Limiting Behavior of LQ Deterministic Infinite Horizon Nash Games with Symmetric Players as the Number of Players goes to Infinity

Size: px
Start display at page:

Download "Limiting Behavior of LQ Deterministic Infinite Horizon Nash Games with Symmetric Players as the Number of Players goes to Infinity"

Transcription

1 Lmtng Bhavor of LQ Dtrmnstc Infnt Horzon Nash Gams wth Symmtrc Playrs as th Numbr of Playrs gos to Infnty G.P.Papavasslopoulos Dpt. of Elctrcal and Computr Engnrng Natonal chncal Unvrsty of Athns 9 Iroon Polytchnou Str., Athns, Grc (yorgos@ntmod.ntua.gr) ABSRAC A Lnar Quadratc Dtrmnstc Contnuous m Gam wth many symmtrc playrs s consdrd and th Lnar Fdback Nash stratgs ar studd as th numbr of playrs gos to nfnty. W show that undr som conons th lmt of th solutons xsts and can b usd to approxmat th cas wth a fnt but larg numbr of playrs. It s shown that n th lmt ach playr acts as f h wr facd wth on playr only, who rprsnts th avrag bhavor of th othrs.. INRODUCION In most paprs n gam thory thr may b fw or many playrs and solutons and proprts ar usually studd for a fxd such numbr. hr ar also paprs whr th multtud of playrs s nfnt s Rfs.8, 9 as wll as many rcnt paprs on gams playd by an nfnt numbr of automata ach on of whch ntracts wth a fnt numbr of nghbors. In th rcnt ltratur of man fld gams (Rfs. -6), stochastc gams ar consdrd wth an nfnt numbr of playrs who ar modld n a statstcal sns. hr ar also paprs whr a vrson of th problm s solvd for a fnt numbr of playrs and th valy or voluton of som proprty s studd as th numbr of playrs gos to nfnty (Rfs. 5-7).h prsnt papr blongs to ths last catgory. W consdr a fnt numbr of playrs nvolvd n a Lnar Quadratc, rmnstc, contnuous tm, nfnt horzon Nash Gam. o ach on corrsponds hs control and a part of th ovrall stat calld hs stat. h gam s symmtrc n th sns that th voluton of th part of th stat that prtans to ach playr s nfluncd n a symmtrc mannr by th controls and stats of th othrs. Fnally th cost of ach playr dpnds only on hs stat and control and t s also symmtrc for all th playrs. W mploy th Lnar Fdback Nash qulbrum concpt and study how th solutons chang as th numbr of playrs gos to nfnty. It should b notcd that th prsnt work s rlatd to rcnt work on man fld gams, Rfs. -4, and n partcular 5 and 6, but thr ar ssntal dffrncs. Frst of all our problm s rmnstc whras thos n Rfs. 5 and 6 ar stochastc. In Rf.5, Nash Opn Loop fnt tm horzon solutons ar studd for stochastc LQ Gams, whras w consdr Lnar Fdback Nash Solutons for th nfnt tm horzon that satsfy th Prncpl of Dynamc Programmng. Also Rf.6 consdrs for a stochastc LQ gam th Nash Lnar Fdback soluton lk w do, but thr th scalar cas s consdrd only whras w consdr th rmnstc st up for th matrx cas. For th partcular structur of gam chosn, w show that th lmt xsts and can b usd to approxmat th cas whr th numbr of playrs s vry larg. h conons for ths to happn ar rlatd to th xstnc and proprts of solutons of a gnralzd Rcatt quaton, whch ylds stablzng solutons for th ovrall gam. h study of an assocatd not standard Hamltonan problm s shown to b crucal for th whol analyss.h rsultng nfnt numbr of playrs cas shows that undr som conons, ach playr ssntally acts as f h wr facd wth on fcttous playr who rprsnts th avrag bhavor of all th othrs or th markt as a whol.

2 . PROBLE SAEEN n Lt us consdr a dynamcal systm wth stat x ( x, x,... x ). Each x R volvs as dx A B A x + ( x+ x x ) + Bu + ( u+ u u ) () m whr u R s th control of th -th playr. W hav playrs and as th stat quaton shows w can thnk of x as th part of th stat, or subsystm, whch prtans to th playr. h cost of th -th playr s gvn by: + J ( x Qx u u ) () h matrcs A ( n n), A ( n n), B ( n m), B( n m), Q( m m), Q Q ar ral and constant. All th x s hav th sam dmnson. Smlarly all th u s hav th sam dmnson. Notc that all th subsystms hav th sam A B A, A, B, B, Q Q and thus w hav symmtry among thm. h constants, rprsnt th xplct couplng btwn th subsystm of playr and th subsystms and controls of th othr playrs. W ar thus facd wth a many playr gam problm for whch th Nash qulbrum wll b sought. h multtud of th playrs wll b consdrd as a gvn constant. Our man objctv s to drv th solutons and study th rsultng bhavor n trms of both stat and costs as grows towards nfnty. h soluton concpt that w wll mploy s th Nash qulbrum whr th playrs us lnar stratgs n th currnt stat x ( x, x,... x ) and Dynamc Programmng holds (.. Lnar Fdback Stratgs n th parlanc of th ltratur Rfs -4). * Dfnton A st of lnar stratgs * * * * u L x,,...,, (whr th L, L,..., L ar constant m n matrcs), ar sad to b n Nash Equlbrum f for any ntal conon x() ( x(), x(),... x ()) all * * * * * * th J ( u, u,..., u, u, u+,..., u ),,,..., ar fnt and * * * * * * * * * * * J ( u, u,..., u, u, u+,..., u ) J ( u, u,..., u, u, u+..., u ), for any othr u,,,..., (quvalntly: for any othr L ). h fntnss of th costs can b warrantd by assumng that th closd loop systm s asymptotcally stabl.. th closd loop matrx has all ts gnvalus n th opn lft-hand plan. * Dfnton A st of lnar stratgs * * * * u L x,,...,, (whr th L, L,..., L ar constant m n matrcs), ar sad to b n an ε (, x()) -Nash Equlbrum f for any ntal conon x() ( x(), x(),... x ()) all * * * * * * th J ( u, u,..., u, u, u+,..., u ),,,..., ar fnt and * * * * * * * * * * * J ( u, u,..., u, u, u+,..., u ) J ( u, u,..., u, u, u+..., u ) + ε(, x()), for any othr u,,,..., (quvalntly: for any othr L ). Clarly th noton of ε (, x()) -Nash Equlbrum s of ntrst f th ε (, x()) s small and ts magntud can b qualfd n trms of ts argumnts, s Commnt 6.

3 h rasons for th choc of ths typ of Nash qulbrum ar svral. W know that n th corrspondng rmnstc dscrt tm framwork, many and prhaps nonlnar stratgs may xst; but f w ntroduc som nondgnrat nos n th stat quaton, thn only th lnar ons survv (arkov or Prfct qulbra, Rfs,). In th contnuous tm cas, a smlar phnomnon appars as rgularzaton du to nos, of th systm of th Hamlton-Jacob-Bllman quatons that charactrz (as suffcnt conons) th Nash closd loop no mmory solutons n th rmnstc cas. 3. NASH SOLUION h Nash soluton for ach playr s sought n th form (3),.. rstrct ourslvs to Symmtrc Lnar Stratgs. (It s known that for th nfnt tm problm consdrd hr,thr mght xst nonsymmtrc stratgs. h rason w consdr symmtrc ons s bcaus our gam s symmtrc n th way th stat quatons and th costs ar dscrbd. In adon, f on wr to consdr Lnar Fdback Stratgs for th fnt horzon cas.. th ntgrals n () wr from to a fnt, thn th Lnar Fdback Stratgs f thy xstd-thy would hav to b symmtrc, as an nspcton of th assocatd Rcatt typ quatons would show). u L x + L z (3) whr w st: z ( x + x x ) (4) h L ( m n), L ( m n) ar constant matrcs. hs form s du to th symmtry of th stat quaton and th costs. h constants L, L can b rmnd from th systm of th coupld Rccat-typ quatons that charactrz th Nash soluton at hand (Rfs,3,4). Anothr but quvalnt way of rmnng thm s th followng: Lt us consdr th problm facd by playr.h ss th stat quatons () for,,...,..: dx A B A x+ ( x + x x ) + Bu + ( u + u u ) (5.) dx A B A x+ ( x+ x x ) + Bu + ( u+ u u ) (5.) dx3 A B A x + ( x + x x ) + B u + ( u + u u ) (5.3) dx A B A x + ( x+ x x ) + Bu + ( u + u u ) (5.) whr h consdrs n (5.)-(5.): u L x + L z, for,,3,... (6) Addng up (5.)-(5.) ylds: d( x+ x x ) A ( x+ x x ) + + A ( x + x x ) + B ( u + u u ) + + B ( u + u u ) ( A + A )( x+ x x ) + ( B + B )( u + u u ) or 3

4 dz ( A + A ) z+ ( B + B ) ( u + u u ) (7) Addng up th quatons (6) for,3,..., ylds: u + u u L ( x + x x ) + ( ) L z 3 3 L ( z x ) + ( ) L z L x + [ L + ( ) L ] z (8) Substtutng u+ u u from (8) nto (5.) ylds: dx A B A x+ ( x+ x x ) + Bu + ( u+ u u ) B B A x+ A z+ ( B + ) u + ( u u ) B B A x+ A z+ ( B + ) u + { L x+ [ L + ( ) L ] z} B B ( A L ) x+ ( A + BL + B L ) z+ ( B + ) u Substtutng u+ u u from (8) nto (7) ylds dz ( A + A ) z+ ( B + B ) ( u + u u ) ( A + A ) z+ ( B + B) u+ ( B + B) { L x+ [ L + ( ) L ] z} ( B + B ) L x + [ A + A + ( B + B )( L + L )] z+ ( B + B ) u or d x x A Bu + z z Whr (9) 4

5 A BwL A + B ( L + ( w) L ) A ( B B ) wl A A ( B B )( L ( w) L ) A A B ( L + L ) B L B L w A A + ( B B )( L L ) + ( B B ) L ( B B) L () A A B B + [ L + L] w A + A B + B [ L L] B B + A A B I B + [ L L] w [ L L] A + A B + B I B + B B + Bw B ( B + B) w w () It s clar now that th problm of playr s to mnmz hs cost subjct to th quatons (9).h rason s that th stat x and th cost Jof th playr ar nfluncd by x, u and z on whch z th total nflunc of u s through (7).h soluton s gvn by th formula: x u ( B Bw) ( B B ) w K + + z () Whr K K K K K (3) s th soluton of th matrx Rcatt quaton: B + B w Q KA+ A K+ Q K ( B + Bw) ( B + B) w K, Q ( B + B) w (4) h L, L that ar prsnt n th Rcatt quaton (4), through th matrx A of () ar to b dntfd wth [ ] ( ) L L B + B w ( B + B ) w K (5) Substtutng n () th L, L, by thr quals usng (5) w obtan for A th quvalnt form (6) that w dnot by A( K, w ) n ordr to mphasz th dpndnc on K and w : 5

6 A A B I B A( K, w) [ L L] w [ L L] A A + B B I B B A A B I B ( B Bw) ( B B ) w K w ( B Bw) ( B B) w K A A B B + + I + B B A A B I B I A + A ( ) B + B B K w B B B K I B B + I + + B B + w B K w B ( B B ) K B B + + B B + + (6) It s ths A( K, w ) of (6) that s usd n (4). Notc that (4) has svral quadratc trms n K bsds th last on apparng n (4), snc A( K, w ) tslf s a lnar functon of K.h soluton of (4) f t xsts, s a functon K( w ) whch has th valu K () for w. Snc w ar gong to lt, w wll study th bhavor of th Rcatt quaton (4) by allowng w to b a contnuous varabl clos to. Lt us st: B + Bw R( K, w) KA( K, w) + A ( K, w) K + Q K ( B + Bw) ( B + B ) w K ( B + B ) w (7) h functon R( K, w ) s analytc n ts argumnts. Lt us st K w K + K w+ K w + (8) ( )... W plug K( w) K+ Kw+ Kw +... n (7) and group togthr th trms corrspondng to th sam powrs of w to obtan B + Bw R( K( w), w) K( w) Α ( K( w), w) +Α ( K( w), w) K( w) + Q K( w) ( B + Bw) ( B + B ) w K( w) ( B + B ) w R ( K ) + wr ( K, K ) + w R ( K, K, K ) w R ( K, K,..., K ) +... (9) n n n Whr A A BB I BB R( K) K{ K } + {...} K + Q K K A A ( B B ) B I () + + 6

7 A A BB I R ( K, K) K{ K } + {...} K + A + A ( B + B ) B ) I B I K { B K } {...} K + B B I BB BB K K K K+ Quadratc trms of( K) () Smlarly w can drv th formula for th othr Rn ( K, K,..., K n ) s. Lt us consdr th matrx: A A BB I BB Ac () K K A A ( B B ) B ) I + + A A BB K K I BB K K A A ( B B) B ) K K I K K () + + A BB K A BB ( K+ K) BB K Ac Ac A A ( B B ) B ( K K) A c It holds: A A B B K c Ac A + A ( B + B ) B ( K+ K) (3) Ac A BB ( K+ K) BB K Ac Ac Ac hn A B B K A BB ( K+ K) B B K BB R ( K) K + [..] K + Q + K K A + A ( B + B ) B ( K+ K) K K A BB K A BB ( K+ K) BB K B B + [.. ] K + Q K K K K + A + A ( B + B ) B ( K+ K) K( A BB K) K( A BB ( K+ K) BB K) + K( A + A ( B + B ) B ( K+ K)) [...] + + K ( A BB K) K ( A BB ( K+ K) BB K) + K( A + A ( B + B ) B ( K+ K)) Q+ KB B K KB B K + K B B K K BB K (4) Lt us ntroduc th oprator L( K, X ) whch s actually th drvatv of R( K, w ) wth rspct to K calculatd at w. For 7

8 χ χ Χ χ χ w dfn: A A BB I BB L( K, X ) X{ K K} {...} X A A ( B B ) B ) I B I B I K B X ( K B X ) B + B I B + B I XA () + A () X + c ( KBB + K( B + B ) B )( χ+ χ) ( KBB + K( B + B ) B )( χ+ χ) ( K BB + K( B + B ) B )( χ+ χ) ( K BB + K( B + B ) B )( χ+ χ) χ χ Ac Ac ( KBB + K( B + B ) B )( χ+ χ) ( KBB + K( B + B) B )( x+ x) + A () X χ χ A c ( K BB + K( B + B ) B )( χ+ χ) ( K BB + K( B + B ) B )( x+ x) χ A χ A + χ A ( K B B + K( B + B ) B )( χ + χ) L ( K, X ) L ( K, X ) + K, X ) L ( K, X ) c c c [...] χ A ( ( ) )( ) L( c χ Ac + χ Ac K B B + K B + B B χ + χ Equvalntly, th oprator L( K, X ) can b wrttn as a matrx oprator multplyng a vctor : L ( K, X ) χac + A cχ L ( K, X ) L ( χ) χ Ac + ( A Y ( B + B ) B ) χ L ( K, X ) L3 ( χ) L3 ( χ) χ Ac + A cχ whch maks th nvrtblty study of L( K, X ) qut transparnt. W can now stat th followng proposton: Proposton If at w th quaton R( K,) has a soluton K,.. R( K,) and f th oprator L( K, X ) as a lnar oprator on X s nvrtbl,thn n som nghborhood of w th quaton R( K, w ) has a unqu soluton K( w) whch s an analytc functon of w and has an xpanson (8), whr th K, K, K,... ar th unqu solutons of R( K), R ( K, K), R ( K, K, K),... Proof h proof of ths proposton s a straghtforward applcaton of th mplct functon thorm for analytc functons (s horm 8.6 nrf.) and uss th formula alrady dvlopd n (7)-(7). It s mportant to notc that f w want to fnd th n w n th quaton ( ( ), ) (7) (5) (6) K n s for n w hav to fnd th coffcnt of th powr K of th form: R K w w and st t qual to,whch ylds an quaton lnar n n 8

9 L( K, Kn) F( K, K,..., Kn ),whr th lnar oprator L( K, K n) s th on dfnd n (6) and F( K, K,..., K ) s a nonlnar functon contanng multplcatv trms of ts argumnts. n Lt us now ntroduc th closd loop matrx Ac ( w ) by th formula: A A B w Ac ( w) A( K, w) ( B Bw) ( B B ) w K( w) A A B B + + w w (8) B + Bw ( B + Bw) ( B + B ) w K( w) ( B + B ) w hs s th closd loop matrx of (9) that rsults whn all th playrs us thr optmal stratgs and w wll hav: d x x Ac ( w) z z (9) W can now stat th scond proposton that prtans to th xstnc of a Nash qulbrum. Proposton. If th Rcatt quaton R( K, w ) has a soluton K( w) whch ylds an asymptotcally stabl closd loop * * * matrx Ac ( w ), thn th rsultng u of (5) and th smlar u,..., u ar n Nash qulbrum.. If th Rcatt quaton R( K ), whr R( K) s gvn n () has a soluton K and th matrx Ac () of () (or from (8) wth w ) s asymptotcally stabl, and th oprator L( K, X ) s nvrtbl, thn for suffcntly larg, all th gams consdrd hav a Nash qulbrum wth asymptotcally stabl closd loop matrcs Ac ( w ) (whch ar as n(8)) and tnd to A c() as.h corrspondng K( w) whch rmns * th u can b approxmatd up to ordr on n w by K+ Kw,whr K, K solv th two quatons R ( K ), R ( K, K )..3 h L, L that ar calculatd by usng (5) wth K and w consttut an ε (, x()) -Nash qulbrum. Proof h proof of ths Proposton s an mmdat consqunc of th prvously prsntd analyss. Commnt h quaton R( K ) rsults n th systm: K A + A K + Q K B B K K ( A B B ( K + K) B B K) + K( A + A ( B + B ) B ( K + K)) + ( A B B K ) K+ K B B K K ( A B B ( K + K) B B K) + ( A B B ( K + K) B B K) K + K ( A + A ( B + B ) B ( K + K)) + ( A + A ( B + B ) B ( K+ K)) K 9

10 Substtutng th scond on wth th sum of th frst two w hav th followng quvalnt systm that K, K + K, K hav to satsfy: K A + A K + Q K B B K ( K + K)( A + A ) + A ( K+ K ) ( K+ K )( B + B ) B ( K+ K ) + Q K ( A B B ( K + K) B B K) + ( A B B ( K + K) B B K) K + K ( A + A ( B + B ) B ( K + K)) + ( A + A ( B + B ) B ( K + K)) K or K A + A K + Q K B B K (3) Y ( A + A ) + A Y Y ( B + B ) B Y + Q K Y K c c c c K A + A K + K A + A K (3) (3) Whr A A B B K c A A + A ( B + B ) B Y c A A A c c c (33) It s clar that th gan K that multpls th stat x of playr dpnds only on hs part of th systm and cost. h Rcatt quaton (3) for K s th classcal on and th K xsts and s postv dfnt undr th usual assumptons. h gan K that coupls th controllr of th playr wth th stats of th othrs may fal to xst snc ts xstnc dpnds on th gnralzd Rcatt (3).Notc that th study of (3) s rducd quvalntly to th study of th Prturbd Hamltonan A + A ( B + B ) B A BB A BB Η + (34) Q A Q A If Y satsfs (3), thn: I A + A ( B + B ) B I A + A ( B + B ) B Y ( B + B ) B Y I Q A Y I Y ( A + A ) A Y + Y ( B + B ) B Y Q A + Y ( B + B ) B A + A ( B + B ) B Y ( B + B ) B A + Y ( B + B ) B (35) and thus th matrcs A ( ) c A + A B + B BY, ( A Y ( B + B ) B ) ) hav th gnvalus of H and can b calculatd by usng th corrspondng gnvctors of H, s Rf.9. Notc that n ordr for th Nash gam to hav a soluton w nd both Ac, A c to b asymptotcally stabl, a fact that wll hold for Ac f A, B s a controllabl par. h conons for th asymptotc stablty of A c ar lss

11 obvous and dpnd on th gnstructur ofη. Actually thr ar cass whr thr s no soluton rsultng n A c asymptotcally stabl, or thr can b mor than on soluton that yld A c asymptotcally stabl whch would man corrspondngly that w hav no or many Nash qulbra. Fnally notc that solvng for K s a lnar problm that always has a soluton f Ac s asymptotcally stabl. hus th xstnc of a Nash soluton amounts to studyng (3) and (3) and dmandng that both Ac, Ac ar asymptotcally stabl. Commnt h nvrtblty of L( K, X ) s quvalnt to havng nvrtblty of th oprators: L ( χ ) χ A + A χ c c L ( χ) χ A + ( A B B K B ( B + B ) K ) χ c c L ( χ ) χ A + A χ 33 c c h frst and thrd on ar nvrtbl f Ac, Ac ar asymptotcally stabl. It s th nvrtblty of th scond on that s th mor ntrstng. Lt us look at t mor carfully: χ Ac + ( A B ( B + B ) ( K+ K )) χ (37) χ( A + A ( B + B ) B ( K + K)) + ( A ( K + K)( B + B ) B ) χ hs quaton nvolvs th matrcs A ( ) c A + A B + B BY and ( A Y ( B + B ) B ) that appar n (3) (or (35)), and thus w hav nvrtblty of L( K, X ) f and only f : (36) gnvalua + gnvalu( A ( K + K)( B + B ) B )) (38) c Notc also that quaton (37) s actually th prturbaton of th quaton that (3) that gvs Y K+ K. o s that, lt us prturb th soluton Y of (3) to Y + to gt: ( Y + )( A + A ) + A ( Y + ) ( Y + )( B + B ) B ( Y + ) + Q Y ( A + A ) + A Y Y ( B + B ) B Y + Q+ ( A + A ( B + B ) B ( K + K)) + ( A ( K + K)( B + B ) B ) + ( B + B ) B ( A + A ( B + B ) B ( K + K)) + ( A ( K + K)( B + B ) B ) ( B + B ) B (39) hrfor th conon for nvrtblty of L( K, X ) s quvalnt to askng that th prturbaton of th quaton that rmns Y K+ K has no zro gnvalu. If w dmand mor than that, namly that all th prturbaton gnvalus of th prturbd quaton fory K+ K ar ngatv,..: gnvalu( A + A ( B + B ) B ( K+ K)) + gnvalu( A ( K+ K)( B + B ) B )) < (4) or

12 gnvalua + gnvalu( A ( K + K)( B + B ) B )) < c ths would mply a knd of stablty of th solutons of (3) that s bnfcal for any algorthm that solvs (3). Actually ths s quvalnt to somthng mor ntrstng, namly t s quvalnt to askng that th nfnt tm solutons,.. th L gans, can b approachd as stabl lmts of th gans of th fnt tm horzon Nash gam. * Such a Nash qulbrum w wll call Stabl Nash qulbrum. (W rmnd th radr that a soluton of th nfnt horzon problm s not ncssarly a lmt of th fnt horzon soluton. In rlaton to that and th ntrplay btwn fnt tm horzon and Infnt m horzon solutons, srfs.7,8, 3, 4). h justfcaton of ths clam follows. Consdr th cost: t f f f f + + J x ( t ) Q x ( t ) ( x ( t) Qx ( t) u ( t) u ( t)) (4) for som Q f. h stat quatons rman th sam and all th transformatons n ()-() hold. h fnt tm Rcatt quaton ylds a tm varyng soluton whch satsfs: dk( w, t) Q f R( K( w, t), w), K( w, t f ) Lt K( w, t) K( w, t) K( w, t) K( w, t) K( w, t) Assumng w w s that th followng dffrntal quatons ar obtand : dk( t) K( t) A + A K( t) + Q K( t) B B K( t), K( t f ) Q f (4a) dy ( t) Y ( t)( A + A ) + A Y ( t) Y ( t)( B + B ) B Y ( t) + Q, Y ( t f ) (4b) K( t) Y ( t) K ( t) dk( t) K( t) Ac + Ac K( t) + K ( t) Ac + Ac K( t) + K ( t) BB K( t), K( t f ) (4c) Ac ( t) A + A ( B + B ) B Y ( t)) h soluton of (4a) gos to th postv dfnt stablzng soluton of (3) undr th usual controllablty assumptons on A, B.h dffrntal quaton (4b) has as qulbrum pont th soluton Y of (3).Lnarzng (4b) around ths Y w gt th lnarzd quaton (39), and thus w conclud that th Y s an asymptotcally stabl qulbrum of (4b) f and only f: gnvaluac + gnvalu( A ( K+ K)( B + B ) B )) <.hrfor, f gnvalua c< and gnvalua c < and gnvaluac + gnvalu( A ( K+ K)( B + B ) B )) < w wll hav a Nash qulbrum of th nfnt horzon LQ gam that can b also consdrd Stabl n th sns that s th lmt of a fnt tm horzon qulbrum. Lt us now summarz th matral of Commnts and 3 n th form of a Proposton. Proposton 3

13 3. h Rcatt quaton R( K ) or quvalntly th systm (3)-(3) has a soluton that rsults n asymptotcally stabl Ac, A c f th par A, B s compltly controllabl and f th quaton (3) has a soluton Y that maks th A c asymptotcally stabl. hs last rqurmnt s quvalnt to askng that th H matrx has n ngatv gnvalus λ, λ,..., λn whos gnvctors hav thr uppr n-dmnsonal parts lnarly ndpndnt, and th othr n gnvalus λn+, λn+,..., λn satsfy: λ λ j,,,..., n, j n+, n+,...,n.h gnvctors corrspondng to λ, λ,..., λ n ar usd to construct Y (s Rf.9). 3. If th assumpton of 3. hold and n adon th gnvalus satsfy: λ < λ j,,,..., n, j n+, n+,...,n, thn th Nash Equlbrum s a Stabl on n th sns dlnatd abov. Proof h proof s actually gvn n Commnts and 3. W us th classcal constructon of Rf.9. As vdncd from (37), H has th gnvalus of Ac and th ngatv gnvalus of A ( K+ K)( B + B ) B A Y ( B + B ) B. Commnt 3 h study of H s qut cntral to th xstnc and charactr of th Nash soluton and as such t mrts ndpndnt nvstgaton. Frst of all t s clar from (34) that H s qual to th classcal Hamltonan whch corrsponds to th classcal Rcatt (3), and snc th gnvalus ar contnuous functons of th matrx ntrs, f w thnk of A, B as prturbatons, thn for suffcntly small valus of thm th assumptons and thus th conclusons of Proposton 3 hold. hus t s asy to produc suffcncy nonmpty conons for Proposton 3 to hold. Notc also that H s not Hamltonan n th sns ncountrd n th Lnar Quadratc Control hory and th study of th classcal Rcatt quaton, s Rfs.3, 4, and 9 and t can b any arbtrary n n matrx as th chocs of A, A, B, B can produc any valu for th trms thy rmn n H. h Q trm of H sms to ntroduc a rstrcton snc t s symmtrc and postv smdfnt. Actually any quadratc matrx quaton of th form HY + YH + YH Y + H can b transformd to havng H symmtrc and postv smdfnt by usng H UDV th sngular valu dcomposton of H,wth D dagonal and postv smdfnt. Pr- and post- multplyng th quaton wth U and V rspctvly and consdrng as nw unknown thy U YV, w hav a nw quadratc matrx quaton wth symmtrc postv smdfnt constant trm. hus th Q trm dos not rally provd any structur and thus th H matrx w dal wth hr dos not hav any partcular structur. Commnt 4 h undrlyng thm of ths work s th prsnc of vry many symmtrc playrs, and thrfor th lmtng bhavor as th numbr of playrs grows to nfnty s consdrd. It should b notcd that nowhr dd w rfr to a gam wth an nfnt numbr of playrs, or to K as dfnng th Nash qulbrum stratgy of a playr n th prsnc of an nfnt numbr of playrs. Nonthlss f on wr to mak sns of such a lmt pr s-as f th playrs ar nfnt n multtud, th quatons (9) ar of mportanc. Notc by th way, that w drvd (9) whr th varabl z concatnats th nflunc of all th othr playrs on playr on, and drvd thn th Nash qulbrum, although w could hav drvd th Nash qulbrum workng drctly on quatons (5.)-(5. ).Lt us look mor carfully at quatons (9), rstatd blow for convnnc. If w consdr that th L, L hav valus that convrg to dfnt lmts as, a fact that holds undr th assumptons of Proposton, thn th systm (9) n th lmt bhavs lk: 3

14 dx A x + ( A + L + L ) z+ u, u BB Kx (43) dz ( A A ( B B ) B ( K K)) z (44) Equvalntly w can say that playr on facs a control problm of mnmzng J (as n ()), whr hs control s u, and hs stat x s nfluncd by a stat varabl z whch z s avalabl to hm but s not at all nfluncd by hm: h stat z obys th voluton quaton (44) whch s not at all nfluncd by x or u,as should b xpctd, snc on playr on hs own should not hav any nflunc on th collctv bhavor of a nfnt numbr of fllow playrs. h quston s whthr w can thnk of th quaton (44) as rsultng from a control problm wth stat quaton: dz ( A + A ) z + ( B + B ) u (45) and cost to b mnmzd + + mn J ( ( z ( t) Q z ( t) u ( t) S z ( t) u ( t) u ( t)) (46) whch for approprat chocs of Q S, has as soluton: u B ( K+ K)) z (47) (Notc that s a partcular cas of an nvrs problm and such problms hav bn studd n th past n mor gnralty,s for xampl:rfs, ). h stat z and th control u, can b thought of as th collctv stat and control of th othr nfnt n multtud playrs that rmn th bhavor of th markt facd by playr on. Of cours t s assumd that: Q S Q S S S I h soluton of ths problm s: u [( ) B + B Ρ+ S ] z whr Ρ solvs th Rcatt quaton: Ρ ( A + A ( B + B ) S ) + ( A + A ( B + B ) S ) Ρ+ Q S S Ρ ( B + B )( B + B ) Ρ Q, S hav to b chosn so that th optmal control soluton (47) has th valu u B ( K+ K)) z,.. ( B + B ) Ρ+ S B ( K+ K) or S B Y ( B + B ) Ρ Substtutng S wth t s qual from abov w gt: Ρ ( A + A ) + ( A + A ) Ρ+ Q ( B Y ) B Y hrfor n ordr that th problm (45)-(46) has th soluton (47), w should choos: Q Q, S, Q S S, ΡΡ (48) so that th followng hold: S B Y ( B + B ) Ρ (49) 4

15 Q Ρ ( A + A ) ( A + A ) Ρ+ ( B Y ) B Y (5) whr Y solvs Y ( A + A ) + A Y Y ( B + B ) B Y + Q (5) hs conons gv Q, S, Ρ as functons of th paramtrs A, A, B, B, Q and thy can always b satsfd as th followng choc shows: P, S B Y, Q ( B Y ) B Y Wth ths choc th cost (46) s: Y B B Y Y B B Y I z( t) z( t) mn J u ( ) ( ) t u t whch rsults n optmal valu snc u B ( K+ K)) z Sz A spcal possbl choc s to hav S and thn fndng Ρ, Q may b or not b possbl. For xampl, lt B so that w hav couplng of th stat quatons of th playrs only through th A trm. W can tak, Y Ρ, f Y Y, whch ylds: S Q Y ( A + A ) ( A + A ) Y + Y B B Y Q Y ( A + A ) A Y + YB B Y or Q Q+ A Y h cas Y Y can occur for xampl f A Y YA (a fact that cannot b guarantd a pror) snc thn th quaton for Y can b wrttn as Y ( A + A ) + ( A + A ) Y + Q YBB Y and obvously has a symmtrc soluton. For xampl f th couplng matrx A ai wth a a ral scalar, ths s th cas and Q Q+ AY Q+ ay s accptabl f t s postv smdfnt. Commnt 5 It would b mportant to consdr whthr K, K, or K ndfnt.for xampl, f t s postv dfnt, ths mans that as th numbr of playrs gos to nfnty th cost of ach playr at th Nash qulbrum s dcrasng. Lt us consdr th quaton: R ( K, K ) whch can b wrttn as: L ( K, K) χac + A cχ r L ( K, K) L ( χ) χ Ac ( A YB ( B B ) ) χ r + + (5) L ( K, K) L3 ( χ) L3 ( χ) χ Ac + A cχ r Whr K K χ χ K K K χ χ 5

16 r r B I I K { B ( B B ) K B K } {...} B ( B B ) K r r B B I I + B B + BB B ( B + B ) + K K ( B + B ) B (53) It holds: B I I r [ I ]{ K { B ( B B ) K B K } {...} B ( B B ) K B B + I + I B B + BB B ( B + B ) I + K K} ( B + B ) B hs s asy to prov by just carryng out th multplcaton usng th rght hand sd of (53). hrfor to fnd K, on has to solv: K A + A K c c and snc w want an asymptotcally stabl closd loop systm t wll b that all th gnvalus of A c ar ngatv, and thus K.hrfor th K matrx wll ncssarly hav th form K K K K whch s ndfnt, xcpt f also K whch s not ncssary.w s that as th numbr of playrs gos to nfnty, th cost of ach playr dos not bhav monotoncally,although th part of th cost that dpnds on hs ntal conon x () rmans constant up a frst ordr of w,..: K x() J( w) [ x() z() ] ( K+ w O( w )) + K z() K (54) hs s not tru for th cost of th concatnatd playr who ss as hs stat z. h cas whr K s worthy xamnng snc t would mply that th cost J ( ) w bhavs monotoncally n w up to ordr two. hs holds only for vry spcal valus of th paramtrs of th gam, and f t wr to hold,t would man that th playrs hav th cost: x() () x J( w) [ x() z() ] K w z () Kz() O( w ) z() + + z() whr th frst ordr wth rspct to w chang of th cost dpnds only on th avrag stat z Commnt 6 h ε (, x()) of th ε (, x()) -Nash Equlbrum dfnd arlr nds to b furthr qualfd.from th analyss for K, K w s that: x() x() ε (, x()) w K w x () w x () 6

17 hs maks manngful th noton of ε (, x()) qulbrum, snc for vry larg, or quvalntly for vry small, th approxmat Nash qulbrum approachs th xact on. Notc that f nstad of usng n (5) K and w for calculatng L, L w us th K + wk,w ar gong to hav agan an ε (, x()) -Nash qulbrum whr w wll hav a bttr approxmaton of ordr w. w Commnt 7 h analyss of th prsnt papr can b asly xtndd to th cas whr nstad of th costs () w hav costs of th form: x ( Q Q x j j j j 3 k ) z Q z Q j j j< k, j, k J u u u S u u S u u S u whr th approprat postv (sm)dfntnss assumptons ar mad. Notc that ths form prsrvs th symmtry and thus th solutons ar agan of th form (3). 4. A SCALAR EXAPLE In th modl ()-() w us A a, A a, B, B b, Q q, Q f q f,all scalars. Each x volvs as dx a x + a ( x + x x ) + u b + ( u + u u ) h cost of th -th playr s gvn by: ( ) + J qx u h Nash soluton for ach playr wll b of th form: k k x k k u lx + lz [ + bw,( + bw], K k k z k k Whr K s th soluton of th matrx Rcatt quaton R( K, w ), a a b a k a b( k+ k) k λ λ Ac () K _ K a a b a a ( b)( k k) λ A λ, A λ, A λ c c c h quaton R( K ) rsults n th systm: k + a k + q ( b) y ( a a) y q k[ a by] k + k[ a + a ( + b) y] y k+ k h oprator L( K, X ) can b wrttn as a matrx multplyng a vctor: (55) 7

18 χ λχ λ χ Λ χ λχ + λ χ ( k+ b( k+ k))( χ + χ) λ ( k+ b( k+ k)) a ( + b) y χ χ λχ + λχ ( k + ( k + k))( χ+ χ) ( k + ( k + k)) λ ( k + ( k + k)) λ χ h mportant quantts ar: λ a k λ a + a ( + b) y λ a ( + b) y Solvng (55) w hav obvously only on accptabl root forλ < and two possbl roots forλ : k a + a + q λ a + q ε y k+ k ± ( + b) a + a+ ( a+ a) + 4 q( + b), ε a ε a + a + q + b λ ( ) 4 ( ) a ε a + a + q + b λ For havng λ ral w nd: ( a + a) + 4 q( + b) ( ) 4 ( ) For th Proposton to hold w nd: λ, λ, λ + λ. For Proposton to hold w nd: λ <, λ <, λ + λ.lt us focus on th conons for Proposton Cas I. For th closd loop systm to b asymptotcally stabl and L( K, X ) nvrtbl w nd: λ <, λ <, λ + λ h conon λ + λ amounts to ( a a) 4 q( b) >.W can hav two accptabl λ <, f a ( a + a) + 4 q( + b) < < a.w can hav only on accptabl λ f a( a + a) + q( + b) > (56a) (56b) Cas II. For th closd loop systm to b asymptotcally stabl, L( K, X ) nvrtbl and th Nash soluton to b Stabl w nd : λ <, λ <, λ + λ < h conon λ + λ < amounts to ε and ( ) 4 ( ) a a + a + q + b λ ( a a) 4 q( b) >.hrfor f th soluton 8

19 s ngatv t corrsponds to an asymptotcally stabl closd loop matrx and th corrspondng Nash soluton s ( ) 4 ( ) a+ a + a + q + b Stabl. If th othr soluton for λ s also ngatv, t corrsponds to anothr Nash soluton that rsults to an asymptotcally stabl closd loop matrx, but ths Nash soluton s not Stabl. Accordng to Commnt 4, w xamn th problm: mn ( ( ) ( ) ( ) ( ) ) + + J q z t s z t u t u t subjct to: dz ( a + a) z + ( + b) u whr t must b q s and+ b.it has as soluton: u [( + b) ρ+ s ] z whr ρ s th postv soluton of th Rcatt quaton: ρ( a + a ( + b) s ) + q s ρ ( + b) W want q, s chosn so that : ( + b) ρ+ s k+ k or + + ( + ( + ) ) + ( + ) ( ) a a a a b s b q s y k+ k + b Rcall that y k+ k satsfs (56a). Equatng th two xprssons for ( k+ k) w fnd: ( a + a ( + b) s ) + ( + b) ( q s ) a+ ε ( a + a) + 4 q( + b) λ a + a Notc that th lft hand sd has mnmum valu zro (achvd for s, q s ) and can achv any + b postv valu for appropratly chosn q s q s.h rght hand sd s achvd f th root λ < whch wll,, happn for th roots that yld an asymptotcally stabl closd loop matrx.. always whn w hav a Nash qulbrum. 5. CONCLUSIONS In th prsnt papr th lmtng bhavor of a dynamc Nash gam was studd wth rspct to th numbr of playrs gong to nfnty. Smlar qustons for th dscrt tm LQ Nash gam and for th Stacklbrg qulbrum can b consdrd. h stochastc vrson of th problm studd hr can also b consdrd for th cas whr th stratgy u s lnar n th stmat of th avrag (markt) stat z and th stmat of th stat x. Of ntrst would b hr to xamn n th sprt of Rf.5 undr what conons bttr masurmnts (for xampl lss masurmnt nos) ar bnfcal for th fnt tm horzon cass as th horzon ncrass and or as wll as whn th numbr of playrs dos. 6.ACKNOWLEDGEEN 9

20 hs rsarch has bn cofnancd by th Europan Unon (Europan Socal Fund ESF) and Grk natonal funds through th Opratonal Program Educaton and Lflong Larnng of th Natonal Stratgc Rfrnc Framwork (NSRF) - Rsarch Fundng Program: HALES. Invstng n knowldg socty through th Europan Socal Fund and th program ARISEIA, projct nam HEPHAISOS. 7. REFERENCES..Basar and G.J.Olsdr Dynamc Noncoopratv Gam hory, SIA nd on D.Fudnbrg and J.rol Gam hory, I Prss H.Abou-Kandl,G.Frlng,V.Ionscu and G.Jank. atrx Rccat Equatons n Control and Systms hory,brkhausr J.Engwrda. LQ Dynamc Optmzaton and Dynamc Gams, John Wly&Sons u and G.P.Papavasslopoulos On th Informatonal Proprts of th Nash Soluton of LQG Dynamc Gams," IEEE rans. on Automatc Control, Vol. AC-3, No. 4, Aprl 985, pp Drshr, Probablty of a Pur Equlbrum Pont n n-prson Gams, Journal of Combnatoral hory, Vol. 8, pp , G.P.Papavasslopoulos On th Probablty of Exstnc of Pur Stratgy Equlbra n atrx Gams," JOA, Vol. 85, No., Novmbr 995, pp , and JOA, Vol. 9, No. 3, R. J. Aumann arkts wth a Contnuum of radrs, Economtrca Vol. 3, No. /, Jan. - Apr., J. W. lnor and L. S. Shaply Valus of Larg Gams II: Ocanc Gams athmatcs of Opratons Rsarch Vol. 3, No. 4, Nov Huang, R. P. alhamé and P. E. Cans Nash Equlbra for Larg-Populaton Lnar Stochastc Systms of Wakly Coupld Agnts Analyss, Control and Optmzaton of Complx Dynamcal Systms 5, II, Huang, R.P. alhamé, and P.E. Cans "Larg populaton stochastc dynamc gams: closd-loop ckan- Vlasov systms and th Nash crtanty quvalnc prncpl". Communcatons n Informaton and Systms, vol. 6, no. 3, pp. -5, 6. [pdf].. J.-.Lasry and P.-L. Lons, (6). Jux a champ moyn I - L cas statonnar, Compts Rndus d l'acadm ds Scncs, Srs I, 343, J.-.Lasry and P.-L. Lons, (6). Jux a champ moyn II. Horzon fn t contrôl Optmal, Compts Rndus d l'acad_m ds Scncs, Srs I, 343, J.-.Lasry and P.-L. Lons, (7). an fld gams. Japans Journal of athmatcs, (), A. Bnsoussan, K. C. J. Sung,S. C. P. Yam, and S. P. Yung, Lnar-Quadratc an Fld Gams,

21 6..Bard, Explct solutons of som Lnar-Quadratc an Fld Gams, 7. E. agrou, Valus and Stratgs for Infnt m Lnar Quadratc Gams, IEEE-AC, August 976, Vol., No. pp D. Jacobson, On valus and stratgs for nfnt-tm lnar quadratc gams, IEEE-AC, Jun 977, Vol., pp J.E.Pottr, atrx Quadratc Solutons, J.SIA Appl. ath.,vol 4,No.3, ay 966,pp L.Kaup and B.Kaup, Holomorphc Functons of Svral Varabls, d Gruytr Studs n athmatcs 3, Waltr d Gruytr, Brln-Nw York,983. R.Kalman, Whn s a Lnar Control Systm Optmal?,ASE ransactons, Journal of Basc Engnrng,Vol.86,pp.56-57,964. A.Jamson and E.Krndlr, Invrs Problm of Lnar Optmal Control, SIA Journal on Control, Vol., pp. -9, 973.

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Decentralized Adaptive Control and the Possibility of Utilization of Networked Control System

Decentralized Adaptive Control and the Possibility of Utilization of Networked Control System Dcntralzd Adaptv Control and th Possblty of Utlzaton of Ntworkd Control Systm MARIÁN ÁRNÍK, JÁN MURGAŠ Slovak Unvrsty of chnology n Bratslava Faculty of Elctrcal Engnrng and Informaton chnology Insttut

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM Sc. Rs. hm. ommn.: (3, 0, 77-8 ISSN 77-669 ANALYTIITY THEOREM FOR FRATIONAL LAPLAE TRANSFORM P. R. DESHMUH * and A. S. GUDADHE a Prof. Ram Mgh Insttt of Tchnology & Rsarch, Badnra, AMRAVATI (M.S. INDIA

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

A Probabilistic Characterization of Simulation Model Uncertainties

A Probabilistic Characterization of Simulation Model Uncertainties A Proalstc Charactrzaton of Sulaton Modl Uncrtants Vctor Ontvros Mohaad Modarrs Cntr for Rsk and Rlalty Unvrsty of Maryland 1 Introducton Thr s uncrtanty n odl prdctons as wll as uncrtanty n xprnts Th

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges Physcs of Vry Hgh Frquncy (VHF) Capactvly Coupld Plasma Dschargs Shahd Rauf, Kallol Bra, Stv Shannon, and Kn Collns Appld Matrals, Inc., Sunnyval, CA AVS 54 th Intrnatonal Symposum Sattl, WA Octobr 15-19,

More information

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors

Linear Algebra. Definition The inverse of an n by n matrix A is an n by n matrix B where, Properties of Matrix Inverse. Minors and cofactors Dfnton Th nvr of an n by n atrx A an n by n atrx B whr, Not: nar Algbra Matrx Invron atrc on t hav an nvr. If a atrx ha an nvr, thn t call. Proprt of Matrx Invr. If A an nvrtbl atrx thn t nvr unqu.. (A

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti ICSV Carns ustrala 9- July 7 NON-LINER MOEL FOR STUYING THE MOTION OF HUMN OY Ncola-oru Stănscu Marna Pandra nl Popa Sorn Il Ştfan-Lucan Tabacu partnt of ppld Mchancs Unvrsty of Ptşt Ptşt 7 Roana partnt

More information

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation.

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation. Hatng of a sold cylndr mmrsd n an nsulatd bath. Thrmal dffusvty and hat capacty xprmntal valuaton. Žtný R., CTU FE Dpartmnt of Procss Engnrng, arch. Introducton Th problm as ntatd by th follong E-mal from

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies.

1) They represent a continuum of energies (there is no energy quantization). where all values of p are allowed so there is a continuum of energies. Unbound Stats OK, u untl now, w a dalt solly wt stats tat ar bound nsd a otntal wll. [Wll, ct for our tratnt of t fr artcl and w want to tat n nd r.] W want to now consdr wat ans f t artcl s unbound. Rbr

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES CHOOL O ENGINEERING - TI IGNAL PROCEING INTITUTE Lornzo Potta and Prr Vandrghynst CH-1015 LAUANNE Tlphon: 4121 6932601 Tlfax: 4121 6937600 -mal: lornzo.potta@pfl.ch ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUANNE

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Polytropic Process. A polytropic process is a quasiequilibrium process described by Polytropc Procss A polytropc procss s a quasqulbrum procss dscrbd by pv n = constant (Eq. 3.5 Th xponnt, n, may tak on any valu from to dpndng on th partcular procss. For any gas (or lqud, whn n = 0, th

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

MATCHED FILTER BOUND OPTIMIZATION FOR MULTIUSER DOWNLINK TRANSMIT BEAMFORMING

MATCHED FILTER BOUND OPTIMIZATION FOR MULTIUSER DOWNLINK TRANSMIT BEAMFORMING MATCHED FILTER BOUND OPTIMIZATION FOR MULTIUSER DOWNLINK TRANSMIT BEAMFORMING Guspp Montalbano? and Drk T. M. Slock?? Insttut Eurécom 2229 Rout ds Crêts, B.P. 193, 06904 Sopha Antpols CEDEX, Franc E-Mal:

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Computation of Greeks Using Binomial Tree

Computation of Greeks Using Binomial Tree Journal of Mathmatcal Fnanc, 07, 7, 597-63 http://www.scrp.org/journal/jmf ISSN Onln: 6-44 ISSN Prnt: 6-434 Computaton of Grks Usng Bnomal Tr Yoshfum Muro, Shntaro Suda Graduat School of conomcs and Managmnt,

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

6 Finite element methods for the Euler Bernoulli beam problem

6 Finite element methods for the Euler Bernoulli beam problem 6 Fnt lmnt mtods for t Eulr Brnoull bam problm Rak-54.3 Numrcal Mtods n Structural Engnrng Contnts. Modllng prncpls and boundary valu problms n ngnrng scncs. Enrgy mtods and basc D fnt lmnt mtods - bars/rods

More information

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015 Journal of Informaton Scncs and Computng Tchnologs(JISCT) ISSN: 394-966 SCITECH Volum 5, Issu RESEARCH ORGANISATION Novmbr 7, 5 Journal of Informaton Scncs and Computng Tchnologs www.sctcrsarch.com/journals

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

From Structural Analysis to Finite Element Method

From Structural Analysis to Finite Element Method From Structural Analyss to Fnt Elmnt Mthod Dhman Basu II Gandhnagar -------------------------------------------------------------------------------------------------------------------- Acknowldgmnt Followng

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

FEFF and Related Codes

FEFF and Related Codes FEFF and Rlatd Cods Anatoly Frnl Profssor Physcs Dpartmnt, Yshva Unvrsty, w Yor, USA Synchrotron Catalyss Consortum, Broohavn atonal Laboratory, USA www.yu.du/faculty/afrnl Anatoly.Frnl@yu.du FEFF: John

More information

An Overview of Markov Random Field and Application to Texture Segmentation

An Overview of Markov Random Field and Application to Texture Segmentation An Ovrvw o Markov Random Fld and Applcaton to Txtur Sgmntaton Song-Wook Joo Octobr 003. What s MRF? MRF s an xtnson o Markov Procss MP (D squnc o r.v. s unlatral (causal: p(x t x,

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Code Design for the Low SNR Noncoherent MIMO Block Rayleigh Fading Channel

Code Design for the Low SNR Noncoherent MIMO Block Rayleigh Fading Channel Cod Dsgn for th Low SNR Noncohrnt MIMO Block Raylgh Fadng Channl Shvratna Gr Srnvasan and Mahsh K. Varanas -mal: {srnvsg, varanas}@dsp.colorado.du Elctrcal & Computr Engnrng Dpartmnt Unvrsty of Colorado,

More information

Green Functions, the Generating Functional and Propagators in the Canonical Quantization Approach

Green Functions, the Generating Functional and Propagators in the Canonical Quantization Approach Grn Functons, th Gnratng Functonal and Propagators n th Canoncal Quantzaton Approach by Robrt D. Klaubr 15, 16 www.quantumfldthory.nfo Mnor Rv: Spt, 16 Sgnfcant Rv: Fb 3, 16 Orgnal: Fbruary, 15 Th followng

More information

GPC From PeakSimple Data Acquisition

GPC From PeakSimple Data Acquisition GPC From PakSmpl Data Acquston Introducton Th follong s an outln of ho PakSmpl data acquston softar/hardar can b usd to acqur and analyz (n conjuncton th an approprat spradsht) gl prmaton chromatography

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Representation and Reasoning with Uncertain Temporal Relations

Representation and Reasoning with Uncertain Temporal Relations Rprsntaton and Rasonng wth Uncrtan Tmporal Rlatons Vladmr Ryaov (*) Sppo Puuronn (*) Vagan Trzyan (**) (*) Dpartmnt of Computr Scnc and Informaton Systms Unvrsty of Jyvaskyla P.O.Box 5 SF-4051 Jyvaskyla

More information

Lifting Constructions of Strongly Regular Cayley Graphs

Lifting Constructions of Strongly Regular Cayley Graphs Lftng Constructons of Strongly Rgular Cayly Graphs Koj Momhara Qng Xang Abstract W gv two lftng constructons of strongly rgular Cayly graphs. In th frst constructon w lft a cyclotomc strongly rgular graph

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Decision-making with Distance-based Operators in Fuzzy Logic Control

Decision-making with Distance-based Operators in Fuzzy Logic Control Dcson-makng wth Dstanc-basd Oprators n Fuzzy Logc Control Márta Takács Polytchncal Engnrng Collg, Subotca 24000 Subotca, Marka Orškovća 16., Yugoslava marta@vts.su.ac.yu Abstract: Th norms and conorms

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Network Congestion Games

Network Congestion Games Ntwork Congstion Gams Assistant Profssor Tas A&M Univrsity Collg Station, TX TX Dallas Collg Station Austin Houston Bst rout dpnds on othrs Ntwork Congstion Gams Travl tim incrass with congstion Highway

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1

2F1120 Spektrala transformer för Media Solutions to Steiglitz, Chapter 1 F110 Spktrala transformr för Mdia Solutions to Stiglitz, Chaptr 1 Prfac This documnt contains solutions to slctd problms from Kn Stiglitz s book: A Digital Signal Procssing Primr publishd by Addison-Wsly.

More information

Lecture 08 Multiple View Geometry 2. Prof. Dr. Davide Scaramuzza

Lecture 08 Multiple View Geometry 2. Prof. Dr. Davide Scaramuzza Lctr 8 Mltpl V Gomtry Prof. Dr. Dad Scaramzza sdad@f.zh.ch Cors opcs Prncpls of mag formaton Imag fltrng Fatr dtcton Mlt- gomtry 3D Rconstrcton Rcognton Mltpl V Gomtry San Marco sqar, Vnc 4,79 mags, 4,55,57

More information

Approximately Maximizing Efficiency and Revenue in Polyhedral Environments

Approximately Maximizing Efficiency and Revenue in Polyhedral Environments Approxmatly Maxmzng Effcncy and Rvnu n olyhdral Envronmnts Thành Nguyn Cntr for Appld Mathmatcs Cornll Unvrsty Ithaca, NY, USA. thanh@cs.cornll.du Éva Tardos Computr Scnc Dpartmnt Cornll Unvrsty Ithaca,

More information

Logistic Regression I. HRP 261 2/10/ am

Logistic Regression I. HRP 261 2/10/ am Logstc Rgrsson I HRP 26 2/0/03 0- am Outln Introducton/rvw Th smplst logstc rgrsson from a 2x2 tabl llustrats how th math works Stp-by-stp xampls to b contnud nxt tm Dummy varabls Confoundng and ntracton

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010

18th European Signal Processing Conference (EUSIPCO-2010) Aalborg, Denmark, August 23-27, 2010 8th Europan Sgnal Procssng Conrnc EUSIPCO- Aalorg Dnmark August 3-7 EIGEFUCTIOS EIGEVALUES AD FRACTIOALIZATIO OF THE QUATERIO AD BIQUATERIO FOURIER TRASFORS Soo-Chang P Jan-Jun Dng and Kuo-W Chang Dpartmnt

More information