or! What We ve Learned from Polarized Electron Scattering, Karl J. Slifer University of New Hampshire

Size: px
Start display at page:

Download "or! What We ve Learned from Polarized Electron Scattering, Karl J. Slifer University of New Hampshire"

Transcription

1 or! What We ve Learned from Polarized Electron Scattering, Karl J. Slifer University of New Hampshire

2 or! What We ve Learned from Polarized Electron Scattering, I ve! (in the last few months)! Karl J. Slifer University of New Hampshire

3 This Talk Burkhardt Cottingham Sum Rule! What does the JLab data tell us?! Is it enough to make a definitive statement?! Higher Twist Measurements at Jlab! Target Mass Corrections! impact on the clean extraction of Higher Twist! +New Spin Structure Data Highlights! time permitting!

4 Inclusive Electron Scattering *! W When we add spin degrees! of freedom to the target! and beam, 2 Addiitonal SF! needed.! Inclusive Polarized! Cross Section! all four SF needed for a complete description of nucleon structure

5 Parton Model Interpretation of the! Structure Functions! Impulse Approximation in DIS! no time for interaction between partons! electron! xp! Nucleon! distributions of quark momentum and spin in the nucleon.! runs over all quark flavors!???!

6 Burkhardt-Cottingham Sum Rule H.Burkhardt and W.N. Cottingham! Annals Phys. 56 (1970) 453.! Relies on the virtual Compton scattering amplitude S 2 falling to zero! faster than 1/º as º 1! Discussion of possible causes of violations! R.L. Jaffe Comm. Nucl. Part. Phys. 19, 239 (1990)! If it holds for one Q 2 it holds for all!

7 BC Sum Rule P! Measured x Existing World Data on Γ 2! for Proton Neutron and 3 He! N! BLACK : E (Hall A, 3 He)! BROWN : E155. (SLAC NH3, 6 LiD)! 3 He! Note:! SLAC Measured = 0.02 < x < 0.8! JLAB Measured Resonance Region!

8 BC Sum Rule Measured x BRAND NEW DATA! P! Very Preliminary! RED : RSS. (Hall C, NH 3,ND 3 )! K. Slifer, O. Rondon et al. in preparation! BLUE: E (Hall A, 3 He)! N! courtesy of P. Solvignon! very prelim! GREEN: E (Hall A, 3 He)! courtesy of V. Sulkosky! 3 He! Thanks also to the spokesmen of these experiments!! RSS: Mark Jones, Oscar Rondon! E01-012: N. Liyanage, J.P.Chen, Seonho Choi! SaGDH: J.P. Chen, A. Deur, F. Garabaldi!

9 BC Sum Rule Measured x P! Good agreement with MAID model! of resonance region for JLab data! N! very prelim! 3 He!

10 BC Sum Rule P! Measured x Neutron results around Q 2 =1.3 GeV 2! from 2 very different experiments:! RSS in Hall C: Neutron from ND 3 & NH 3! E in Hall A : Neutron from 3 He! N! very prelim! Excellent agreement! 3 He!

11 BC Sum Rule Measured x P! N! Good overlap at low Q 2 of the! old and new neutron data! very prelim! E94010 : Hall A 3 He old! E Hall A 3 He new! 3 He!

12 BC Sum Rule P! Measured x Difference between N and 3 He Sum rules! 3 He! N! N! very prelim! Elas! QE! 3 He P n Neutron +2P p Proton! Δ 3 He! π threshold! Note: 3 He requires use of nuclear elastic!

13 BC Sum Rule BC = RES+DIS+ELASTIC! RES : Here refers to measured x-range! DIS : refers to unmeasured low x part! of the integral. Not strictly Deep! Inelastic Scattering due to low Q 2! Assume Leading Twist Behaviour! Elastic: From well know FFs (<5%)!

14 BC Sum Rule 0<X<1 :Total Integral! P! BC = RES+DIS+ELASTIC! N! 3 He! very prelim! RES : Here refers to measured x-range! DIS : refers to unmeasured low x part! of the integral. Not strictly Deep! Inelastic Scattering due to low Q 2! Assume Leading Twist Behaviour! Elastic: From well know FFs (<5%)!

15 BC Sum Rule 0<x<1 P! BC satisfied w/in errors for JLab Proton! 2.8σ violation seen in SLAC data! N! very prelim! BC satisfied w/in errors for Neutron! (But just barely in vicinity of Q 2 =1!)! 3 He! BC satisfied w/in errors for 3 He!

16 BC Sum Rule P! Wasteland! Proton g2p still relatively unknown! for such a fundamental quantity.! Need more high quality data like RSS! N! Upcoming Experiments! Sane: setting up now! 2.3 < Q 2 < 6 GeV2! 3 He! g2p in Hall A, 2011! < Q 2 < 0.4 GeV 2!

17 BC Sum Rule P! Measured x 0<x<1 What can BC tell us about Low-X?! Alternatively, if we assume BC holds! we can learn something about the! unmeasured part of Integral! N! very prelim! BC = 0 => Res + Elas + DIS! Unmeasured Low-x part! 3 He! DIS = -(RES+ELAS)!

18 BC Sum Rule P! Measured x 0<x<1 What can BC tell us about Low-X?! N! very prelim! Unmeasured Low-X! DIS = -(RES+ELAS)! 3 He!

19 BC Sum Rule Measured x 0<x<1 Neutron BC Sum! Standard Deviations from Zero! Q 2! Tot σ! Stat σ! very prelim! Just on the edge of being interesting! Statistical precision allows! unambiguous test, but limited! by large systematics.! Highly desirable to revisit E94010! systematics. RC and DIS could! perhaps be improved with newer! data.!

20 Higher Moment Cornwall Norton Moment! 1 ε 0 I(Q 2 ) = 2 x 2 (2g + 3g )dx 1 2 I(Q 2 ) the twist-3 matrix element but very interesting all the same.! More on this later...!

21 I(Q 2 ) PROTON! Existing World Data on Ι(Q 2 )! BLACK : E94010! M. Amarian, et al. PRL. 92 (2004) BROWN : E155! P.Anthony, et al. PLB. 553 (2003) 18 RED : RSS.! Wesselman, Slifer, Tajima et al. PRL 98(2007) Magenta: E99-117! NEUTRON! X. Zheng et al. PRC 70(2004) What s happening! at large Q 2?!

22 I(Q 2 ) BRAND NEW DATA! MAID Model! Very Preliminary! RED : RSS. (Hall C, NH 3,ND 3 )! K. Slifer, O. Rondon et al. in preparation BLUE: E (Hall A, 3 He)! NEUTRON! very prelim! courtesy of P. Solvignon! GREEN: E (Hall A, 3 He)! courtesy of V. Sulkosky! stat only! Thanks also to the spokesmen of these experiments!! RSS: Mark Jones, Oscar Rondon! E01-012: N. Liyanage, J.P.Chen, Seonho Choi! SaGDH: J.P. Chen, A. Deur, F. Garabaldi!

23 I(Q 2 ) QCDF Group! I(Q 2 )->0 for Q 2 =0 and Q 2 =infinity! largest around Q 2 =1! Not too useful to the OPE in this! region, but excellent gauge of! QCD complexity! very prelim! (i.e. where s the most difficult! place to make any meaningful! QCD calculation?)! stat only!

24 I(Q 2 ) QCDF Group! Osipenko et al. PRD. 71 (2005) Shaded Region: Estimate of I(Q 2 )! very prelim! Large uncertainty due to lack of! knowledge of g2p! stat only!

25 I(Q 2 ) E g2p! projected! SANE! Upcoming 6 GeV Experiments! Sane: Fall 2008! 2.3 < Q 2 < 6 GeV2! g2p in Hall A, 2011! < Q 2 < 0.4 GeV 2! d2n in Hall A, 2009! Q 2 = 3 GeV 2!

26 Operator Product Expansion Expansion of SF moments in powers of 1/Q 2 ( twist )! example:! 1 Γ 1 (Q 2 ) = g 1 (x,q 2 )dx = 0 µ 2 (Q 2 ) Q τ 2 τ = 2,4,... ( f 2 ) µ 4 = 1 9 M 2 a d leading twist! twist-3! twist-4! Lowest order (twist-2) maps to the succesful parts of the parton model.! Higher twists arise from non-perturbative multiparton interactions!

27 Cornwall-Norton Moments 1 ε 0 I(Q 2 ) = 2 x 2 (2g + 3g )dx 1 2 = d 2 (Q 2 ) + ϑ M 2 Q 2 Typical method of extracting! twist-3 matrix element! But completely ignores TMC! Very significant below Q 2 5! Y.B. Dong PRC 77(2008) ! Y.B.Dong PLB 653,(2007)18!

28 Nachtmann Moments:! Nachtmann Moments 1 M 3 2 (Q 2 ) = dx ξ 4 x x 2 0 ξ g x 2 ξ d = M 2 Q x 2 2 g 2 Matsuda & Uematsu, N.Phys. B53(1998)301! Piccione & Ridolfi N. Phys. B513(1998)301! Generalization of CN moments to protect from the TMC! M 2 Q 0 M x 2 (2g 1 + 3g 2 )dx Reduces to familiar form! Not a new idea, but difficult to implement unless g 2 measured simultaneously with g 1!

29 Quantifying Size of TMC R(Q 2 ) = 2M 3 2 (Q 2 ) I(Q 2 ) R->1 in case of vanishing nucleon mass! R always less than 1 => I(Q 2 ) overestimates twist-3! Target Mass Corrections must be applied in order to obtain clean dynamical Twist-3!

30 Generalization of Γ 1 M 1 1 (Q 2 ) = 1 0 dx x ξ 2 x ξ 1 9 M Q 2 xξ g 1 M Q 2 4 x 2 3 g 2 Matsuda & Uematsu, N.Phys. B53(1998)301! M 2 Q 0 M 1 Piccione & Ridolfi N. Phys. B513(1998)301! 2 1 Γ 1 Osipenko et al. PRD 71, (2005)! Global analysis of g1p data. Allows to! cleanly extract leading twist term.! Proton! TMC not as large as for I(Q 2 )!

31 Summary Burkhardt Cottingham Sum Rule! Good coverage for Neutron. Proton g2p is still relatively unknown.! Data seems to validate BC, but at the 2.5σ level around Q 2 =1! Important to update the systematics of the old experiments! Assuming BC holds, we can use JLab data to say something about low-x.! Target Mass Effects! TMC are significant at JLab kinematics! Nachtmann moments protect the SSF from TMC! Must use Nachtmann Moments in order to cleanly extract Higher twists! JLab 6 GeV Program! Still lots of Good Physics to be completed before the upgrade.!

32

33 References BLACK : E (Hall A, 3 He)! M. Amarian, et al. PRL. 92 (2004) K. Slifer, et al. PRL. 101:022303,2008 RED : RSS. (Hall C, NH 3,ND 3 )! Wesselman, Slifer, Tajima et al. PRL 98(2007) Slifer, Rondon et al. in preparation BROWN : E155. (SLAC NH3, 6 LiD)! P.Anthony, et al. PLB. 553 (2003) 18 Magenta E99-117(Hall A, 3 He)! X. Zheng et al. PRC 70(2004) BLUE: E (Hall A, 3 He)! P. Solvignon et al. arxiv: (PRL accepted) P. Solvignon et al. in preparation SHADED : Theory! Osipenko et al. PRD. 71 (2005)

34 BC Sum Rule Unmeasured Contributions! ELASTIC: X=1! Low-X Estimate! Assume g 2 =g 2 WW at low x.! Supported by RSS data! 15% variation seen depending on! choice of g 1 used.! g 1 el (x,q 2 ) = δ(x 1)G M (Q 2 ) G E (Q 2 ) + τg M (Q 2 ) 2(1+ τ) g 2 el (x,q 2 ) = δ(x 1)τG M (Q 2 ) G E (Q 2 ) G M (Q 2 ) 2(1+ τ) (Form Factor uncertainties less than 5%)!

35 Summary Hydrogen Hyperfine Structure! Extended GDH SUM! Resonance Structure! Measure of! QCD complexity! Spin Polarizability! Systematic uncertainty! In Measurements of! Ideal place to test ÂPT calcs!

36 JLab Kinematic Coverage Overview of available kinematic! range at JLab! Uniquely positioned to provide! data in transition region of QCD!

37 Target Mass Corrections Purely kinematic effects from finite value of 4M 2 x 2 /Q 2 g 1 (x,q 2 ) = g 1 (x,q 2,M = 0) + M Q g (1)TMC 2 1 (x,q 2 ) + h(x,q2 ) Q 2 + ϑ (1/Q 4 ) From PQCD Purely kinematical Higher twist 1 0 x 2 g 1 (x,q 2 )dx = 1 a 2 + ϑ M 2 2 Q x 2 g 2 (x,q 2 )dx = 1 3 d 2 ( a 2 ) + ϑ M 2 Q 2

38 I(Q 2 ) Chiral Soliton WGR! Chiral Soliton Wakamatsu! PQCD Evolution! QCDSF Group! Q 2 evolution predicted well by PQCD! and Chiral Soliton models.! very prelim! WGR: PRD55 (1997) 6910! Wakamatsu: PLB 487(2000)118! PQCD: Nucl. Phys. B201 (1982) 141! QCDSF: PRD63, (2001)! stat only!

39 g 2 Structure Function Wandzura-Wilczek relation! PLB 72 (1977) 195! Leading twist determined entirely by g 1! g 2 doesn t exist in Parton Model.! Good quantity to study higher twist! Higher twist!

40 Inclusive Electron Scattering *! W Inclusive Cross Section! deviation from point-like behavior! characterized by the Structure Functions!

Spin Structure with JLab 6 and 12 GeV

Spin Structure with JLab 6 and 12 GeV Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012 Introduction Selected Results from JLab 6 GeV Moments of

More information

Spin Structure of the Proton and Deuteron

Spin Structure of the Proton and Deuteron Spin Structure of the Proton and Deuteron K. Griffioen College of William & Mary griff@physics.wm.edu Spin Structure at Long Distances Jefferson Lab 12 March 2009 Inelastic Scattering Q 2 increases 12

More information

Nucleon Spin Structure from Confinement to Asymptotic Freedom

Nucleon Spin Structure from Confinement to Asymptotic Freedom 21 September 2009 QNP09 Beijing Nucleon Spin Structure from Confinement to Asymptotic Freedom K. Griffioen College of William & Mary griff@physics.wm.edu 5th International Conference on Quarks in Nuclear

More information

arxiv: v1 [hep-ph] 3 Jul 2007

arxiv: v1 [hep-ph] 3 Jul 2007 Target mass corrections and twist-3 in the nucleon spin structure functions Y. B. Dong Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 149, P. R. China arxiv:77.331v1 [hep-ph] 3

More information

Overview of Low Energy Spin Structure Experiments

Overview of Low Energy Spin Structure Experiments Overview of Low Energy Spin Structure Experiments Jian-ping Chen, Jefferson Lab, USA Spin Workshop at EINN015, Cyprus, November 4, 015! Introduction! Moments of Spin Structure Functions g1: GDH/Bjorken

More information

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration Min Huang Duke University, TUNL On behalf of the E08-027 (g2p) collaboration Hall A Collaboration Meeting, June 13th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

Selected Results from the Nucleon Spin Program at Jefferson Lab

Selected Results from the Nucleon Spin Program at Jefferson Lab Selected Results from the Nucleon Spin Program at Jefferson Lab Xiaochao Zheng Univ. of Virginia October 17, 009 Challenges of the Standard Model and the Nucleon Spin Puzzle Thomas Jefferson National Accelerator

More information

Quark-Hadron Duality in Structure Functions

Quark-Hadron Duality in Structure Functions Approaches to QCD, Oberwoelz, Austria September 10, 2008 Quark-Hadron Duality in Structure Functions Wally Melnitchouk Outline Bloom-Gilman duality Duality in QCD OPE & higher twists Resonances & local

More information

Small angle (Low Q 2 ) GDH sum rule experiments

Small angle (Low Q 2 ) GDH sum rule experiments Small angle (Low Q 2 ) GDH sum rule experiments A. Deur Jefferson Lab. Outline: Sum rules, GDH, Bjorken, spin polarizability sum rules; Usefulness and context; Measurements (published, being analyzed,

More information

The Deuteron Polarized Tensor Structure Function b 1 PAC 40 Defense

The Deuteron Polarized Tensor Structure Function b 1 PAC 40 Defense The Deuteron Polarized Tensor Structure Function b 1 PAC 40 Defense PR12-13-011 Spokespeople J.-P. Chen, N. Kalantarians, D. Keller, E. Long, O. A. Rondon, K. Slifer, P. Solvignon b 1 Collaboration K.

More information

Min Huang Duke University, TUNL For the Jefferson Lab Hall A E (g2p) collaboration

Min Huang Duke University, TUNL For the Jefferson Lab Hall A E (g2p) collaboration Min Huang Duke University, TUNL For the Jefferson Lab Hall A E08-027 (g2p) collaboration APS April Meeting, April 16th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

The Hall C Spin Program at JLab

The Hall C Spin Program at JLab The Hall C Spin Program at JLab Karl J. Slifer University of Virginia For the RSS collaboration We discuss the preliminary results of the Resonant Spin Structure (RSS) experiment and outline future spin-dependent

More information

E97-110: Small Angle GDH

E97-110: Small Angle GDH E97-110: Small Angle GDH Experimental Status Report Jaideep Singh University of Virginia on the behalf of the Spokespeople: JP Chen, A Deur, F Garibaldi Thesis Students: J Singh, Dr Vincent Sulkosky, PhD,

More information

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV

Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Transverse Target Asymmetry in Exclusive Charged Pion Production at 12 GeV Dipangkar Dutta Mississippi State University (with Dave Gaskell & Garth Huber) Polarized Target Workshop: June 17-18, 2010 Outline

More information

Shape and Structure of the Nucleon

Shape and Structure of the Nucleon Shape and Structure of the Nucleon Volker D. Burkert Jefferson Lab Science & Technology Peer Review June 25-27, 2003 8/7/2003June 25, 2003 Science & Technology Review 1 Outline: From form factors & quark

More information

The transition from pqcd to npqcd

The transition from pqcd to npqcd The transition from pqcd to npqcd A. Fantoni (INFN - Frascati) First Workshop on Quark-Hadron Duality and the Transition to pqcd Laboratori Nazionali di Frascati, Italy June 6-8, 2005 Introduction Overview

More information

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment

Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment Double and Single Target Asymmetries of Pion Electroproduction from JLab/CLAS EG4 Experiment Xiaochao Zheng University of Virginia April 22, 2009 The JLab/CLAS EG4 experiment overview EG4 exclusive channel

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University

Deuteron from CLAS/EG1B Data. Spin Structure Functions of the OUTLINE. Nevzat Guler (for the CLAS Collaboration) Old Dominion University Spin Structure Functions of the Deuteron from CLAS/EGB Data Nevzat Guler (for the CLAS Collaboration) Old Dominion University OULINE Formalism Experimental setup Data analysis Results and Conclusion Motivation

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Duality in Inclusive Structure Functions: Present and Future. Simona Malace Jefferson Lab

Duality in Inclusive Structure Functions: Present and Future. Simona Malace Jefferson Lab Duality in Inclusive Structure Functions: Present and Future Simona Malace Jefferson Lab University of Virginia, March 13 2015 What is Quark-hadron duality? Quark-Hadron Duality Quark-hadron duality =

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and Nobuo Sato arxiv:1702.03955

More information

Hall C Inclusive Experiments: Update on measurements of longitudinal structure function of Nucleons and Nuclei. Eric Christy Hampton University

Hall C Inclusive Experiments: Update on measurements of longitudinal structure function of Nucleons and Nuclei. Eric Christy Hampton University Hall C Inclusive Experiments: Update on measurements of longitudinal structure function of Nucleons and Nuclei Eric Christy Hampton University HallC Winter Workshop, Focus of this talk is an update on

More information

Spin dependent en cross section at small and medium Q2

Spin dependent en cross section at small and medium Q2 NuInt04@Gran Sasso, 004/03/18 Session 3, Talk ID 3.5 Spin dependent en cross section at small and medium Q Contents: Introduction Kinematic DIS Regime (Q>1GeV, W>4GeV) Small Q Limit (Q=0 GeV) GDH sum rule

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Old Dominion University Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

A Measurement of g p 2 and the Longitudinal-Transverse Spin Polarizability

A Measurement of g p 2 and the Longitudinal-Transverse Spin Polarizability A Measurement of g p 2 and the Longitudinal-Transverse Spin Polarizability (Resubmission of E07-001 to Jefferson Lab PAC-33) A. Camsonne (Spokesperson), P. Bosted, E. Chudakov, J.-P. Chen (Spokesperson),

More information

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes

Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Quark-Hadron Duality: Connecting the Perturbative and Non-Perturbative QCD Regimes Simona Malace Norfolk State University Light Cone 2015, September 21-25 2015, INFN Frascati What is Quark-hadron duality?

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production

The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production The Longitudinal Photon, Transverse Nucleon, Single-Spin Asymmetry in Exclusive Pion Production Garth Huber SoLID Collaboration, Jefferson Lab, May 15, 2015. Complementarity of Different Reactions Deep

More information

The GPD program at Jefferson Lab: recent results and outlook

The GPD program at Jefferson Lab: recent results and outlook The GPD program at Jefferson Lab: recent results and outlook Carlos Muñoz Camacho IPN-Orsay, CNRS/INP3 (France) KITPC, Beijing July 17, 1 Carlos Muñoz Camacho (IPN-Orsay) GPDs at JLab KITPC, 1 1 / 3 Outline

More information

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013

Real and virtual Compton scattering experiments at MAMI and Jefferson Lab. S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 Real and virtual Compton scattering experiments at MAMI and Jefferson Lab S. Širca, U. of Ljubljana, Slovenia Bled 8-14 July 2013 1 Reminder: polarizability of atoms and molecules Neutral atom in external

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Polarized Target Options for Deuteron Tensor Structure Function Studies

Polarized Target Options for Deuteron Tensor Structure Function Studies Polarized Target Options for Deuteron Tensor Structure Function Studies Oscar A. Rondón University of Virginia Tensor Polarized Solid Target Workshop JLab March 12, 2012 Inclusive Spin Dependent Observables:

More information

What Have We Learned from Electron Deep Inelastic Scattering?

What Have We Learned from Electron Deep Inelastic Scattering? What Have We Learned from Electron Deep Inelastic Scattering? Xiaochao Zheng Univ. of Virginia October 31, 2011 Introduction the four interactions, the Standard Model, and the role of electron scattering

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Nucleon Spin: Results and Challenges on both Longitudinal and Transverse Spin

Nucleon Spin: Results and Challenges on both Longitudinal and Transverse Spin Nucleon Spin: Results and Challenges on both Longitudinal and Transverse Spin J. P. Chen, Jefferson Lab, Virginia Seminar @ Los Alamos, February 19, 009 Introduction Highlights on JLab Longitudinal Spin

More information

Spin Structure Functions

Spin Structure Functions Journal of Physics: Conference Series Spin Structure Functions To cite this article: J P Chen et al 211 J. Phys.: Conf. Ser. 299 125 Related content - Unpolarized Structure Functions M E Christy and W

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Introduction to Perturbative QCD

Introduction to Perturbative QCD Introduction to Perturbative QCD Lecture 3 Jianwei Qiu Iowa State University/Argonne National Laboratory PHENIX Spinfest at RIKEN 007 June 11 - July 7, 007 RIKEN Wako Campus, Wako, Japan June 6, 007 1

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Spin Physics in Jefferson Lab s Hall C

Spin Physics in Jefferson Lab s Hall C Spin Physics in Jefferson Lab s Hall C Frank R. Wesselmann Norfolk State University Outline Introduction Jefferson Lab, Hall C Concepts & Definitions Experiments & Measurements Spin as Goal Spin as Tool

More information

Hadron Propagation and Color Transparency at 12 GeV

Hadron Propagation and Color Transparency at 12 GeV Hadron Propagation and Color Transparency at 12 GeV Dipangkar Dutta Mississippi State University Hall C Users Meeting Jan 21-22, 2016 Hall C meeting Jan 2016 D. Dutta Hadron propagation in nuclear medium

More information

Spin-dependent PDFs at large x

Spin-dependent PDFs at large x Physics Opportunities at an Electron-Ion Collider (POETIC V) Yale University September 22, 24 Spin-dependent PDFs at large Wally Melnitchouk Outline Why is nucleon (spin) structure at large interesting?

More information

Measurement of the Gerasimov-Drell-Hearn Integral at low on the Neutron and Deuteron.

Measurement of the Gerasimov-Drell-Hearn Integral at low on the Neutron and Deuteron. Measurement of the Gerasimov-Drell-Hearn Integral at low on the Neutron and Deuteron. A. Deur (Co-spokesperson and contact), V. Dharmawardane, P. Bosted Thomas Jefferson National Accelerator Facility G.

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

Coherent and Incoherent Nuclear Exclusive Processes

Coherent and Incoherent Nuclear Exclusive Processes Coherent and Incoherent Nuclear Exclusive Processes Vadim Guzey Electron-Ion Collider Workshop: Electron-Nucleon Exclusive Reactions Rutgers University, March 14-15, 2010 Outline Coherent and incoherent

More information

Nucleon Spin. Tyler Corbett

Nucleon Spin. Tyler Corbett Nucleon Spin Tyler Corbett Abstract: In 1988 the European Muon Collaboration showed that the quark contribution to spin only accounts for 20-30 percent of the nucleon spin; The "naive quark parton model

More information

RESONANCE at LARGE MOMENTUM TRANSFERS

RESONANCE at LARGE MOMENTUM TRANSFERS 1 V. M. Braun, M. Göckeler, R. Horsley, T. Kaltenbrunner, A. Lenz, Y. Nakamura, D. Pleiter, P. E. L. Rakow, J. Rohrwild, A. Schäfer, G. Schierholz, H. Stüben, N. Warkentin, J. M. Zanotti µ ELECTROPRODUCTION

More information

Two-photon physics. Marc Vanderhaeghen College of William & Mary / JLab. Hall-C Summer Workshop, JLab, August 19-20, 2004

Two-photon physics. Marc Vanderhaeghen College of William & Mary / JLab. Hall-C Summer Workshop, JLab, August 19-20, 2004 Two-photon physics Marc Vanderhaeghen College of William & Mary / JLab Hall-C Summer Workshop, JLab, August 19-20, 2004 Outline Introduction : Rosenbluth vs polarization measurements of G E and G M of

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Small Angle GDH & polarized 3 He target

Small Angle GDH & polarized 3 He target Small Angle GDH & polarized 3 He target Nguyen Ton University of Virginia 04/14/2016 1 Outline Physics: Electron scattering GDH theory: sum rules. Experiment E97110 at Jefferson Lab: Setup Analysis status:

More information

How does the proton spin?

How does the proton spin? How does the proton spin? Steven Bass Proton spin problem: Where does the spin of the nucleon (proton and neutron) come from? E.g. The key difference between 3 He and 4 He in low temperature physics comes

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

COMPASS results on inclusive and semi inclusive polarised DIS

COMPASS results on inclusive and semi inclusive polarised DIS COMPASS results on inclusive and semi inclusive polarised DIS Helena Santos LIP - Lisboa on behalf of the COMPASS Collaboration The nucleon spin The COMPASS experiment Longitudinal spin structure functions

More information

PVDIS and nucleon structure

PVDIS and nucleon structure Physics Beyond the SM and Precision Nucleon Structure with PVES ECT* Trento, August, 06 PVDIS and nucleon structure Wally Melnitchouk PVDIS (~en! ex) is a valuable tool to study flavor and spin dependence

More information

F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy. Hall C Users Meeting Jan 26, 2007

F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy. Hall C Users Meeting Jan 26, 2007 F2 and R in Deuterium and Nuclei Phase II (E06 009/E04 001) M. Eric Christy Hampton University Hall C Users Meeting Jan 26, 2007 E06-009 & E04-001 Physics FL, F1, F2 Fundamental Structure Function Measurements

More information

Qweak Transverse Asymmetry Measurements

Qweak Transverse Asymmetry Measurements Qweak Transverse Asymmetry Measurements Buddhini Waidyawansa For the Qweak Collaboration Hall C Collaboration Meeting 02-21-2014 Outline Physics of transverse asymmetries Qweak transverse data set Analysis

More information

Iterative Monte Carlo analysis of spin-dependent parton distributions

Iterative Monte Carlo analysis of spin-dependent parton distributions Iterative Monte Carlo analysis of spin-dependent parton distributions (PRD.93.745) Nobuo Sato In Collaboration with: W. Melnitchouk, S. E. Kuhn, J. J. Ethier, A. Accardi Precision Radiative Corrections

More information

Electromagnetic Form Factors

Electromagnetic Form Factors Electromagnetic Form Factors Anthony W. Thomas Workshop on Exclusive Reactions, JLab : May 24 th 2007 Electron Scattering Provides an Ideal Microscope for Nuclear Physics Electrons are point-like The interaction

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

Electron-Positron Annihilation

Electron-Positron Annihilation Evidence for Quarks The quark model originally arose from the analysis of symmetry patterns using group theory. The octets, nonets, decuplets etc. could easily be explained with coloured quarks and the

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS Juan Guerrero Hampton University & Jefferson Lab QCD evolution 2017 May 26, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper,W. Melnitchouk,

More information

Summary of Workshop on Spin of Nucleons from Low to High Energy Scales

Summary of Workshop on Spin of Nucleons from Low to High Energy Scales Summary of Workshop on Spin of Nucleons from Low to High Energy Scales Jen-Chieh Peng University of Illinois at Urbana-Champaign EINN2015, Paphos, Cyprus, Nov. 1-7, 2015 1 Three Sessions of the Spin Workshop

More information

Where is Two-photon-exchange effects and Why should you be bothered by them

Where is Two-photon-exchange effects and Why should you be bothered by them Where is Two-photon-exchange effects and Why should you be bothered by them Chung-Wen Kao Chung-Yuan Christian University Taiwan In collaboration of Shin Nan Yang (NTU), Yu Bing Dong (CAS), Yu Chun Chen

More information

Update on Experiments using SoLID Spectrometer

Update on Experiments using SoLID Spectrometer Update on Experiments using SoLID Spectrometer Yi Qiang for SoLID Collaboration Hall A Collaboration Meeting Dec 16, 2011 Overview SoLID: Solenoidal Large Intensity Device High rate capability: allow for

More information

arxiv:hep-ph/ v1 19 Jun 1997

arxiv:hep-ph/ v1 19 Jun 1997 Examination of Wandzura-Wilczek Relation for g (x, Q ) in pqcd A. Harindranath a and Wei-Min Zhang b a Saha Institute of Nuclear Physics, /AF Bidhan Nagar, Calcutta, 764 India b Institute of Physics, Academia

More information

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015 Twist Three Generalized Parton Distributions For Orbital Angular Momentum Abha Rajan University of Virginia HUGS, 2015 Simonetta Liuti, Aurore Courtoy, Michael Engelhardt Proton Spin Crisis Quark and gluon

More information

FUTURE SPIN EXPERIMENTS AT SLAC

FUTURE SPIN EXPERIMENTS AT SLAC SLAC-PUB-9658 February 2003 FUTURE SPIN EXPERIMENTS AT SLAC Stephen Rock for the Real Photon Collaboration University of Mass, Amherst MA 01003 Abstract. A series of three photo-production experiments

More information

Nucleon polarised parton distribution functions

Nucleon polarised parton distribution functions Nucleon polarised parton distribution functions Gerhard K. Mallot CERN, 111 Geneva 3, Switzerland Abstract An introduction to the present status of spin-dependent parton distribution functions is given.

More information

Double spin asymmetry measurement from SANE-HMS data at Jefferson Lab

Double spin asymmetry measurement from SANE-HMS data at Jefferson Lab Double spin asymmetry measurement from SANE-HMS data at Jefferson Lab Seoul National University, Seoul 151-742, South Korea E-mail: achim50@snu.ac.kr In Hall C at the Thomas Jefferson National Laboratory,

More information

Spin Physics Experiments at SLAC

Spin Physics Experiments at SLAC SLAC-PUB-9269 June, 2002 Spin Physics Experiments at SLAC P. Bosted, for the E155/E155x Collaborations 1 Stanford Linear Accelerator Center, Stanford CA 94309 and Physics Dept., University of Massachusetts,

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD

MERIEM BENALI November 09, 2016 LPC-Clermont-Ferrand GDR-QCD γ* γ N N MERIEM BENALI November 09, 016 LPC-Clermont-Ferrand GDR-QCD Plan Generalized Polarizabilities (GPs) of the proton Extraction methods of GPs at Q²=0.45 GeV²: - Low Energy expansion approach (LEX)

More information

arxiv:hep-ph/ v1 4 Feb 1997

arxiv:hep-ph/ v1 4 Feb 1997 DOUBLE SPIN TRANSVERSE ASYMMETRIES IN DRELL YAN PROCESSES V. Barone a,b, T. Calarco c and A. Drago c a Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, 10125 Torino, Italy

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

2. HEAVY QUARK PRODUCTION

2. HEAVY QUARK PRODUCTION 2. HEAVY QUARK PRODUCTION In this chapter a brief overview of the theoretical and experimental knowledge of heavy quark production is given. In particular the production of open beauty and J/ψ in hadronic

More information

Measurement of Neutron Spin Asymmetry A n 1 in the Valence Quark Region Using an 11 GeV Beam and a Polarized 3 He Target in Hall C

Measurement of Neutron Spin Asymmetry A n 1 in the Valence Quark Region Using an 11 GeV Beam and a Polarized 3 He Target in Hall C (Update for PR12-06-110) Measurement of Neutron Spin Asymmetry A n 1 in the Valence Quark Region Using an 11 GeV Beam and a Polarized 3 He Target in Hall C July 1, 2010 A. Kolarkar Boston University, Boston,

More information

Novel Physics with Tensor Polarized Deuteron Targets

Novel Physics with Tensor Polarized Deuteron Targets Novel Physics with Tensor Polarized Deuteron Targets PSTP 2013 K. Slifer, UNH Sept 9, 2013 This Talk Brief Review of Tensor Polarization Overview of the Jefferson Lab b1 experiment (E12-13-011) "All Conventional

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

Compton Scattering from Low to High Energies

Compton Scattering from Low to High Energies Compton Scattering from Low to High Energies Marc Vanderhaeghen College of William & Mary / JLab HUGS 2004 @ JLab, June 1-18 2004 Outline Lecture 1 : Real Compton scattering on the nucleon and sum rules

More information

Probing Short Range Structure Through the Tensor Asymmetry A zz

Probing Short Range Structure Through the Tensor Asymmetry A zz Probing Short Range Structure Through the Tensor Asymmetry A zz (TA ) at x>1 zz Elena Long Joint Hall A/C Collaboration Meeting Jefferson Lab June 6 th, 2014 1 Today s Discussion Overview of Physics Motivation

More information

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at L. L. Pappalardo (On behalf of the Collaboration) INFN Università degli Studi di Ferrara - Dipartimento di Fisica Polo Scientifico

More information

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC

Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC Aug 25, 2004 NP04, KEK Determining Strangeness Quark Spin in Neutrino-Nucleon Scattering at J-PARC T.-A. Shibata (Tokyo Tech) in collaboration with N. Saito (Kyoto Univ) and Y. Miyachi (Tokyo Tech) for

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Singular Charge Density at the Center of the Pion?

Singular Charge Density at the Center of the Pion? Singular Charge Density at the Center of the Pion? Gerald A. Miller University of Washington arxive:0901.11171 INT program Jlab-12 Fall 09 www.int.washington.edu/programs/09-3.html Why study the pion?

More information

Longitudinal structure function of the proton at low momentum transfer and extended constituents a

Longitudinal structure function of the proton at low momentum transfer and extended constituents a Preprint RM3-TH/03-8 arxiv:hep-ph/0307160v2 12 Sep 2003 Longitudinal structure function of the proton at low momentum transfer and extended constituents a Silvano Simula Istituto Nazionale di Fisica Nucleare,

More information

Parton-hadron duality and PDF fits

Parton-hadron duality and PDF fits Parton-hadron duality and PDF fits Alberto Accardi Hampton U. and Jefferson Lab Topical Meeting on Parton Hadron Duality University of Virginia, 13 March 2015 Why PDFs at large x? Accardi, Mod.Phys.Lett.

More information

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron Ralf W. Gothe Nucleon Resonances: From Photoproduction to High Photon October 12-16, 2015, ECT*, Trento, Italy

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information