ON THE ROLE OF EXTENSIONAL RHEOLOGY, ELASTICITY AND DEBORAH NUMBER ON NECK-IN PHENOMENON DURING FLAT FILM PRODUCTION

Size: px
Start display at page:

Download "ON THE ROLE OF EXTENSIONAL RHEOLOGY, ELASTICITY AND DEBORAH NUMBER ON NECK-IN PHENOMENON DURING FLAT FILM PRODUCTION"

Transcription

1 ON THE ROLE OF EXTENSIONAL RHEOLOGY, ELASTICITY AND DEBORAH NUMBER ON NECK-IN PHENOMENON DURING FLAT FILM PRODUCTION Martin Zatloukal 1, Tomas Barborik 1 and Costas Tzoganakis 2 1 Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 76 1 Zlin, Czech Republic 2 Department of Chemical Engineering, University of Waterloo, 2 University Avenue West, Waterloo, Ontario, Canada Abstract In this work, viscoelastic, isothermal extrusion film casting modeling utilizing 1D membrane model and modified Leonov model was performed in order to understand the role of planar and uniaxial extensional viscosities, extensional strain hardening, Deborah number and die exit stress state (captured here via the second to first normal stress difference ratio N 2 /N 1 ). It has been found that the neck-in can be expressed via simple set of dimensionless analytical equations utilizing all above mentioned variables, and thus providing detail view into complicated relationship between polymer melt rheology, die design, process conditions and unwanted neck-in phenomenon. Introduction Extrusion film casting is a continuous, high-speed manufacturing process during which a thin, highly oriented polymer film is produced [1], [2]. In this widely used and dominant process, a molten polymer is extruded through a slit die with a narrow gap to form a thick sheet of polymer that is subsequently intensively stretched in the machine direction by means of rotating take-up drum, which linear velocity is higher than extrusion one providing the macromolecular orientation and decrease in the sheet thickness. Finally, the dimensions of this just created thin film are fixed by cooling down on a chill roll. The intensity of film drawing is usually measured by means of draw ratio that is defined as velocity at the takeup drum divided by polymer exit velocity at the extrusion die. Under certain processing conditions, several phenomena that hamper the production in film quality and quantity requested may be encountered. One of them is called neck-in causing the undesirable reduction in the film width and interrelated phenomenon of edge-beads (also called dog-bone defect) making the edge portions of the film substantially thicker than its central part (see Figure 1). Both phenomena result in needs for postproduction film trimming since only central part of the film features uniformity in thickness. From the practical viewpoint, it is of great importance, therefore, to understand the underlying mechanism of neck-in formation in order to minimize these unwanted effects. Figure 1. Neck-in and edge-beads phenomena during extrusion film casting process. There are many key findings with respect to neck-in phenomenon, which are available in the open literature. Dobroth and Erwin [3] pointed out that the deformation flow in the drawing length comprises from two related regions and the extent of edge-beads and interrelated neck-in phenomenon is determined by interplay between them by an edge stress effect. While the center of the film undergoes planar extensional deformation flow, the edge sections are subjected to uniaxial extensional one (see Figure 2). Figure 2. Visualization of planar and uniaxial extensional flows during extrusion film casting process. SPE ANTEC Anaheim 217 / 1131

2 Some authors endeavored to relate and quantify the gauge of the observed necking in terms of rheological parameters, such as shear, uniaxial and planar viscosity. Many authors reported that the strain hardening in uniaxial extensional viscosity may depress the extent of necking phenomena [4] [6]. This idea was continued by Ito [7], who related the neck-in extent to rheological parameters as ratio of planar viscosities in axial and transverse direction, and derived an analytical equation for the edge line of a molten film of Newtonian and Maxwell fluid. Based on the lines of Dobroth and Erwin s [3] article, who as the first recognized deformation flow type in the drawing area, Shiromoto [8], recently, drafted the idea that the extent of the necking should not have been described by uniaxial extensional viscosity only in addition to take-up length but as the ratio of planar and uniaxial extensional viscosity reflecting the deformation flow type in the central and edge portion of the film in drawing section. In more detail, the following simple relationship between neck-in, NI, and planar to uniaxial extensional viscosity ratio has recently been found [9], [1]: 1 / 2 1 E, P NI W D WF X (1) 2 E, U where W D represents the die exit width, W F the final film width, respectively, X is distance between the flat die and the chill/nip rolls and <η E,P /η E,U > is averaged planar to uniaxial extensional viscosity ratio. Just recently, it has been revealed that die exit stress state (characterized by N 2 /N 1 ratio) increases in the neck-in phenomenon for polymer melts with high relaxation time [11], [12]. The aim of this paper is generalization of Eq. 1 considering the effect die exit stress state, Deborah number and extensional strain hardening effect via process modeling. X Modeling In this work, the one-dimensional membrane model developed by Silagy et al. [13] was used to model isothermal extrusion film casting process. The model essentially features two hypotheses to facilitate the description of the stress and velocity field development in the drawing film. In the membrane hypothesis, where the one of the dimensions of the solved domain is small compared to the other dimensions, is possible to assume that the total stress in this direction is equaled to zero. This dimension is, in this case, the film thickness. Further used supplementary kinematic hypothesis, formerly adopted in the work of Narayanaswamy [14] for the case of glass manufacturing by the float process, is helpful in reducing dimensionality of the task. Although, the model can be used for modeling lateral film width and thickness reduction, it is considered as one-dimensional model in sense of variables that are dependent on x only. The whole system of the first-order ordinary differential equations was then numerically solved by the fourth order Runge- Kutta method incorporating the shooting method. The input parameters were updated in each iteration step to meet the appropriate solution in terms of DR. It was preferred to develop the solver itself in the C++ programming language, to avoid a black box effect, which could have appeared in the case of using an inbuilt solver in any other commercial mathematical-modeling software. The equation evaluation was performed on the PC with the following hardware parameters: CPU Intel Core 2 Quad Q965 (3. GHz); RAM 8 GB DDR2; GPU Sapphire Radeon HD 387; SSD Crucial 256 GB. Typical computational time for one calculation was about 2 minutes. In this work, modified Leonov model, which relates the stress and elastic strain stored in the polymer melt, was used as the constitutive equation as: W 1 W 2 c c (2) I1 I 2 where is the stress, and W, the elastic potential, which depends on the invariants I 1 and I 2 of the recoverable Finger tensor c, W 2 n 3 1 n 1 G I 1 I n (3) where G denotes linear Hookean elastic modulus, and n are numerical parameters. In this work, the Mooney potential (i.e. n = in Eq. 3) and the following dissipation function b proposed in [15], have been employed. 1 sinh I1 3 b I1 exp I1 3 4 I 31 (4) 1 In our previous work [11], [12], the utilized film casting model was validated by using experimental data for LDPE, taken from [16], [17], and model predictions based on the single-mode modified Leonov model (this work) were compared with multi-mode XPP model. It has been found, that behavior of both models is comparable. Such a reasonably good agreement with the experimental data is believed to justify utilization of the single-mode Leonov model for detailed investigation of the neck-in phenomenon. Theoretical analysis of neck-in phenomenon In order to understand the neck-in phenomenon in more detail, uniaxial/planar extensional viscosity (see Figure 3), Deborah number, De, (from.1 up to.1) and die exit stress state N 2 /N 1 (from.1 up to 2.), see Figure 4, were systematically varied and for each individual case, the neck-in was recorded. It has been found that within the investigated range of given parameters, the normalized neck-in can be described by the following set of simple dimensionless analytical equations: SPE ANTEC Anaheim 217 / 1132

3 NI 1 X 1 u De X max (5) 3 E,P 6 1 exp 2De exp 5 De N (6) E,U max 2 E,U max (7) N1 3 where X is the stretching distance (take-up length) represents the maximum value in the steady uniaxial extensional viscosity, E, P and represents planar and uniaxial extensional viscosity (at the average extensional strain rate), respectively, is the Newtonian viscosity, λ is the relaxation time, N 1 is the first normal stress difference at the die exit, N 2 is the second normal stress difference at the die exit, u is the velocity in the machine direction at the die exit, α 1 =.553, α 4 =.512, α 2 = , α 5 =66.712, α 7 =-.43, α 9 =.19, α 3 =2.323, α 6 =1.87, α 8 =-.5, α 1 =1.22. Here, the alpha parameters can be considered as universal for the considered range of extensional strain hardening, Deborah number and N 2 /N 1 ratio. Based on the Figure 4 it can be stated that the analytical model given by Eqs. 5-7 (lines) is capable to represents neck-in predictions of the utilized 1D viscoelastic membrane model predictions (symbols) very well. It is important to mention that utilization of Eqs. 5-7 requires experimental determination of planar to uniaxial extensional viscosity ratio, which is one of the most challenging rheological task because generation and control of the extensional flow is difficult. Just recently, it has been showed that planar and uniaxial extensional viscosity can be measured in wide temperature and deformation rate range by using standard twin bore capillary rheometer, novel rectangle and circular orifice (zero-length) dies and Cogswell model [18]. Conclusion In this work, viscoelastic, isothermal extrusion film casting modeling utilizing 1D membrane model and single-mode modified Leonov model was performed in order to understand the role of viscoelastic stress state at the die exit, extensional viscosity and elasticity on the neck-in phenomenon. It has been found that the neck-in can be expressed via simple set of dimensionless analytical equations utilizing planar to uniaxial E,P extensional viscosity ratio,, uniaxial extensional strain hardening parameter, 3 max max, Deborah number, De, and die exit stress state, N 2 /N 1. It is believed that this model can be used for material, die design and process conditions optimization in order to minimize unwanted neck-in phenomenon in the film production. Acknowledgments The authors wish to acknowledge Grant Agency of the Czech Republic (Grant registration No S, Title: Investigation the effect of polymer melt shear and elongational rheology on production stability of meltblown nanofibers and films) for the financial support. References 1. T. Kanai and G. A. Campbell, Film Processing Advances (Carl Hanser Verlag GmbH & Co. KG., München, 214), T. Kanai and G. A. Campbell, Film Processing (Hanser Publishers, 1999), T. Dobroth and L. Erwin, Polym. Eng. Sci., 26(7), , (1986). 4. B. Debbaut, J. M. Marchal, and M. J. Crochet, Z. Angew. Math. Phys., 46(SPEC. ISSUE), , (1995). 5. N. Toft and M. Rigdahl, Int. Polym. Process., 17(3), , (22). 6. S. Kouda, Polym. Eng. Sci., 48(6), , (28). 7. H. Ito, M. Doi, T. Isaki, and M. Takeo, J. Soc. Rheol. Japan, 31(3), , (23). 8. S. Shiromoto, Y. Masutani, M. Tsutsubuchi, Y. Togawa, and T. Kajiwara, Polym. Eng. Sci., 5(1), 22 31, (21). 9. S. Shiromoto, Y. Masutani, M. Tsutsubuchi, Y. Togawa, and T. Kajiwara, Rheol. Acta, 49(7), , (21). 1. S. Shiromoto, Int. Polym. Process., 29(2), , (214). 11. T. Barborik and M. Zatloukal, AIP Conference Proceedings, 1662, , (215). 12. M. Zatloukal and T. Barborik, Annual Technical Conference - ANTEC, Conference Proceedings, , (216). 13. D. Silagy, Y. Demay, and J. F. Agassant, Polym. Eng. Sci., 36(21), , (1996). 14. O. S. Narayanaswamy, J. Am. Ceram. Soc., 6(1 2), 1 5, (1977). 15. M. Zatloukal, J. Nonnewton. Fluid Mech., 113(2 3), , (23). 16. H. V. Pol, S. S. Thete, P. Doshi, and A. K. Lele, J. Rheol., 57(2), , (213). 17. H. Pol, S. Banik, L. B. Azad, S. S. Thete, P. Doshi, and A. Lele, Rheol. Acta, 53(1), 85 11, (214). 18. M. Zatloukal, Polymer, 14, (216). SPE ANTEC Anaheim 217 / 1133

4 Figure 3. Uniaxial and planar extensional viscosities of different virtual polymer melts utilized in this work having high (top), medium (middle) and low (bottom) level of extensional strain hardening. SPE ANTEC Anaheim 217 / 1134

5 Figure 4. The effect of Deborah number (left) and die exit stress state N 2 /N 1 (right) on the normalized neck-in vs. planar to uniaxial extensional viscosity ratio for virtual polymer melts having high (top), medium (middle) and low (bottom) level of extensional strain hardening. Here, symbols and lines represent utilized viscoelastic 1D membrane model and simple model (Eqs. 5-7) predictions, respectively. SPE ANTEC Anaheim 217 / 1135

Investigation of Polymer Long Chain Branching on Film Blowing Process Stability by using Variational Principle

Investigation of Polymer Long Chain Branching on Film Blowing Process Stability by using Variational Principle Investigation of Polymer Long Chain Branching on Film Blowing Process Stability by using Variational Principle ROMAN KOLARIK a,b and MARTIN ZATLOUKAL a,b a Centre of Polymer Systems, University Institute

More information

Rheological evaluation of melt blown polymer melt

Rheological evaluation of melt blown polymer melt Rheological evaluation of melt blown polymer melt Jiri rabek and Martin Zatloukal Citation: AIP Conf. Proc. 1526, 237 (2013); doi: 10.1063/1.4802618 View online: http://dx.doi.org/10.1063/1.4802618 View

More information

2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process

2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process 2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion Process Print (10)» 2010 Best Paper An Engineering Approach to the Correction of Rotational Flow

More information

Modeling of Non Isothermal Film Blowing Process for Non Newtonian Fluids by Using Variational Principles

Modeling of Non Isothermal Film Blowing Process for Non Newtonian Fluids by Using Variational Principles Modeling of Non Isothermal Film Blowing Process for Non Newtonian Fluids by Using Variational Principles Modified on Friday, 01 May 2015 10:21 PM by mpieler Categorized as: Paper of the Month Modeling

More information

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES

THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES THE 3D VISCOELASTIC SIMULATION OF MULTI-LAYER FLOW INSIDE FILM AND SHEET EXTRUSION DIES Kazuya Yokomizo 1, Makoto Iwamura 2 and Hideki Tomiyama 1 1 The Japan Steel Works, LTD., Hiroshima Research Laboratory,

More information

Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes

Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes Korea-Australia Rheology Journal Vol. 21, No. 2, June 2009 pp. 135-141 Effect of Activation Energy and Crystallization Kinetics of Polyethylenes on the Stability of Film Casting Processes Joo Sung Lee*

More information

On Relationship between PVT and Rheological Measurements of Polymer Melts

On Relationship between PVT and Rheological Measurements of Polymer Melts ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 On Relationship between PVT and Rheological Measurements of Polymer Melts Tomas Sedlacek, Peter Filip 2, Peter Saha Polymer Centre, Faculty

More information

AN ANALYSIS OF THE EFFECT OF ELONGATIONAL VISCOSITY ONTHEFLOWINAFLATDIE

AN ANALYSIS OF THE EFFECT OF ELONGATIONAL VISCOSITY ONTHEFLOWINAFLATDIE AN ANALYSIS OF THE EFFECT OF ELONGATIONAL VISCOSITY ONTHEFLOWINAFLATDIE Y. Sun and M. Gupta Mechanical Engineering-Engineering Mechanics Department Michigan Technological University Houghton, MI 49931

More information

Stability analysis of a three-layer film casting process

Stability analysis of a three-layer film casting process Korea-Australia Rheology Journal Vol. 19, No. 1, March 2007 pp. 27-33 Stability analysis of a three-layer film casting process Joo Sung ee 1, Dong Myeong Shin, Hyun Wook Jung* and Jae Chun Hyun Department

More information

Analysis of Melt Spinning Master-Curves of Low Density Polyethylene

Analysis of Melt Spinning Master-Curves of Low Density Polyethylene Analysis of Melt Spinning Master-Curves of Low Density Polyethylene Ji-Zhao Liang, 1 Lei Zhong, 1 Kejian Wang 2 1 Research Division of Green Function Materials and Equipment, School of Mechanical and Automotive

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Flow Induced Molecular Weight Fractionation during Capillary Flow of Linear Polymer Melt

Flow Induced Molecular Weight Fractionation during Capillary Flow of Linear Polymer Melt Flow Induced Molecular Weight Fractionation during Capillary Flow of Linear Polymer Melt JAN MUSIL a,b and MARTIN ZATLOUKAL a,b a Centre of Polymer Systems, University Institute Tomas Bata University in

More information

TWO-DIMENSIONAL SIMULATIONS OF THE EFFECT OF THE RESERVOIR REGION ON THE PRESSURE OSCILLATIONS OBSERVED IN THE STICK-SLIP INSTABILITY REGIME

TWO-DIMENSIONAL SIMULATIONS OF THE EFFECT OF THE RESERVOIR REGION ON THE PRESSURE OSCILLATIONS OBSERVED IN THE STICK-SLIP INSTABILITY REGIME 1 TWO-DIMENSIONAL SIMULATIONS OF THE EFFECT OF THE RESERVOIR REGION ON THE PRESSURE OSCILLATIONS OBSERVED IN THE STICK-SLIP INSTABILITY REGIME Eleni Taliadorou and Georgios Georgiou * Department of Mathematics

More information

Rheology. A Tool for Characterization of Materials and Optimization of Polymer Processing

Rheology. A Tool for Characterization of Materials and Optimization of Polymer Processing Rheology A Tool for Characterization of Materials and Optimization of Polymer Processing Rheology of Polymer Materials LINEAR AND NONLINEAR FLOW PROPERTIES Polymer Engineering stands for scientific and

More information

Wall-Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Geometry and Roughness

Wall-Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Geometry and Roughness Wall-Slip of Highly Filled Powder Injection Molding Compounds: Effect of Flow Channel Geometry and Roughness Berenika Hausnerovaa,b, Daniel Sanetrnika,b, Gordana Paravanovab a Dept. of Production Engineering,

More information

The Effect of Material Selection in Feed-Block Coextrusion of a Three Layer Film

The Effect of Material Selection in Feed-Block Coextrusion of a Three Layer Film The Effect of Material Selection in Feed-Block Coextrusion of a Three Layer Film Jiri Vlcek 1, Walter Kopytko 2, Martin Zatloukal 2 and Jiri Svabik 1 1. Compuplast International Inc., Zlin, Czech Republic

More information

The Effect of Rheology in Polymer Processing: A Simulation Point of View

The Effect of Rheology in Polymer Processing: A Simulation Point of View ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 10, 2002 The Effect of Rheology in Polymer Processing: A Simulation Point of View Evan Mitsoulis School of Mining Engineering and Metallurgy, National

More information

Determining the Processability of Multilayer Coextruded Structures

Determining the Processability of Multilayer Coextruded Structures Determining the Processability of Multilayer Coextruded Structures Joseph Dooley The Dow Chemical Company, Midland, MI ABSTRACT Multilayer coextrusion is a process in which two or more polymers are extruded

More information

ANALYSIS ON PLANAR ENTRY CONVERGING FLOW OF POLYMER MELTS

ANALYSIS ON PLANAR ENTRY CONVERGING FLOW OF POLYMER MELTS Journal of Materials Science and Engineering with Advanced Technology Volume 2, Number 2, 2010, Pages 217-233 ANALYSIS ON PLANAR ENTRY CONVERGING FLOW OF POLYMER MELTS College of Industrial Equipment and

More information

Modeling of Anisotropic Polymers during Extrusion

Modeling of Anisotropic Polymers during Extrusion Modeling of Anisotropic Polymers during Extrusion Modified on Friday, 01 May 2015 10:38 PM by mpieler Categorized as: Paper of the Month Modeling of Anisotropic Polymers during Extrusion Arash Ahmadzadegan,

More information

Multilayer Rheology Effects in Coextruded Structure Design

Multilayer Rheology Effects in Coextruded Structure Design 2008 Best Paper Multilayer Rheology Effects in Coextruded Structure Design Print (10)» Best Papers» 2009 Best Paper Understanding and Quantification of Die Drool Phenomenon During Polypropylene Extrusion

More information

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE

Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced LLDPE Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 409 415. Indian Academy of Sciences. Influence of steady shear flow on dynamic viscoelastic properties of un-reinforced and Kevlar, glass fibre reinforced

More information

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Modelling the Rheology of Semi-Concentrated Polymeric Composites THALES Project No 1188 Modelling the Rheology of Semi-Concentrated Polymeric Composites Research Team Evan Mitsoulis (PI), Professor, NTUA, Greece Costas Papoulias (Research Student), NTUA, Greece Souzanna

More information

An Adjustable Gap In-Line Rheometer

An Adjustable Gap In-Line Rheometer An Adjustable Gap In-Line Rheometer By D. M. Kalyon, H. Gokturk and I. Boz Highly Filled Materials Institute Hoboken, NJ 07030 Introduction The rheological behavior of polymer melts, and structured fluids

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

VISCOELASTIC SIMULATIONS WITH INTEGRAL MODELS AT EXTREMELY HIGH SHEAR RATES

VISCOELASTIC SIMULATIONS WITH INTEGRAL MODELS AT EXTREMELY HIGH SHEAR RATES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 VISCOELASTIC SIMULATIONS WITH INTEGRAL MODELS AT EXTREMELY HIGH SHEAR RATES Evan Mitsoulis School of Mining Engineering

More information

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review

vs. Chapter 4: Standard Flows Chapter 4: Standard Flows for Rheology shear elongation 2/1/2016 CM4650 Lectures 1-3: Intro, Mathematical Review CM465 Lectures -3: Intro, Mathematical //6 Chapter 4: Standard Flows CM465 Polymer Rheology Michigan Tech Newtonian fluids: vs. non-newtonian fluids: How can we investigate non-newtonian behavior? CONSTANT

More information

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

More information

Memory Phenomena in Extrudate Swell Simulations for Annular Dies

Memory Phenomena in Extrudate Swell Simulations for Annular Dies Memory Phenomena in Extrudate Swell Simulations for Annular Dies X.-L. LUO and E. MITSOULIS, Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario, Canada, KIN 9B4 Synopsis Streamline

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

CPGAN # 006. The Basics of Filament Stretching Rheometry

CPGAN # 006. The Basics of Filament Stretching Rheometry Introduction Measurement of the elongational behavior of fluids is important both for basic research purposes and in industrial applications, since many complex flows contain strong extensional components,

More information

Quasi-1D Modeling of Polymer Melt Die Swell in Short Dies. JAE-HYEUK JEONG and ARKADY I. LEONOV

Quasi-1D Modeling of Polymer Melt Die Swell in Short Dies. JAE-HYEUK JEONG and ARKADY I. LEONOV Quasi-D Modeling of Polymer Melt Die Swell in Short Dies JAE-HYEUK JEONG and ARKADY I. LEONOV Department of Polymer Engineering The University of Aron Aron, Ohio 4435-030 Abstract This paper describes

More information

EFFECT OF TYPICAL MELT TEMPERATURE NON-UNIFORMITY ON FLOW DISTRIBUTION IN FLAT DIES

EFFECT OF TYPICAL MELT TEMPERATURE NON-UNIFORMITY ON FLOW DISTRIBUTION IN FLAT DIES EFFEC OF YPICAL MEL EMPERAURE NON-UNIFORMIY ON FLOW DISRIBUION IN FLA DIES Olivier Catherine, Cloeren Incorporated, Orange, X Abstract In this study, the influence of non-uniform incoming melt temperature

More information

H. W. Müllner (Sp), J. Eberhardsteiner, Technische Universität Wien (A); W. Fidi, Semperit Technische Produkte Ges.m.b.H. & Co. KG, Wimpassing (A)

H. W. Müllner (Sp), J. Eberhardsteiner, Technische Universität Wien (A); W. Fidi, Semperit Technische Produkte Ges.m.b.H. & Co. KG, Wimpassing (A) Dienstag, 4. Juli 2006 Tuesday, July 4, 2006, 9.30 10.00 h Section A Rheologische Charakterisierung der Strangaufweitung von Kautschukmischungen mittels numerischer Simulationen Rheological Characterisation

More information

MATERIALS AND METHODS

MATERIALS AND METHODS Monitoring of Rheological Indicators of LDPE Per-Åke Clevenhag and Claes Oveby Tetra Pak Carton Ambient AB ABSTRACT LDPE,s from high-pressure autoclave reactors for extrusion coating with Melt Flow Rates

More information

Shear rheology of polymer melts

Shear rheology of polymer melts Shear rheology of polymer melts Dino Ferri dino.ferri@versalis.eni.com Politecnico Alessandria di Milano, 14/06/2002 22 nd October 2014 Outline - Review of some basic rheological concepts (simple shear,

More information

Measuring the rheology of thermoplastic polymer melts

Measuring the rheology of thermoplastic polymer melts Measuring the rheology of thermoplastic polymer melts Using rotational and capillary rheometry to characterize polymer melts RHEOLOGY AND VISCOSITY Introduction Rheology is the science of studying the

More information

A NEW DISPERSIVE AND DISTRIBUTIVE STATIC MIXER FOR THE COMPOUNDING OF HIGHLY VISCOUS MATERIALS

A NEW DISPERSIVE AND DISTRIBUTIVE STATIC MIXER FOR THE COMPOUNDING OF HIGHLY VISCOUS MATERIALS A NEW DISPERSIVE AND DISTRIBUTIVE STATIC MIXER FOR THE COMPOUNDING OF HIGHLY VISCOUS MATERIALS Paul Gramann and Bruce Davis, The Madison Group: PPRC. Tim Osswald, University of Wisconsin-Madison Chris

More information

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS Paulo J. Oliveira Departamento de Engenharia Electromecânica, Universidade da Beira Interior Rua Marquês D'Ávila e Bolama, 600

More information

MODELING THREE-DIMENSIONAL NON-NEWTONIAN FLOWS IN SINGLE- SCREW EXTRUDERS

MODELING THREE-DIMENSIONAL NON-NEWTONIAN FLOWS IN SINGLE- SCREW EXTRUDERS MODELING THREE-DIMENSIONAL NON-NEWTONIAN FLOWS IN SINGLE- SCREW EXTRUDERS Christian Marschik Wolfgang Roland Bernhard Löw-Baselli Jürgen Miethlinger Johannes Kepler University Institute of Polymer Extrusion

More information

DIFFERENCE IN THERMOFORMING PROCESSABILITY OBSERVED FOR THREE HIGH IMPACT POLYSTYRENES

DIFFERENCE IN THERMOFORMING PROCESSABILITY OBSERVED FOR THREE HIGH IMPACT POLYSTYRENES Page 1 of 5 DIFFERENCE IN THERMOFORMING PROCESSABILITY OBSERVED FOR THREE HIGH IMPACT POLYSTYRENES Caroline Woelfle, Kurt Koppi, Stephane Costeux, Todd Hogan, Joe Dooley, Ronald Van Daele, Alexander De

More information

Index. Boundary integral method, 27 Boundary location method, 255 Brinkman number, 14, 158

Index. Boundary integral method, 27 Boundary location method, 255 Brinkman number, 14, 158 Index ABFIND,275 Adaptive control, 304, 312 Adaptive process model, 315 Air drag, 221 Alternating Direction Implicit (ADI) technique, 30 Axisymmetric flow, 48 die entry, 58 Boundary integral method, 27

More information

Parash Moni Thakur. Gopal Ch. Hazarika

Parash Moni Thakur. Gopal Ch. Hazarika International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554-566 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Effects of

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

Analytical models for the inflation of a polymeric tube

Analytical models for the inflation of a polymeric tube Eur. J. Mech. A/Solids 19 2) 89 14 2 Éditions scientifiques et médicales Elsevier SAS. All rights reserved Analytical models for the inflation of a polymeric tube F.M. Schmi a, *, A. odriguez-villa b,

More information

Morphology Evolution in PS/LDPE Blends in a Twin Screw Extruder: Effects of Compatibilizer

Morphology Evolution in PS/LDPE Blends in a Twin Screw Extruder: Effects of Compatibilizer Korean J. Chem. Eng., 18(1), 33-39 (2001) Morphology Evolution in PS/LDPE Blends in a Twin Screw Extruder: Effects of Compatibilizer Do Young Moon*, Moo Hyun Kwon and O Ok Park *Chemical Division R&D Center,

More information

Entry Flow of Polyethylene Melts in Tapered Dies

Entry Flow of Polyethylene Melts in Tapered Dies REGULAR CONTRIBUTED ARTICLES M. Ansari 1, A. Alabbas 1, S. G. Hatzikiriakos 1, E. Mitsoulis 2 * 1 Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada

More information

THE SUBORDINATION OF THE THREE- DIMENSIONAL FLOW INSTALLATION IN THE CONVERGING CHANNEL ON RHEOLOGICAL CHARACTERISTICS OF POLYMER STREAM

THE SUBORDINATION OF THE THREE- DIMENSIONAL FLOW INSTALLATION IN THE CONVERGING CHANNEL ON RHEOLOGICAL CHARACTERISTICS OF POLYMER STREAM International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 13, December 2018, pp. 949-956, Article ID: IJCIET_09_13_095 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=13

More information

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS

Non-linear Viscoelasticity FINITE STRAIN EFFECTS IN SOLIDS FINITE STRAIN EFFECTS IN SOLIDS Consider an elastic solid in shear: Shear Stress σ(γ) = Gγ If we apply a shear in the opposite direction: Shear Stress σ( γ) = Gγ = σ(γ) This means that the shear stress

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston

Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston Using Comsol Multiphysics to Model Viscoelastic Fluid Flow Bruce A. Finlayson, Professor Emeritus Department of Chemical Engineering University of Washington, Seattle, WA 98195-1750 finlayson@cheme.washington.edu

More information

Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow

Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow Supplementary Information for Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow Authors: J. Tai, C. P. Lim, Y. C. Lam Correspondence to: MYClam@ntu.edu.sg This document includes:

More information

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature

Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature 37 Effect of Variable Viscosity on Hydro Magnetic Flow and Heat Transfer Over a Stretching Surface with Variable Temperature M. Y. Akl Department of Basic Science, Faculty of Engineering (Shopra Branch),

More information

5 The Oldroyd-B fluid

5 The Oldroyd-B fluid 5 The Oldroyd-B fluid Last time we started from a microscopic dumbbell with a linear entropic spring, and derived the Oldroyd-B equations: A u = u ρ + u u = σ 2 pi + η u + u 3 + u A A u u A = τ Note that

More information

SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS. where most of body fluids like blood and mucus are non-newtonian ones.

SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS. where most of body fluids like blood and mucus are non-newtonian ones. SUMMARY A STUDY OF VISCO-ELASTIC NON-NEWTONIAN FLUID FLOWS Non-Newtonian fluids abound in many aspects of life. They appear in nature, where most of body fluids like blood and mucus are non-newtonian ones.

More information

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS 1 th Fall Rubber Colloquium EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS Jochen Kroll, Stefan Turek, Patrick Westervoß Institute of Applied Mathematics (LS III), TU Dortmund

More information

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials.

Rheology and Constitutive Equations. Rheology = Greek verb to flow. Rheology is the study of the flow and deformation of materials. Rheology and Constitutive Equations Rheology = Greek verb to flow Rheology is the study of the flow and deformation of materials. The focus of rheology is primarily on the study of fundamental, or constitutive,

More information

Fiber spinning and draw resonance: theoretical background

Fiber spinning and draw resonance: theoretical background Fiber spinning and draw resonance: theoretical background dr. ir. Martien Hulsen March 17, 2005 1 Introduction The fiber spinning process is nicely described in the book by Dantig & Tucker ([1], Chapter

More information

Experimental Investigation of the Development of Interfacial Instabilities in Two Layer Coextrusion Dies

Experimental Investigation of the Development of Interfacial Instabilities in Two Layer Coextrusion Dies SCREW EXTRUSION R. Valette 1 *, P. Laure 2, Y. Demay 1, J.-F. Agassant 1 1 Centre de Mise Forme des MatØriaux, Ecole Nationale des Mines de Paris, Sophia Antipolis, France 2 Institut Non-LinØaire de Nice,

More information

Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium

Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium Stagnation Point Flow of Non-Newtonian Fluid and Heat Transfer over a Stretching/Shrinking Sheet in a Porous Medium Mahantesh.M.Nandeppanavar *,1 Shilpa.J.M 1,2 1. Department of PG and UG studies and research

More information

SIMULATION OF POLYMERIC FLOW IN A TWIN-SCREW EXTRUDER: AN ANALYSIS OF ELONGATIONAL VISCOSITY EFFECTS

SIMULATION OF POLYMERIC FLOW IN A TWIN-SCREW EXTRUDER: AN ANALYSIS OF ELONGATIONAL VISCOSITY EFFECTS SIMULATION OF POLYMERIC FLOW IN A TWIN-SCREW EXTRUDER: AN ANALYSIS OF ELONGATIONAL VISCOSITY EFFECTS A. Shah and M. Gupta Mechanical Engineering-Engineering Mechanics Department Michigan Technological

More information

Similarity Approach to the Problem of Second Grade Fluid Flows over a Stretching Sheet

Similarity Approach to the Problem of Second Grade Fluid Flows over a Stretching Sheet Applied Mathematical Sciences, Vol. 1, 2007, no. 7, 327-338 Similarity Approach to the Problem of Second Grade Fluid Flows over a Stretching Sheet Ch. Mamaloukas Athens University of Economics and Business

More information

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Journal of KONES Powertrain and Transport, Vol. 7, No. EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Robert Czabanowski Wroclaw University

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

Electrospinning of PVB Solved in Methanol and Isopropanol

Electrospinning of PVB Solved in Methanol and Isopropanol Electrospinning of PVB Solved in Methanol and Isopropanol M. STENICKA 1,2, P. PEER-SVRCINOVA 3, P. FILIP 3, V. PAVLINEK 1,4, M. MACHOVSKY 1,4 1 Centre of Polymer Systems, University Institute Nad Ovcirnou

More information

Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight Channel with a Square Cross Section

Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight Channel with a Square Cross Section Article Nihon Reoroji Gakkaishi Vol.34, No.2, 105~113 (Journal of the Society of Rheology, Jaan) 2006 The Society of Rheology, Jaan Quasi-Three-Dimensional Simulation of Viscoelastic Flow through a Straight

More information

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects

MHD Flow and Heat Transfer over an. Exponentially Stretching Sheet with Viscous. Dissipation and Radiation Effects Applied Mathematical Sciences, Vol. 7, 3, no. 4, 67-8 MHD Flow and Heat Transfer over an Exponentially Stretching Sheet with Viscous Dissipation and Radiation Effects R. N. Jat and Gopi Chand Department

More information

Oldroyd Viscoelastic Model Lecture Notes

Oldroyd Viscoelastic Model Lecture Notes Oldroyd Viscoelastic Model Lecture Notes Drew Wollman Portland State University Maseeh College of Engineering and Computer Science Department of Mechanical and Materials Engineering ME 510: Non-Newtonian

More information

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction

Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction Motahar Reza, Rajni Chahal, Neha Sharma Abstract This article addresses the boundary layer flow and heat

More information

Investigation of LDPE converging flows using fieldwise measurements techniques

Investigation of LDPE converging flows using fieldwise measurements techniques Investigation of LDPE converging flows using fieldwise measurements techniques Ghalia Boukellal, D. Hertel, Rudy Valette, H. Münstedt, Jean-François Agassant To cite this version: Ghalia Boukellal, D.

More information

OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING

OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING OPTICAL PROPERTY INVESTIGATION IN SEQUENTIAL MULTI-COMPONENT MOLDING Chao-Tsai Huang 1, Meng-Chih Chen 1, Yuan-Rong Chang 1, Wen-Li Yang 1, Shi-Chang Tseng 2,and Huang-Yi Chang 2, 1. CoreTech System (Moldex3D)

More information

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Downloaded from orbit.dtu.dk on: Mar 11, 2019 Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders; Hassager,

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA, SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA, 2016 Volume 24, Number 38

RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA, SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA, 2016 Volume 24, Number 38 RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2016 Volume 24, Number 38 IMPACT OF VISCOSITY ON FILLING THE INJECTION MOULD CAVITY Lukáš

More information

Comparison of the Dynamic Thin Shell and Quasi-cylindrical Models for Blown Film Extrusion. J. CARL PIRKLE, JR. and RICHARD D.

Comparison of the Dynamic Thin Shell and Quasi-cylindrical Models for Blown Film Extrusion. J. CARL PIRKLE, JR. and RICHARD D. Comparison of the Dynamic Thin Shell and Quasi-cylindrical Models for Blown Film Extrusion J. CARL PIRKLE, JR. and RICHARD D. BRAATZ 600 South Mathews Avenue, Box C-3 University of Illinois at Urbana-Champaign

More information

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics R. Carbone 1* 1 Dipartimento di Ingegneria dei Materiali e della Produzione sez. Tecnologie

More information

Effect of Molecular Weight on Viscosity of Polypropylene Melt by Capillary Rheometry

Effect of Molecular Weight on Viscosity of Polypropylene Melt by Capillary Rheometry RESEARCH ARTICLE Effect of Molecular Weight on Viscosity of Polypropylene Melt by Capillary Rheometry Daniel N. Njoroge Department of Mechanical and Manufacturing Engineering Aalborg University Fibigerstraede

More information

On the congruence of some network and pom-pom models

On the congruence of some network and pom-pom models Korea-Australia Rheology Journal Vol 8, No, March 2006 pp 9-4 On the congruence of some network and pom-pom models Roger I Tanner* School of Aerospace, Mechanical and Mechatronic Engineering, University

More information

CONVERGING FLOW ON-LINE RHEOMETRY FOR AN ENGINEERING EXTENSIONAL VISCOSITY OF UPVC.

CONVERGING FLOW ON-LINE RHEOMETRY FOR AN ENGINEERING EXTENSIONAL VISCOSITY OF UPVC. CONVERGING FLOW ON-LINE RHEOMETRY FOR AN ENGINEERING EXTENSIONAL VISCOSITY OF UPVC. H. J. Ettinger, J. F. T. Pittman*, J. Sienz Centre for Polymer Processing Simulation and Design, C2EC, School of Engineering,

More information

Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface

Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface Engineering, 010,, 99-305 doi:10.436/eng.010.4039 Published Online April 010 (http://www. SciRP.org/journal/eng) 99 Dual Solution of MHD Stagnation-Point Flow towards a Stretching Surface Abstract T. R.

More information

Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts

Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts Downloaded from orbit.dtu.dk on: Sep 27, 2018 Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts Wagner, Manfred H.; Kheirandish, Saeid;

More information

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India Polymer Rheology P Sunthar Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai 400076, India P.Sunthar@iitb.ac.in 05 Jan 2010 Introduction Phenomenology Modelling Outline of

More information

Polymer Injection Molding: Flow-induced Crystallization

Polymer Injection Molding: Flow-induced Crystallization Polymer Injection Molding: Flow-induced Crystallization A model for the description of the combined process of quiescent and flow-induced crystallization of polymers is presented. With such a model it

More information

Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses

Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses Modeling the Dynamic Propagation of Shear Bands in Bulk Metallic Glasses B.J. Edwards, K. Feigl, M.L. Morrison*, B. Yang*, P.K. Liaw*, and R.A. Buchanan* Dept. of Chemical Engineering, The University of

More information

Novel method for on-line rheology measurement in manufacturing of non- Newtonian liquids

Novel method for on-line rheology measurement in manufacturing of non- Newtonian liquids Novel method for on-line rheology measurement in manufacturing of non- Newtonian liquids Fridolin Okkels, Anders L. Østergård, Mohammad Amin Mohammadifar 2 Fluidan ApS, Kgs. Lyngby, Denmark 2 National

More information

Rheological Properties of ABS at Low Shear Rates: Effects of Phase Heterogeneity

Rheological Properties of ABS at Low Shear Rates: Effects of Phase Heterogeneity Malaysian Polymer Journal, Vol 4, No, p9-36, 9 Available online at wwwfkkksautmmy/mpj Rheological Properties of ABS at Low Shear Rates: Effects of Phase Heterogeneity Asif Ali Qaiser *, Yasir Qayyum and

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX

FREE CONVECTION OF HEAT TRANSFER IN FLOW PAST A SEMI-INFINITE FLAT PLATE IN TRANSVERSE MAGNETIC FIELD WITH HEAT FLUX American Journal of Applied Sciences 11 (9): 148-1485, 14 ISSN: 1546-939 14 P. Geetha et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3. license doi:1.3844/ajassp.14.148.1485

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION

CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION THERMAL SCIENCE, Year 011, Vol. 15, No. 3, pp. 749-758 749 CONVECTIVE HEAT AND MASS TRANSFER IN A NON-NEWTONIAN FLOW FORMATION IN COUETTE MOTION IN MAGNETOHYDRODYNAMICS WITH TIME-VARING SUCTION by Faiza

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

Two Day Workshop on Rheology of Polymer Melts

Two Day Workshop on Rheology of Polymer Melts Two Day Workshop on Rheology of Polymer Melts : Organized by The Indian Society of Rheology, CoE SPIRIT, and Venture Center : Introduction to the fundamentals of rheology with special emphasis on the rheology

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

Simulation of pressure drop for combined tapered and nontapered die for polypropylene using ansys Polyflow

Simulation of pressure drop for combined tapered and nontapered die for polypropylene using ansys Polyflow IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE) e-issn: 2348-019X, p-issn: 2348-0181, Volume 1, Issue 3 (May-Jun. 2014), PP 22-29 Simulation of pressure drop for combined tapered and nontapered

More information

Capillary Extrusion and Swell of a HDPE Melt Exhibiting Slip

Capillary Extrusion and Swell of a HDPE Melt Exhibiting Slip Capillary Extrusion and Swell of a HDPE Melt Exhibiting Slip MAHMOUD ANSARI Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada EVAN MITSOULIS

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Estimation of damping capacity of rubber vibration isolators under harmonic excitation

Estimation of damping capacity of rubber vibration isolators under harmonic excitation Estimation of damping capacity of rubber vibration isolators under harmonic excitation Svetlana Polukoshko Ventspils University College, Engineering Research Institute VSRC, Ventspils, Latvia E-mail: pol.svet@inbox.lv

More information