estimated expected cell frequecy is Eˆ pˆ The test statistic is X i rows colums i ( Eˆ ) Eˆ Reectio Regio: X > χ α with d.f. (I1)(J1) Slide 3 Slide 4
5 Testig for Associatio * Idividuals are categorized by two categorical variables. We wish to determie whether these variables are associated. * Row Categories A 1,,A I Colum Categories B 1,,B J Total umber of observatios the umber of idividuals classified as A i ad B Hece, ΣΣ H o : P(A i B ) P(A i )P(B ) for all i, H a : Some P(A i B ) P(A i )P(B ) Slide 5 Slide 6 Expected Frequecy: ˆ E Test Statistic: X i rows colums x ( Eˆ ) Eˆ 0.5 The Chisquare distributio df df 4 df 7 prob (prob) df df 10 Reectio Regio: X > χ α with d.f (I1)(J1) Slide Slide 8 Lotto after 399 umbers have bee draw Do some umbers appear more frequetly i LOTTO? TABLE Frequecy of Wiig Numbers i LOTTO 1. (7). (10) 3. (8) 4. (9) 5. (13) 6. (8) 7. (1) 8. (16) 9. (11) 10. (6) 11. (13) 1. (10) 13. (9) 14. (11) 15. (11) 16. (6) 17. (11) 18. (13) 19. (6) 0. (13) 1. (7). (9) 3. (8) 4. (1) 5. (6) 6. (4) 7. (10) 8. (8) 9. (14) 30. (1) 31. (11) 3. (1) 33. (9) 34. (11) 35. (6) 36. (8) 37. (14) 38. (10) 39. (15) 40. (10) (Expected freq.) Figure Number o ball Frequecy of LOTTO wiig umbers Lotto after 399 umbers have bee draw Do some umbers appear more frequetly i LOTTO? Numberrage: [1:40] Number of balls selected at each draw: 7 Number of samples: 57 Total umber of balls selected: 57*7399, Expected value of each umber: 399/ Observed χ statistics is x df Pvalue Coclusio: No evidece for departure from the ull hypothesis. Slide 9 Slide 30
6 A Example, Researchers i a Califoria commuity have asked a sample of 175 automobile owers to select their favorite from three popular automotive magazies. Of the 111 import owers i the sample, 54 selected Car ad Driver, 5 selected Motor Tred, ad 3 selected Road & Track. Of the 64 domesticmake owers i the sample, 19 selected Car ad Driver, selected Motor Tred, ad 3 selected Road & Track. At the 0.05 level, is import/domestic owership idepedet of magazie preferece? What is the most accurate statemet that ca be made about the pvalue for the test? Slide 31 First, arrage the data i a table. Car ad Motor Road & Driver (1) Tred () Track (3) Totals Import (Imp) Domestic (Dom) Totals Secod, compute the expected values ad cotributios to χ for each of the six cells. The to the hypothesis test... Slide 3 Car ad Motor Road & Driver (1) Tred () Track (3) Import (Imp): O E χ cotributio Domestic (Dom) : O E χ cotributio Σχ cotributios I. Hypotheses: H 0 : H 1 : II. Reectio Regio: α 0.05 df (r 1)(k 1) ( 1) (3 1) 1 If χ > 5.991, reect H 0. Type of magazie ad auto owership are idepedet. Type of magazie ad auto owership are ot idepedet. Do Not Reect H 0 Reect H χ Slide 33 Slide 34 III. Test Statistic: χ IV. Coclusio: Sice the test statistic of falls beyod the critical value of 5.991, we reect the ull hypothesis with at least 95% cofidece. V. Implicatios: There is eough evidece to show that magazie preferece is ot idepedet from import/domestic auto owership. pvalue: I a cell o a Microsoft Excel spreadsheet, type: CHIDIST(6.747,). The aswer is: pvalue Slide 35
Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationChapter 13, Part A Analysis of Variance and Experimental Design
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of
More informationFinal Examination Solutions 17/6/2010
The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 00900 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:
More informationTable 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab
Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet
More informationSTA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:
STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform largesample ifereces (hypothesis test ad cofidece itervals) to compare two populatio
More informationMOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.
XI1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI2 (1075) STATISTICAL DECISION MAKING Advaced
More informationGeneral IxJ Contingency Tables
page1 Geeral x Cotigecy Tables We ow geeralize our previous results from the prospective, retrospective ad crosssectioal studies ad the Poisso samplig case to x cotigecy tables. For such tables, the test
More informationSOLUTIONS y n. n 1 = 605, y 1 = 351. y1. p y n. n 2 = 195, y 2 = 41. y p H 0 : p 1 = p 2 vs. H 1 : p 1 p 2.
STAT 400 UIUC Practice Problems # SOLUTIONS Stepaov Dalpiaz The followig are a umber of practice problems that may be helpful for completig the homework, ad will likely be very useful for studyig for exams..
More informationUCLA STAT 110B Applied Statistics for Engineering and the Sciences
UCLA SA 0B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology eachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationProperties and Hypothesis Testing
Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Crosssectioal data. 2. Time series data.
More information71. Chapter 4. Part I. Sampling Distributions and Confidence Intervals
71 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7 Sectio 1. Samplig Distributio 73 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses
More information1 Inferential Methods for Correlation and Regression Analysis
1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet
More informationDS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10
DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set
More informationUniversity of California, Los Angeles Department of Statistics. Hypothesis testing
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Elemets of a hypothesis test: Hypothesis testig Istructor: Nicolas Christou 1. Null hypothesis, H 0 (claim about µ, p, σ 2, µ
More informationChapter 1 (Definitions)
FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple
More informationStat 200 Testing Summary Page 1
Stat 00 Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece
More informationSTATISTICAL INFERENCE
STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample
More informationConfidence Level We want to estimate the true mean of a random variable X economically and with confidence.
Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio
More informationStatistical Intervals for a Single Sample
3/5/06 Applied Statistics ad Probability for Egieers Sixth Editio Douglas C. Motgomery George C. Ruger Chapter 8 Statistical Itervals for a Sigle Sample 8 CHAPTER OUTLINE 8 Cofidece Iterval o the Mea
More informationProbability and statistics: basic terms
Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample
More informationThis is an introductory course in Analysis of Variance and Design of Experiments.
1 Notes for M 384E, Wedesday, Jauary 21, 2009 (Please ote: I will ot pass out hardcopy class otes i future classes. If there are writte class otes, they will be posted o the web by the ight before class
More informationStatistics 20: Final Exam Solutions Summer Session 2007
1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets
More information5. Likelihood Ratio Tests
1 of 5 7/29/2009 3:16 PM Virtual Laboratories > 9. Hy pothesis Testig > 1 2 3 4 5 6 7 5. Likelihood Ratio Tests Prelimiaries As usual, our startig poit is a radom experimet with a uderlyig sample space,
More informationEcon 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chisquare Distribution, Student s t distribution 1.
Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chisquare Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio
More informationExam II Review. CEE 3710 November 15, /16/2017. EXAM II Friday, November 17, in class. Open book and open notes.
Exam II Review CEE 3710 November 15, 017 EXAM II Friday, November 17, i class. Ope book ad ope otes. Focus o material covered i Homeworks #5 #8, Note Packets #10 19 1 Exam II Topics **Will emphasize material
More informationStatistics. Chapter 10 TwoSample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 101
Statistics Chapter 0 TwoSample Tests Copyright 03 Pearso Educatio, Ic. publishig as Pretice Hall Chap 0 Learig Objectives I this chapter, you lear How to use hypothesis testig for comparig the differece
More informationGoodnessOfFit For The Generalized Exponential Distribution. Abstract
GoodessOfFit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated
More informationChapter 22: What is a Test of Significance?
Chapter 22: What is a Test of Sigificace? Thought Questio Assume that the statemet If it s Saturday, the it s the weeked is true. followig statemets will also be true? Which of the If it s the weeked,
More informationRecall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and nonusers, x  y.
Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad ousers, x  y. Such studies are sometimes viewed
More informationKLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions
We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give
More informationSampling Distributions, ZTests, Power
Samplig Distributios, ZTests, Power We draw ifereces about populatio parameters from sample statistics Sample proportio approximates populatio proportio Sample mea approximates populatio mea Sample variace
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences
UCLA STAT 13 Itroductio to Statistical Methods for the Life ad Health Scieces Istructor: Ivo Diov, Asst. Prof. of Statistics ad Neurolog Sample Size Calculatios & Cofidece Itervals for Proportios Teachig
More informationBasis for simulation techniques
Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios
More informationTopic 18: Composite Hypotheses
Toc 18: November, 211 Simple hypotheses limit us to a decisio betwee oe of two possible states of ature. This limitatio does ot allow us, uder the procedures of hypothesis testig to address the basic questio:
More informationThe variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.
SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample
More informationSample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for
Sample questios Suppose that humas ca have oe of three bloodtypes: A, B, O Assume that 40% of the populatio has Type A, 50% has type B, ad 0% has Type O If a perso has type A, the probability that they
More informationTables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.
Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower
More informationCTL.SC0x Supply Chain Analytics
CTL.SC0x Supply Chai Aalytics Key Cocepts Documet V1.1 This documet cotais the Key Cocepts documets for week 6, lessos 1 ad 2 withi the SC0x course. These are meat to complemet, ot replace, the lesso videos
More informationIE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.
Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (
More information3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.
3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear
More informationStatisticians use the word population to refer the total number of (potential) observations under consideration
6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space
More informationLecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting
Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would
More informationProblems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:
Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio
More informationThe standard deviation of the mean
Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider
More information1036: Probability & Statistics
036: Probability & Statistics Lecture 0 Oe ad TwoSample Tests of Hypotheses 0 Statistical Hypotheses Decisio based o experimetal evidece whether Coffee drikig icreases the risk of cacer i humas. A perso
More informationConfidence Intervals QMET103
Cofidece Itervals QMET103 Library, Teachig ad Learig CONFIDENCE INTERVALS provide a iterval estimate of the ukow populatio parameter. What is a cofidece iterval? Statisticias have a habit of hedgig their
More informationChapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol DiscreteEvent System Simulation
Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol DiscreteEvet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.
More informationMath 140 Introductory Statistics
8.2 Testig a Proportio Math 1 Itroductory Statistics Professor B. Abrego Lecture 15 Sectios 8.2 People ofte make decisios with data by comparig the results from a sample to some predetermied stadard. These
More informationNCSS Statistical Software. Tolerance Intervals
Chapter 585 Itroductio This procedure calculates oe, ad two, sided tolerace itervals based o either a distributiofree (oparametric) method or a method based o a ormality assumptio (parametric). A twosided
More informationSampling, Sampling Distribution and Normality
4/17/11 Tools of Busiess Statistics Samplig, Samplig Distributio ad ormality Preseted by: Mahedra Adhi ugroho, M.Sc Descriptive statistics Collectig, presetig, ad describig data Iferetial statistics Drawig
More informationThe Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. BetaBinomial Distribution
Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 12631277 HIKARI Ltd, www.mhikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters
More informationProbability and Statistics
ICME Refresher Course: robability ad Statistics Staford Uiversity robability ad Statistics Luyag Che September 20, 2016 1 Basic robability Theory 11 robability Spaces A probability space is a triple (Ω,
More informationSection 14. Simple linear regression.
Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo
More informationExam 2 Instructions not multiple versions
Exam 2 Istructios Remove this sheet of istructios from your exam. You may use the back of this sheet for scratch work. This is a closed book, closed otes exam. You are ot allowed to use ay materials other
More informationParameter, Statistic and Random Samples
Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,
More informationSimple Linear Regression
Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio
More informationLecture 9: Independent Groups & Repeated Measures ttest
Brittay s ote 4/6/207 Lecture 9: Idepedet s & Repeated Measures ttest Review: Sigle Sample ztest Populatio (otreatmet) Sample (treatmet) Need to kow mea ad stadard deviatio Problem with this? Sigle
More informationInstructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?
CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter
More informationHomework for 4/9 Due 4/16
Name: ID: Homework for 4/9 Due 4/16 1. [ 136] It is covetioal wisdom i military squadros that pilots ted to father more girls tha boys. Syder 1961 gathered data for military fighter pilots. The sex of
More informationLinear Regression Models
Liear Regressio Models Dr. Joh MellorCrummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect
More informationMatrix Representation of Data in Experiment
Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationBinomial Distribution
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible
More informationR. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State
Bayesia Cotrol Charts for the Twoparameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com
More informationChapter 6 Principles of Data Reduction
Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a
More informationFirst Year Quantitative Comp Exam Spring, Part I  203A. f X (x) = 0 otherwise
First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I1 Part I  203A A radom variable X is distributed with the margial desity: >
More informationIntroducing Sample Proportions
Itroducig Sample Proportios Probability ad statistics Aswers & Notes TINspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,
More informationConfidence Intervals for the Population Proportion p
Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:
More informationChapter 6 Sampling Distributions
Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to
More informationV. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany
PROBABILITY AND STATISTICS Vol. III  Correlatio Aalysis  V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate
More informationElementary Statistics
Elemetary Statistics M. Ghamsary, Ph.D. Sprig 004 Chap 0 Descriptive Statistics Raw Data: Whe data are collected i origial form, they are called raw data. The followig are the scores o the first test of
More informationSuccessful HE applicants. Information sheet A Number of applicants. Gender Applicants Accepts Applicants Accepts. Age. Domicile
Successful HE applicats Sigificace tests use data from samples to test hypotheses. You will use data o successful applicatios for courses i higher educatio to aswer questios about proportios, for example,
More information(all terms are scalars).the minimization is clearer in sum notation:
7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1
More informationORF 245 Fundamentals of Engineering Statistics. Midterm Exam 2
Priceto Uiversit Departmet of Operatios Research ad Fiacial Egieerig ORF 45 Fudametals of Egieerig Statistics Midterm Eam April 17, 009 :00am:50am PLEASE DO NOT TURN THIS PAGE AND START THE EXAM UNTIL
More informationREGRESSION (Physics 1210 Notes, Partial Modified Appendix A)
REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data
More informationIntroduction to Probability and Statistics Twelfth Edition
Itroductio to Probability ad Statistics Twelfth Editio Robert J. Beaver Barbara M. Beaver William Medehall Presetatio desiged ad writte by: Barbara M. Beaver Itroductio to Probability ad Statistics Twelfth
More informationAssessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions
Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the
More informationSimple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700
Simple Regressio CS 7 Ackowledgemet These slides are based o presetatios created ad copyrighted by Prof. Daiel Measce (GMU) Basics Purpose of regressio aalysis: predict the value of a depedet or respose
More informationEksamen 2006 H Utsatt SENSORVEILEDNING. Problem 1. Settet består av 9 delspørsmål som alle anbefales å telle likt. Svar er gitt i <<.. >>.
Eco 43 Eksame 6 H Utsatt SENSORVEILEDNING Settet består av 9 delspørsmål som alle abefales å telle likt. Svar er gitt i . Problem a. Let the radom variable (rv.) X be expoetially distributed with
More informationTesting Statistical Hypotheses for Compare. Means with Vague Data
Iteratioal Mathematical Forum 5 o. 3 656 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach
More informationChapter 4 Tests of Hypothesis
Dr. Moa Elwakeel [ 5 TAT] Chapter 4 Tests of Hypothesis 4. statistical hypothesis more. A statistical hypothesis is a statemet cocerig oe populatio or 4.. The Null ad The Alterative Hypothesis: The structure
More informationBootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests
Joural of Moder Applied Statistical Methods Volume 5 Issue Article 5 Bootstrap Itervals of the Parameters of Logormal Distributio Usig Power Rule Model ad Accelerated Life Tests Mohammed AlHa Ebrahem
More informationClosed book and notes. No calculators. 60 minutes, but essentially unlimited time.
IE 230 Seat # Closed book ad otes. No calculators. 60 miutes, but essetially ulimited time. Cover page, four pages of exam, ad Pages 8 ad 12 of the Cocise Notes. This test covers through Sectio 4.7 of
More informationSome Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables
Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;
More informationf X (12) = Pr(X = 12) = Pr({(6, 6)}) = 1/36
Probability Distributios A Example With Dice If X is a radom variable o sample space S, the the probability that X takes o the value c is Similarly, Pr(X = c) = Pr({s S X(s) = c}) Pr(X c) = Pr({s S X(s)
More informationRegression. Correlation vs. regression. The parameters of linear regression. Regression assumes... Random sample. Y = α + β X.
Regressio Correlatio vs. regressio Predicts Y from X Liear regressio assumes that the relatioship betwee X ad Y ca be described by a lie Regressio assumes... Radom sample Y is ormally distributed with
More informationPH 425 Quantum Measurement and Spin Winter SPINS Lab 1
PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the zaxis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured
More informationThe Sample Variance Formula: A Detailed Study of an Old Controversy
The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace
More informationSolutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe
More informationChapter VII Measures of Correlation
Chapter VII Measures of Correlatio A researcher may be iterested i fidig out whether two variables are sigificatly related or ot. For istace, he may be iterested i kowig whether metal ability is sigificatly
More informationSTA 4032 Final Exam Formula Sheet
Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS
MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak
More informationLINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity
LINEAR REGRESSION ANALYSIS MODULE IX Lecture  9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that
More informationCorrelation and Covariance
Correlatio ad Covariace Tom Ilveto FREC 9 What is Next? Correlatio ad Regressio Regressio We specify a depedet variable as a liear fuctio of oe or more idepedet variables, based o covariace Regressio
More informationBHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13
BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the
More informationImportant Concepts not on the AP Statistics Formula Sheet
Part I: IQR = Q 3 Q 1 Test for a outlier: 1.5(IQR) above Q 3 or below Q 1 The calculator will ru the test for you as log as you choose the boplot with the oulier o it i STATPLOT Importat Cocepts ot o the
More informationWorksheet 23 ( ) Introduction to Simple Linear Regression (continued)
Worksheet 3 ( 11.511.8) Itroductio to Simple Liear Regressio (cotiued) This worksheet is a cotiuatio of Discussio Sheet 3; please complete that discussio sheet first if you have ot already doe so. This
More informationTesting Statistical Hypotheses with Fuzzy Data
Iteratioal Joural of Statistics ad Systems ISS 973675 Volume 6, umber 4 (), pp. 44449 Research Idia Publicatios http://www.ripublicatio.com/ijss.htm Testig Statistical Hypotheses with Fuzzy Data E. Baloui
More informationPower Comparison of Some Goodnessoffit Tests
Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 762016 Power Compariso of Some Goodessoffit Tests Tiayi Liu tliu019@fiu.edu DOI: 10.25148/etd.FIDC000750
More information1 Constructing and Interpreting a Confidence Interval
Itroductory Applied Ecoometrics EEP/IAS 118 Sprig 2014 WARM UP: Match the terms i the table with the correct formula: Adrew CraeDroesch Sectio #6 5 March 2014 ˆ Let X be a radom variable with mea µ ad
More information