Decomposition of Pascal s Kernels Mod p s

Size: px
Start display at page:

Download "Decomposition of Pascal s Kernels Mod p s"

Transcription

1 San Jose State University SJSU ScholarWorks Faculty Publications Mathematics January 2002 Decomposition of Pascal s Kernels Mod p s Richard P. Kubelka San Jose State University, richard.kubelka@ssu.edu Follow this and additional works at: Part of the Mathematics Commons Recommended Citation Richard P. Kubelka. "Decomposition of Pascal s Kernels Mod p s " Integers: Electronic Journal of Combinatorial Number Theory 2002: 1-6. This Article is brought to you for free and open access by the Mathematics at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@ssu.edu.

2 DECOMPOSITION OF PASCAL S KERNELS MOD p s Richard P. Kubelka Department of Mathematics, San Jose State University, San Jose, CA , USA kubelka@math.ssu.edu Received: 12/11/01, Revised: 11/18/02, Accepted: 12/18/02, Published: 12/18/02 Abstract For a prime p we define Pascal s Kernel Kp, s =[kp, s i ] i,=0 as the infinite matrix satisfying kp, s i = 1 p s mod p if is divisible by p s and kp, s i = 0 otherwise. While the individual entries of Pascal s Kernel can be computed using a formula of Kazandzidis that has been known for some time, our purpose here will be to use that formula to explain the global geometric patterns that occur in Kp, s. Indeed, if we consider the finite truncated versions of Kp, s, we find that they can be decomposed into superpositions of tensor products of certain primitive p p matrices. Most of us have seen the beautiful geometric patterns that result when Pascal s Triangle is viewed modulo a prime p. In fact, if we consider Pascal s Rectangle, the infinite matrix R =[r i ] i,=0, where r i =, and its truncated non-infinite versions R n =[r i ] pn 1 i,=0, then we can describe these patterns explicitly in a concise manner by noting that R n R 1 R 1 mod p, 1 where there are n factors on the right. Here signifies the Kronecker tensor product of two matrices [Ser]: if A is an m n matrix and B is an r s matrix, then A B is the mr ns matrix whose ith r s block is a i B. Moreover, if M 0,...,M n are p p matrices and a 0 + a 1 p a n p n and b 0 + b 1 p b n p n are the p-adic expansions of a and b, then M 0 M n ab =M 0 anb n M n a0 b 0 2 The proof of 1 follows readily from 2 and from the result of Lucas [Luc] that a n ai mod p 3 b i=0 b i

3 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY , #A13 2 It should be noted that by the multinomial version of Lucas Theorem [Dick], results similar to 1 hold for Pascal s Simplices, higher dimensional arrays of multinomial coefficients. Modulo powers of a prime p, we still have beautiful geometric patterns, but they are subtler and less easily described. In this paper, as a first step toward describing and explaining these patterns, we will examine Pascal s Kernels, rectangular arrays obtained from those binomial coefficients which are divisible by p s. To be more precise, let us recall the notation employed in [Sing]: if a b = de p e + + d n p n and d e 0, let E a b = e and F a b = de. Now define the Pascal s Kernel Kp, s =[kp, s i ] i,=0 as the infinite matrix satisfying kp, s i = 1 p s mod p if E s, and kp, si = 0 otherwise. Note: kp, s i = d s in the p-adic expansion of a if s e; in particular, if E = s, then kp, s i = F b. As above, define truncated matrices Kp, s, n bykp, s, n = [kp, s i ] pn 1 i,=0. Remark 1. The name Pascal s Kernel is suggested by the fact that the entries of Kp, s, n live in Z p as it is mapped isomorphically onto the kernel of the mod p s reduction map in the exact sequence 0 Z p p s Z p s+1 Z p s Figure 1: K3, 1, 3 Figure 2: K3, 2, 3 Figures 1 and 2 show K3, 1, 3 and K3, 2, 3, for example, with zeros suppressed. Note that our definition implies that for s t, Kp, s, n and Kp, t, n have no overlap. That is, for all i,, at most one of kp, s, n i and kp, t, n i is nonzero. While a formula for F a b has been known for some time [Kaz], it is the purpose of this paper to interpret that formula in a way that explains the geometric patterns that occur

4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY , #A13 3 in Pascal s Kernels in terms of a superposition of tensor products of certain primitive matrices. Specifically, we have the following Theorem. Let p be a prime. For s>n, Kp, s, n =0. For s n, there exist p p matrices M 1,0, M 0,1, M 0,0, and M 1,1, which depend only on p, such that Kp, s, n is the sum of all tensor products M tn 1,t n 2 M tn 2,t n 3 M t1,t 0 M t0,0 with t k {0, 1} and precisely s of the t 0,t 1,...t n 1 equal 1. Remark 2. There are evidently n s summands in Kp, s, n. The p p matrix M r,s is defined as having i-th entry Φ r,s i, mod p if 0 i + + s pr < p and 0 otherwise, where r i + + s pr! Φ r,s i, = 1. i!! Remark 3. i M 1,0 i 1 p mod p if i + p and M1,0 i = 0 otherwise. In fact, M 1,0 = Kp, 1, 1. ii M 0,1 i = +1! i!! =i + +1 mod p. iii M 0,0 i =! i!! = mod p. In fact, M0,0 = Kp, 0, 1. iv M 1,1 i +1 p mod p if i + p 1 and M1,1 i = 0 otherwise. v M 1,1 i M 0,0 1 p 1 p 1 i = 2p 2 i 1 p 1 i if i + p 1 and M1,1 i =0 otherwise. Therefore M 1,1 is ust M 0,0 reflected across its anti-diagonal with its nonzero entries inverted; here inverses are taken in the field Z/p. vi M 1,0 i M 0,1 1 p 1 p 1 i = 2p 1 i 1 2p 2 i 1 p 1 i if i + p and M 1,0 i = 0 otherwise. Therefore M 1,0 is ust M 0,1 reflected across its antidiagonal with its nonzero entries inverted and negated; inverses and negatives are taken in the field Z/p. Remark 4. As we will see in the course of the proof below, although Kp, s, n is expressed as a sum of matrices, these matrices don t overlap. That is, for each entry of Kp, s, n, at most one of the summands is nonzero in that position. In terms of the geometric picture, Kp, s, n is a mosaic, with little pieces set in the holes between the bigger pieces. Examples. Kp, 0, 1 = M 0,0 and Kp, 1, 1 = M 1,0, as noted above. Kp, 1, 3 = M 1,0 M 0,0 M 0,0 + M 0,1 M 1,0 M 0,0 + M 0,0 M 0,1 M 1,0 4

5 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY , #A13 4 Kp, 2, 3 = M 1,0 M 0,1 M 1,0 + M 0,1 M 1,1 M 1,0 + M 1,1 M 1,0 M 0,0 5 In the case p =3,wehave: M 1,0 = 0 0 1, M 0,1 = , M 0,0 = and the reader may verify 4 and 5 by examining Figures 1 and 2., M 1,1 = Proof of the Theorem. Consider kp, s, n i. Our definition implies that this equals F if E = s and zero otherwise. We will show that if E s, then the i-th entry of every one of the tensor product summands called for in the Theorem must be 0. On the other hand, we will show that if E = s, the i-th entries of all such summands will be 0 except for precisely one, which will equal F. First express i,, and i + p-adically: i = b 0 + b 1 p b n 1 p n 1, = c 0 + c 1 p c n 1 p n 1, and i + = a 0 + a 1 p a n p n, where 0 a k,b k,c k <pas usual and b n and c n are both 0. We take our main tools from [Sing]: i + n e = E = b k + c k a k /p 1 6 i + n F 1 e a k! mod p 7 b k!c k! Remark 5. It is crucial to note as was pointed out in [Sing] that the number e obtained in 6 is exactly the number of carries that we get when we add i and p-adically. For example, if there are no carries, then e =0,a k = b k + c k for all k, and 7 reduces to 3. Considering the p-adic addition of i and more closely, let r k denote the carry digit from the k-th place to the k+1-st place. So a k = b k +c k +r k 1 pr k, with r k,r k 1 {0, 1} and r 1 and r n both 0. By Remark 5, n r k = e, and so 7 becomes i + n F 1 e b k + c k + r k 1 pr k! b k!c k! n 1 r b 8 k k + c k + r k 1 pr k! n = Φ rk,r b k!c k! k 1 b k,c k mod p., That 6 gives the number of carries implies immediately that E n. So if s>n, we must have kp, s, n i =0.

6 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY , #A13 5 Now suppose s n and consider a typical M tn 1,t n 2 M tn 2,t n 3 M t1,t 0 M t0,0 summand of Kp, s, n as called for by the Theorem. By 2 its contribution to kp, s, n i should be M tn 1,t n 2 bn 1 c n 1 M t0,0 b0 c 0 9 with n t k = s. If E = n r k >s, then for some smallest k, r k = 1 and t k = 0. But r k = 1 implies that b k + c k p 1 if k > 0 and r k 1 = 1 also, or b k + c k p if r k 1 = 0. In the former case our assumption that k is minimal implies that M tk,t k 1 = M 0,1. Hence b k + c k p 1 here implies that M tk,t k 1 bk c k = 0. In the latter case, b k + c k p implies that M tk,t k 1 bk c k = 0 regardless of whether t k 1 equals 0 or 1. Both cases therefore yield zero summands, which is exactly what we need. The case where E <sis dispatched by the same argument, with the roles of 0 and 1 for the r k s and t k s reversed. If E = s, we noted earlier that kp, s, ni = F. We will show that a typical summand of kp, s, n i as called for by the Theorem and as given by 9 will be nonzero precisely when t k = r k for k =0,...n 1 and that in that case the value of the summand will be given by the last expression in 8. We start our inductive proof of this by considering the case where b 0 + c 0 p 1, and thus r 0 =0. Ift 0 = 1 in our summand, then M t0,0 b0 c 0 =M 1,0 b0 c 0 = 0, by the definition of M 1,0. On the other hand, if t 0 =0, then M t0,0 b0 c 0 =M 0,0 b0 c 0 =Φ 0,0 b 0,c 0 =Φ r0,r 1 b 0,c 0. Thus, working from right to left, the first factor in 9 will match the k = 0 factor in 8. Moreover, in the case where b 0 + c 0 p, a similar argument will also give us the match of those factors. Now proceeding inductively, we assume that t k = r k for all k<mand so M tk,t k 1 bk c k =M rk,r k 1 bk c k =Φ rk,r k 1 b k,c k 10 for all k<m. Thus the first m factors in 8 match the first m factors in 9 read right-to-left. To advance the induction, we need to show that t m = r m. This and the inductive hypothesis will then guarantee that M tm,tm 1 bmcm =Φ rm,rm 1 b m,c m, and then the first m + 1 factors will match à la 10, and our induction will be complete. The proof that t m = r m proceeds by contradiction, using the same argument with the minimal k replaced by m that we employed above in considering the cases where E >sand E <s. Proof of Remaining Items from Remark 3. For item i, we must show 1 p p! i!! mod p when i + p. This amounts to showing that i +!/p i + p! mod p. 11

7 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY , #A13 6 But i +!/i + p! is a product of p consecutive integers, one from each residue class mod p. Since 0 i, < p, one of those factors will be exactly p and no other will be divisible by p. Therefore i +! p 1! 1 mod p, p i + p! this last congruence being Wilson s Theorem [Edg]. This completes the proof of 11, and hence of item i. A nearly identical argument gives us item iv, that +1 p +1 p! mod p i!! when i + p 1. For items v and vi, note that if H is a p p matrix with rows and columns numbered from 0 to p 1, the matrix H with entries h i = h p 1 p 1 i is H reflected across its anti-diagonal. The proofs of items v and vi combine this fact with straightforward applications of the following Lemma. For 0 m p 1, [p 1 m!] 1 1 p m m! mod p. The proof of the Lemma once again follows directly from Wilson s Theorem. Remark 6. As a final aside, let us note that the matrix M 0,0 has the further property that M 2 0,0 is ust M 0,0 reflected across its anti-diagonal. Furthermore, M 4 0,0 = M 0,0 and, since M 0,0 is invertible, M 3 0,0 = I. See [Stra] for details. Acknowledgement. I would like to thank the referee for suggestions that markedly simplified the statement and proof of the results in this paper. References [Dick] L. E. Dickson, Theorems on the residues of multinomial coefficients with respect to a prime modulus, Quart. J. Pure Appl. Math., , [Edg] H. M. Edgar, A First Course in Number Theory, Wadsworth, Belmont, 1988, 41. [Kaz] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce NS, , [Luc] E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris 1891, [Ser] J.-P. Serre, Linear Representations of Finite Groups, Springer, New York 1977, 8. [Sing] D. Singmaster, Notes on binomial coefficients I a generalization of Lucas congruence, J. London Math. Soc. 2, , [Stra] N. Strauss and I. Gessel, Solution to Advanced Problem #6527, Amer. Math. Monthly, ,

Appending Digits to Generate an Infinite Sequence of Composite Numbers

Appending Digits to Generate an Infinite Sequence of Composite Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 2011, Article 11.5.7 Appending Digits to Generate an Infinite Sequence of Composite Numbers Lenny Jones and Daniel White Department of Mathematics

More information

Notes on Systems of Linear Congruences

Notes on Systems of Linear Congruences MATH 324 Summer 2012 Elementary Number Theory Notes on Systems of Linear Congruences In this note we will discuss systems of linear congruences where the moduli are all different. Definition. Given the

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively 6 Prime Numbers Part VI of PJE 6.1 Fundamental Results Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively D (p) = { p 1 1 p}. Otherwise

More information

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC #A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania lkjone@ship.edu Received: 9/17/10, Revised:

More information

RESEARCH ARTICLE. Linear Magic Rectangles

RESEARCH ARTICLE. Linear Magic Rectangles Linear and Multilinear Algebra Vol 00, No 00, January 01, 1 7 RESEARCH ARTICLE Linear Magic Rectangles John Lorch (Received 00 Month 00x; in final form 00 Month 00x) We introduce a method for producing

More information

RINGS ISOMORPHIC TO THEIR NONTRIVIAL SUBRINGS

RINGS ISOMORPHIC TO THEIR NONTRIVIAL SUBRINGS RINGS ISOMORPHIC TO THEIR NONTRIVIAL SUBRINGS JACOB LOJEWSKI AND GREG OMAN Abstract. Let G be a nontrivial group, and assume that G = H for every nontrivial subgroup H of G. It is a simple matter to prove

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

GEOMETRY OF BINOMIAL COEFFICIENTS. STEPHEN WOLFRAM The Institute jor Advanced Study, Princeton NJ 08540

GEOMETRY OF BINOMIAL COEFFICIENTS. STEPHEN WOLFRAM The Institute jor Advanced Study, Princeton NJ 08540 Reprinted from the AMERICAN MATHEMATICAL MONTHLY Vol. 91, No.9, November 1984 GEOMETRY OF BINOMIAL COEFFICIENTS STEPHEN WOLFRAM The Institute jor Advanced Study, Princeton NJ 08540 This note describes

More information

THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS

THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS FRANCIS N. CASTRO, OSCAR E. GONZÁLEZ, AND LUIS A. MEDINA Abstract. In this work we explore the p-adic valuation of Eulerian numbers.

More information

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS Gregory Tollisen Department of Mathematics, Occidental College, 1600 Campus Road, Los Angeles, USA tollisen@oxy.edu

More information

REFINEMENTS OF SOME PARTITION INEQUALITIES

REFINEMENTS OF SOME PARTITION INEQUALITIES REFINEMENTS OF SOME PARTITION INEQUALITIES James Mc Laughlin Department of Mathematics, 25 University Avenue, West Chester University, West Chester, PA 9383 jmclaughlin2@wcupa.edu Received:, Revised:,

More information

An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n2

An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n2 1 47 6 11 Journal of Integer Sequences, Vol. 17 (014), Article 14.7.6 An Elementary Proof that any Natural Number can be Written as the Sum of Three Terms of the Sequence n Bakir Farhi Department of Mathematics

More information

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS JEREMY LOVEJOY Abstract. We study the generating function for (n), the number of partitions of a natural number n into distinct parts. Using

More information

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES MATTHEW S. MIZUHARA, JAMES A. SELLERS, AND HOLLY SWISHER Abstract. Ramanujan s celebrated congruences of the partition function p(n have inspired a vast

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit, and Yee introduced partition

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

EULER S THEOREM KEITH CONRAD

EULER S THEOREM KEITH CONRAD EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

More information

PROBLEMS ON CONGRUENCES AND DIVISIBILITY

PROBLEMS ON CONGRUENCES AND DIVISIBILITY PROBLEMS ON CONGRUENCES AND DIVISIBILITY 1. Do there exist 1,000,000 consecutive integers each of which contains a repeated prime factor? 2. A positive integer n is powerful if for every prime p dividing

More information

arxiv:math/ v3 [math.gr] 21 Feb 2006

arxiv:math/ v3 [math.gr] 21 Feb 2006 arxiv:math/0407446v3 [math.gr] 21 Feb 2006 Separability of Solvable Subgroups in Linear Groups Roger Alperin and Benson Farb August 11, 2004 Abstract Let Γ be a finitely generated linear group over a field

More information

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS

NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS NONABELIAN GROUPS WITH PERFECT ORDER SUBSETS CARRIE E. FINCH AND LENNY JONES Abstract. Let G be a finite group and let x G. Define the order subset of G determined by x to be the set of all elements in

More information

COLLOQUIUM MATHEMATICUM

COLLOQUIUM MATHEMATICUM COLLOQUIUM MATHEMATICUM VOL. 74 1997 NO. 1 ON PASCAL'S TRIANGLE MODULO p2 JAMES G. H U A RD (BUFFALO, N.Y.), BLAIR K. S P E ARM A N (KELOWNA, B.C.), AND KENNETH S. W I L L I A M S (OTTAWA, ONT.) 1. Introduction.

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

Perfect Power Riesel Numbers

Perfect Power Riesel Numbers Perfect Power Riesel Numbers Carrie Finch a, Lenny Jones b a Mathematics Department, Washington and Lee University, Lexington, VA 24450 b Department of Mathematics, Shippensburg University, Shippensburg,

More information

#A6 INTEGERS 17 (2017) AN IMPLICIT ZECKENDORF REPRESENTATION

#A6 INTEGERS 17 (2017) AN IMPLICIT ZECKENDORF REPRESENTATION #A6 INTEGERS 17 (017) AN IMPLICIT ZECKENDORF REPRESENTATION Martin Gri ths Dept. of Mathematical Sciences, University of Essex, Colchester, United Kingdom griffm@essex.ac.uk Received: /19/16, Accepted:

More information

A connection between number theory and linear algebra

A connection between number theory and linear algebra A connection between number theory and linear algebra Mark Steinberger Contents 1. Some basics 1 2. Rational canonical form 2 3. Prime factorization in F[x] 4 4. Units and order 5 5. Finite fields 7 6.

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

*!5(/i,*)=t(-i)*-, fty.

*!5(/i,*)=t(-i)*-, fty. ON THE DIVISIBILITY BY 2 OF THE STIRLING NUMBERS OF THE SECOND KIND T* Lengyel Occidental College, 1600 Campus Road., Los Angeles, CA 90041 {Submitted August 1992) 1. INTRODUCTION In this paper we characterize

More information

Transposition as a permutation: a tale of group actions and modular arithmetic

Transposition as a permutation: a tale of group actions and modular arithmetic Transposition as a permutation: a tale of group actions and modular arithmetic Jeff Hooper Franklin Mendivil Department of Mathematics and Statistics Acadia University Abstract Converting a matrix from

More information

On Systems of Diagonal Forms II

On Systems of Diagonal Forms II On Systems of Diagonal Forms II Michael P Knapp 1 Introduction In a recent paper [8], we considered the system F of homogeneous additive forms F 1 (x) = a 11 x k 1 1 + + a 1s x k 1 s F R (x) = a R1 x k

More information

FINITELY-GENERATED ABELIAN GROUPS

FINITELY-GENERATED ABELIAN GROUPS FINITELY-GENERATED ABELIAN GROUPS Structure Theorem for Finitely-Generated Abelian Groups Let G be a finitely-generated abelian group Then there exist a nonnegative integer t and (if t > 0) integers 1

More information

ON THE RESIDUALITY A FINITE p-group OF HN N-EXTENSIONS

ON THE RESIDUALITY A FINITE p-group OF HN N-EXTENSIONS 1 ON THE RESIDUALITY A FINITE p-group OF HN N-EXTENSIONS D. I. Moldavanskii arxiv:math/0701498v1 [math.gr] 18 Jan 2007 A criterion for the HNN-extension of a finite p-group to be residually a finite p-group

More information

A MATRIX GENERALIZATION OF A THEOREM OF FINE

A MATRIX GENERALIZATION OF A THEOREM OF FINE A MATRIX GENERALIZATION OF A THEOREM OF FINE ERIC ROWLAND To Jeff Shallit on his 60th birthday! Abstract. In 1947 Nathan Fine gave a beautiful product for the number of binomial coefficients ( n, for m

More information

Number Theory: Niven Numbers, Factorial Triangle, and Erdos' Conjecture

Number Theory: Niven Numbers, Factorial Triangle, and Erdos' Conjecture Sacred Heart University DigitalCommons@SHU Mathematics Undergraduate Publications Mathematics -2018 Number Theory: Niven Numbers, Factorial Triangle, and Erdos' Conjecture Sarah Riccio Sacred Heart University,

More information

Arithmetic properties of overcubic partition pairs

Arithmetic properties of overcubic partition pairs Arithmetic properties of overcubic partition pairs Bernard L.S. Lin School of Sciences Jimei University Xiamen 3101, P.R. China linlsjmu@13.com Submitted: May 5, 014; Accepted: Aug 7, 014; Published: Sep

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Problem 1: Specify two different predicates P (x) and

More information

On an Additive Characterization of a Skew Hadamard (n, n 1/ 2, n 3 4 )-Difference Set in an Abelian Group

On an Additive Characterization of a Skew Hadamard (n, n 1/ 2, n 3 4 )-Difference Set in an Abelian Group Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 5-013 On an Additive Characterization of a Skew Hadamard (n, n 1/, n 3 )-Difference Set in an Abelian Group

More information

arxiv: v2 [math.nt] 29 Jul 2017

arxiv: v2 [math.nt] 29 Jul 2017 Fibonacci and Lucas Numbers Associated with Brocard-Ramanujan Equation arxiv:1509.07898v2 [math.nt] 29 Jul 2017 Prapanpong Pongsriiam Department of Mathematics, Faculty of Science Silpakorn University

More information

THE DENOMINATORS OF POWER SUMS OF ARITHMETIC PROGRESSIONS. Bernd C. Kellner Göppert Weg 5, Göttingen, Germany

THE DENOMINATORS OF POWER SUMS OF ARITHMETIC PROGRESSIONS. Bernd C. Kellner Göppert Weg 5, Göttingen, Germany #A95 INTEGERS 18 (2018) THE DENOMINATORS OF POWER SUMS OF ARITHMETIC PROGRESSIONS Bernd C. Kellner Göppert Weg 5, 37077 Göttingen, Germany b@bernoulli.org Jonathan Sondow 209 West 97th Street, New Yor,

More information

Prime and irreducible elements of the ring of integers modulo n

Prime and irreducible elements of the ring of integers modulo n Prime and irreducible elements of the ring of integers modulo n M. H. Jafari and A. R. Madadi Department of Pure Mathematics, Faculty of Mathematical Sciences University of Tabriz, Tabriz, Iran Abstract

More information

A Generalization of Bernoulli's Inequality

A Generalization of Bernoulli's Inequality Florida International University FIU Digital Commons Department of Mathematics and Statistics College of Arts, Sciences & Education 200 A Generalization of Bernoulli's Inequality Laura De Carli Department

More information

On a Balanced Property of Compositions

On a Balanced Property of Compositions On a Balanced Property of Compositions Miklós Bóna Department of Mathematics University of Florida Gainesville FL 32611-8105 USA Submitted: October 2, 2006; Accepted: January 24, 2007; Published: March

More information

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS #A22 INTEGERS 7 (207) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS Shane Chern Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania shanechern@psu.edu Received: 0/6/6,

More information

Homework #2 solutions Due: June 15, 2012

Homework #2 solutions Due: June 15, 2012 All of the following exercises are based on the material in the handout on integers found on the class website. 1. Find d = gcd(475, 385) and express it as a linear combination of 475 and 385. That is

More information

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B. Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination III (Spring 2007) Problem 1: Suppose A, B, C and D are finite sets

More information

CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p

CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p DOMINIC VELLA AND ALFRED VELLA. Introduction The cycles that occur in the Fibonacci sequence {F n } n=0 when it is reduced

More information

How many units can a commutative ring have?

How many units can a commutative ring have? How many units can a commutative ring have? Sunil K. Chebolu and Keir Locridge Abstract. László Fuchs posed the following problem in 960, which remains open: classify the abelian groups occurring as the

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information

Applications. More Counting Problems. Complexity of Algorithms

Applications. More Counting Problems. Complexity of Algorithms Recurrences Applications More Counting Problems Complexity of Algorithms Part I Recurrences and Binomial Coefficients Paths in a Triangle P(0, 0) P(1, 0) P(1,1) P(2, 0) P(2,1) P(2, 2) P(3, 0) P(3,1) P(3,

More information

MULTI-RESTRAINED STIRLING NUMBERS

MULTI-RESTRAINED STIRLING NUMBERS MULTI-RESTRAINED STIRLING NUMBERS JI YOUNG CHOI DEPARTMENT OF MATHEMATICS SHIPPENSBURG UNIVERSITY SHIPPENSBURG, PA 17257, U.S.A. Abstract. Given positive integers n, k, and m, the (n, k)-th m- restrained

More information

Some constructions of integral graphs

Some constructions of integral graphs Some constructions of integral graphs A. Mohammadian B. Tayfeh-Rezaie School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran ali m@ipm.ir tayfeh-r@ipm.ir

More information

Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5. Modular arithmetic. 5.1 The modular ring Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

More information

Math 319 Problem Set #2 Solution 14 February 2002

Math 319 Problem Set #2 Solution 14 February 2002 Math 39 Problem Set # Solution 4 February 00. (.3, problem 8) Let n be a positive integer, and let r be the integer obtained by removing the last digit from n and then subtracting two times the digit ust

More information

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C

SECOND-ORDER RECURRENCES. Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C p-stability OF DEGENERATE SECOND-ORDER RECURRENCES Lawrence Somer Department of Mathematics, Catholic University of America, Washington, D.C. 20064 Walter Carlip Department of Mathematics and Computer

More information

SOME MORE PATTERNS FROM PASCAL^ TRIANGLE

SOME MORE PATTERNS FROM PASCAL^ TRIANGLE SOME MORE PATTERNS FROM PASCAL^ TRIANGLE. D. ANDERSON Civil Service College, London SWlV RB. INTRODUCTION Over the years, much use has been made of Pascal's triangle, part of which is shown in Table..

More information

x y B =. v u Note that the determinant of B is xu + yv = 1. Thus B is invertible, with inverse u y v x On the other hand, d BA = va + ub 2

x y B =. v u Note that the determinant of B is xu + yv = 1. Thus B is invertible, with inverse u y v x On the other hand, d BA = va + ub 2 5. Finitely Generated Modules over a PID We want to give a complete classification of finitely generated modules over a PID. ecall that a finitely generated module is a quotient of n, a free module. Let

More information

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS #A40 INTEGERS 16 (2016) POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS Daniel Baczkowski Department of Mathematics, The University of Findlay, Findlay, Ohio

More information

Counting Palindromic Binary Strings Without r-runs of Ones

Counting Palindromic Binary Strings Without r-runs of Ones 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 16 (013), Article 13.8.7 Counting Palindromic Binary Strings Without r-runs of Ones M. A. Nyblom School of Mathematics and Geospatial Science RMIT University

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

STABLY FREE MODULES KEITH CONRAD

STABLY FREE MODULES KEITH CONRAD STABLY FREE MODULES KEITH CONRAD 1. Introduction Let R be a commutative ring. When an R-module has a particular module-theoretic property after direct summing it with a finite free module, it is said to

More information

SPLITTING FIELDS AND PERIODS OF FIBONACCI SEQUENCES MODULO PRIMES

SPLITTING FIELDS AND PERIODS OF FIBONACCI SEQUENCES MODULO PRIMES SPLITTING FIELDS AND PERIODS OF FIBONACCI SEQUENCES MODULO PRIMES SANJAI GUPTA, PAROUSIA ROCKSTROH, AND FRANCIS EDWARD SU 1. Introduction The Fibonacci sequence defined by F 0 = 0, F 1 = 1, F n+1 = F n

More information

On the vanishing of Tor of the absolute integral closure

On the vanishing of Tor of the absolute integral closure On the vanishing of Tor of the absolute integral closure Hans Schoutens Department of Mathematics NYC College of Technology City University of New York NY, NY 11201 (USA) Abstract Let R be an excellent

More information

MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS

MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS LORENZ HALBEISEN, MARTIN HAMILTON, AND PAVEL RŮŽIČKA Abstract. A subset X of a group (or a ring, or a field) is called generating, if the smallest subgroup

More information

THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5

THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5 THE NUMBER OF PARTITIONS INTO DISTINCT PARTS MODULO POWERS OF 5 JEREMY LOVEJOY Abstract. We establish a relationship between the factorization of n+1 and the 5-divisibility of Q(n, where Q(n is the number

More information

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n

ZEROES OF INTEGER LINEAR RECURRENCES. 1. Introduction. 4 ( )( 2 1) n ZEROES OF INTEGER LINEAR RECURRENCES DANIEL LITT Consider the integer linear recurrence 1. Introduction x n = x n 1 + 2x n 2 + 3x n 3 with x 0 = x 1 = x 2 = 1. For which n is x n = 0? Answer: x n is never

More information

THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS

THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS THE ORDER OF APPEARANCE OF PRODUCT OF CONSECUTIVE FIBONACCI NUMBERS DIEGO MARQUES Abstract. Let F n be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Solution Set 7, Fall '12

Solution Set 7, Fall '12 Solution Set 7, 18.06 Fall '12 1. Do Problem 26 from 5.1. (It might take a while but when you see it, it's easy) Solution. Let n 3, and let A be an n n matrix whose i, j entry is i + j. To show that det

More information

POSITIVE DEFINITE n-regular QUADRATIC FORMS

POSITIVE DEFINITE n-regular QUADRATIC FORMS POSITIVE DEFINITE n-regular QUADRATIC FORMS BYEONG-KWEON OH Abstract. A positive definite integral quadratic form f is called n- regular if f represents every quadratic form of rank n that is represented

More information

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118

Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 70118 The -adic valuation of Stirling numbers Tewodros Amdeberhan, Dante Manna and Victor H. Moll Department of Mathematics, Tulane University New Orleans, LA 7011 Abstract We analyze properties of the -adic

More information

On Arithmetic Properties of Bell Numbers, Delannoy Numbers and Schröder Numbers

On Arithmetic Properties of Bell Numbers, Delannoy Numbers and Schröder Numbers A tal given at the Institute of Mathematics, Academia Sinica (Taiwan (Taipei; July 6, 2011 On Arithmetic Properties of Bell Numbers, Delannoy Numbers and Schröder Numbers Zhi-Wei Sun Nanjing University

More information

The Humble Sum of Remainders Function

The Humble Sum of Remainders Function DRAFT VOL. 78, NO. 4, OCTOBER 2005 1 The Humble Sum of Remainders Function Michael Z. Spivey Samford University Birmingham, Alabama 35229 mzspivey@samford.edu The sum of divisors function is one of the

More information

Math 109 September 1, 2016

Math 109 September 1, 2016 Math 109 September 1, 2016 Question 1 Given that the proposition P Q is true. Which of the following must also be true? A. (not P ) or Q. B. (not Q) implies (not P ). C. Q implies P. D. A and B E. A, B,

More information

#A5 INTEGERS 17 (2017) THE 2-ADIC ORDER OF SOME GENERALIZED FIBONACCI NUMBERS

#A5 INTEGERS 17 (2017) THE 2-ADIC ORDER OF SOME GENERALIZED FIBONACCI NUMBERS #A5 INTEGERS 7 (207) THE 2-ADIC ORDER OF SOME GENERALIZED FIBONACCI NUMBERS Tamás Lengyel Mathematics Department, Occidental College, Los Angeles, California lengyel@oxy.edu Diego Marques Departamento

More information

A PURELY COMBINATORIAL APPROACH TO SIMULTANEOUS POLYNOMIAL RECURRENCE MODULO Introduction

A PURELY COMBINATORIAL APPROACH TO SIMULTANEOUS POLYNOMIAL RECURRENCE MODULO Introduction A PURELY COMBINATORIAL APPROACH TO SIMULTANEOUS POLYNOMIAL RECURRENCE MODULO 1 ERNIE CROOT NEIL LYALL ALEX RICE Abstract. Using purely combinatorial means we obtain results on simultaneous Diophantine

More information

DIVISIBILITY OF BINOMIAL COEFFICIENTS AT p = 2

DIVISIBILITY OF BINOMIAL COEFFICIENTS AT p = 2 DIVISIBILITY OF BINOMIAL COEFFICIENTS AT p = 2 BAILEY SWINFORD Abstract. This paper will look at the binomial coefficients divisible by the prime number 2. The paper will seek to understand and explain

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

MATH 2200 Final Review

MATH 2200 Final Review MATH 00 Final Review Thomas Goller December 7, 01 1 Exam Format The final exam will consist of 8-10 proofs It will take place on Tuesday, December 11, from 10:30 AM - 1:30 PM, in the usual room Topics

More information

Combinatorial Proofs and Algebraic Proofs I

Combinatorial Proofs and Algebraic Proofs I Combinatorial Proofs and Algebraic Proofs I Shailesh A Shirali Shailesh A Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP).

More information

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE J. Combin. Theory Ser. A 116(2009), no. 8, 1374 1381. A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE Hao Pan and Zhi-Wei Sun Department of Mathematics, Naning University Naning 210093, People s Republic

More information

Computer Investigation of Difference Sets

Computer Investigation of Difference Sets Computer Investigation of Difference Sets By Harry S. Hayashi 1. Introduction. By a difference set of order k and multiplicity X is meant a set of k distinct residues n,r2,,rk (mod v) such that the congruence

More information

Formal power series rings, inverse limits, and I-adic completions of rings

Formal power series rings, inverse limits, and I-adic completions of rings Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely

More information

7. Prime Numbers Part VI of PJE

7. Prime Numbers Part VI of PJE 7. Prime Numbers Part VI of PJE 7.1 Definition (p.277) A positive integer n is prime when n > 1 and the only divisors are ±1 and +n. That is D (n) = { n 1 1 n}. Otherwise n > 1 is said to be composite.

More information

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (007), #A16 ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany,

More information

Lines With Many Points On Both Sides

Lines With Many Points On Both Sides Lines With Many Points On Both Sides Rom Pinchasi Hebrew University of Jerusalem and Massachusetts Institute of Technology September 13, 2002 Abstract Let G be a finite set of points in the plane. A line

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

CONGRUENCES FOR BERNOULLI - LUCAS SUMS

CONGRUENCES FOR BERNOULLI - LUCAS SUMS CONGRUENCES FOR BERNOULLI - LUCAS SUMS PAUL THOMAS YOUNG Abstract. We give strong congruences for sums of the form N BnVn+1 where Bn denotes the Bernoulli number and V n denotes a Lucas sequence of the

More information

k 2r n k n n k) k 2r+1 k 2r (1.1)

k 2r n k n n k) k 2r+1 k 2r (1.1) J. Number Theory 130(010, no. 1, 701 706. ON -ADIC ORDERS OF SOME BINOMIAL SUMS Hao Pan and Zhi-Wei Sun Abstract. We prove that for any nonnegative integers n and r the binomial sum ( n k r is divisible

More information

The 4-periodic spiral determinant

The 4-periodic spiral determinant The 4-periodic spiral determinant Darij Grinberg rough draft, October 3, 2018 Contents 001 Acknowledgments 1 1 The determinant 1 2 The proof 4 *** The purpose of this note is to generalize the determinant

More information

THE p-adic VALUATION OF LUCAS SEQUENCES

THE p-adic VALUATION OF LUCAS SEQUENCES THE p-adic VALUATION OF LUCAS SEQUENCES CARLO SANNA Abstract. Let (u n) n 0 be a nondegenerate Lucas sequence with characteristic polynomial X 2 ax b, for some relatively prime integers a and b. For each

More information

CONSTRUCTION OF SLICED SPACE-FILLING DESIGNS BASED ON BALANCED SLICED ORTHOGONAL ARRAYS

CONSTRUCTION OF SLICED SPACE-FILLING DESIGNS BASED ON BALANCED SLICED ORTHOGONAL ARRAYS Statistica Sinica 24 (2014), 1685-1702 doi:http://dx.doi.org/10.5705/ss.2013.239 CONSTRUCTION OF SLICED SPACE-FILLING DESIGNS BASED ON BALANCED SLICED ORTHOGONAL ARRAYS Mingyao Ai 1, Bochuan Jiang 1,2

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit and Yee introduced partition

More information

Review Sheet for the Final Exam of MATH Fall 2009

Review Sheet for the Final Exam of MATH Fall 2009 Review Sheet for the Final Exam of MATH 1600 - Fall 2009 All of Chapter 1. 1. Sets and Proofs Elements and subsets of a set. The notion of implication and the way you can use it to build a proof. Logical

More information

Smith theory. Andrew Putman. Abstract

Smith theory. Andrew Putman. Abstract Smith theory Andrew Putman Abstract We discuss theorems of P. Smith and Floyd connecting the cohomology of a simplicial complex equipped with an action of a finite p-group to the cohomology of its fixed

More information

Primitive Ideals of Semigroup Graded Rings

Primitive Ideals of Semigroup Graded Rings Sacred Heart University DigitalCommons@SHU Mathematics Faculty Publications Mathematics Department 2004 Primitive Ideals of Semigroup Graded Rings Hema Gopalakrishnan Sacred Heart University, gopalakrishnanh@sacredheart.edu

More information

An Analytic Approach to the Problem of Matroid Representibility: Summer REU 2015

An Analytic Approach to the Problem of Matroid Representibility: Summer REU 2015 An Analytic Approach to the Problem of Matroid Representibility: Summer REU 2015 D. Capodilupo 1, S. Freedman 1, M. Hua 1, and J. Sun 1 1 Department of Mathematics, University of Michigan Abstract A central

More information

Arithmetic Funtions Over Rings with Zero Divisors

Arithmetic Funtions Over Rings with Zero Divisors BULLETIN of the Bull Malaysian Math Sc Soc (Second Series) 24 (200 81-91 MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Arithmetic Funtions Over Rings with Zero Divisors 1 PATTIRA RUANGSINSAP, 1 VICHIAN LAOHAKOSOL

More information