California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2

Size: px
Start display at page:

Download "California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2"

Transcription

1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2 November 3, 203. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to read the entire paper before you begin to write, and read each question carefully. Remember that certain questions are worth more points than others. Make a note of the questions that you feel confident you can do, and then do those first: you do not have to proceed through the paper in the order given. You have 75 minutes to complete this exam. This is a closed book exam, and no notes of any kind are allowed. The use of cell phones, pagers or any text storage or communication device is not permitted. Only the Faculty approved TI-30 calculator is allowed. The correct answer requires justification written legibly and logically: you must convince me that you know why your solution is correct. Answer these questions in the space provided. Use the backs of pages if necessary. Where it is possible to check your work, do so. Good Luck! Problem Total (BONUS) Points Your Marks

2 Question. [8 points] Determine whether the given set of fuctions is linearly independent on the interval (, ). (a) [4 points] f (x) = x, f 2 (x) = x 2, f 3 (x) = 4x 3x 2 Solution: Since f 3 (x) = 4 f (x) 3 f 2 (x) = 4 f (x) 3 f 2 (x) f 3 (x) = 0, the set of functions f (x), f 2 (x), f 3 (x) is linearly dependent. (b) [4 points] f (x) = + x, f 2 (x) = x, f 3 (x) = x 2 Solution: Let c f (x) + c 2 f 2 (x) + c 3 f 3 (x) = 0 = c ( + x) + c 2 x + c 3 x 2 = 0 = c + (c + c 2 )x + c 3 x 2 = 0, then c = 0,c + c 2 = 0,c 3 = 0,= c = c 2 = c 3 = 0. Hence the set of functions f (x), f 2 (x), f 3 (x) is linearly independent. 2

3 Question 2. [24 points] Consider the differential equation x 3 y + x 2 y 2xy + 2y = 0 (a) [5 points] Verify that the fuctions of y = x, y 2 = x 2, y 3 = x differential equation. Solution: are solutions of the given Check y is the sol of x 3 y + x 2 y 2xy + 2y = 0 y = x = y =, y = 0, y = 0 Then x 3 y + x2 y 2xy + 2y = x + 2x = 0. Check y 2 is the solution of x 3 y + x 2 y 2xy + 2y = 0 y 2 = x 2 = y 2 = 2x, y 2 = 2, y 2 = 0 Then x 3 y 2 + x2 y 2 2xy 2 + 2y 2 = 0 + x 2 2 2x 2x + 2x 2 = 0. Check y 3 is the solution of x 3 y + x 2 y 2xy + 2y = 0 y 3 = x = y 3 = x 2, y 3 = 2x 3, y 3 = 6x 4 Then x 3 y 3 + x2 y 3 2xy 3 + 2y 3 = 0. (b) [7 points] Verify that y, y 2, y 3 in part (a) form a fundamental set of solutions for the given differential equaiton on the interval of (0, ). Solution: W (y, y 2, y 3 )(x) = y y 2 y 3 y y2 y3 y y2 y3 = Then y, y 2, y 3 form a fundamental set of solutions. x x 2 x 2x x x 3 = 6 x = 0, on (0, ) (c) [2 points] Using y, y 2 and y 3 in part (a), form the general solution of the given differential equation. Solution: The general solution is y(x) = c y + c 2 y 2 + c 3 y 3 = c x + c 2 x 2 + c 3 x. 3

4 Question 3. [24 points] Find the general solution of the given second-order differential equation. (a) [8 points] y 7y + 2y = 0 Solution: m 2 7m + 2 = 0 = (m 3)(m 4) = 0 = m = 3,m 2 = 4 = y = c e 3x + c 2 e 4x. (b) [8 points] y 6y + 9y = 0 Solution: m 2 6m + 9 = 0 = (m 3) 2 = 0 = m = m 2 = 3 = y = c e 3x + c 2 xe 3x. (c) [8 points] y 4y + 5y = 0 Solution: m 2 4m + 5 = 0 = m,2 = 2 ± i = y = e 2x (c cos x + c 2 sin x). 4

5 Question 4. [2 points] Find the general solution of the given third-order differential equation d 3 x dt 3 + d 2 x dt 2 2x = 0 Solution: m 3 + m 2 2 = 0 = m = is one of the roots, then using Long Division, we have Then m 2,3 = ± i. Hence, the general solution is m 3 + m 2 2 = (m )(m 2 + 2m + 2) x = c e t + e t (c cos t + c 2 sin t) 5

6 Question 5. [30 points] Solve the given differential equation by undetermined coefficients, y + 2y = 2x + 5 e 2x subject to the initial conditions y(0) = 0, y (0) = 2. Solution: The associated homogeneous equation is y + 2y = 0. Then the auxiliary equation is m 2 + 2m = 0 = m = 0andm = 2. Hence, the complementary function is y c = c e 2x + c 2. Now g (x) = 2x +5 e 2x = y p (x) = Ax+B +Ce 2x, however, there is duplications between y c and y p. Then the correct assumed particular solution is y p (x) = Ax 2 + Bx+Cxe 2x. Then y p (x) = 2Ax + B +Ce 2x 2Cxe 2x and y p (x) = 2A 4Ce 2x + 4Cxe 2x. Hence, y p (x)+2y p (x) = 2A +B +4Ax 2Ce 2x = 2x +5 e 2x = 2A +2B = 5,4A = 2, 2C = = A = 2,B = 2,C = 2 = y p(x) = 2 x2 + 2x + 2 xe 2x Then the general solution is y = c e 2x + c x2 + 2x + 2 xe 2x Using I.C. = 0 = c + c 2, 2 = 2c = c =,c 2 =. Therefore, the solution is y = e 2x + 2 x2 + 2x + 2 xe 2x 6

7 Question 6. [30 points] Solve the given differential equation by variation of parameters 3y 6y + 6y = e x sec x Solution:. For 3y 6y + 6y = 0 we have 3m 2 6m + 6 = 0 3(m 2 2m + 2) = 0. So m,m 2 = 2 ± = 2 ± 2i 2 = ± i and α = = β. So,y c = e x (c cosx+c 2 sin x). Hence y = e x cos x and y 2 = e x sin x. 2. We have w(y, y 2 ) = y y 2 y y2 = e x cos x e x sin x e x cos x e x sin x e x sin x + e x cos x = e x cos x(e x sin x + e x cos x) e x sin x(e x cos x e x sin x) = e 2x cos x sin x + e 2x cos 2 x e 2x sin x cos x + e 2x sin 2 x = e 2x (cos 2 x + sin 2 x) = e 2x. 3. 3y 6y + 6y = e x sec x y 2y + 2y = 3 ex sec x. f (x) = 3 ex sec x. 4. We have So w = 0 y 2 f (x) y2 = 0 e x sin x 3 ex sec x e x sin x + e x cos x = 3 e2x sin x sec x w 2 = y 0 y f (x) = e x cos x 0 e x cos x e x sin x 3 ex sec x = 3 e2x cos x sec x. u = w w = u 2 = w 2 w = 3 e2x sin x sec x e 2x = 3 sin x sec x = 3 sin x cos x = 3 3 e2x cos x sec x e 2x = 3 cos x sec x = 3. tan x. Therefore, u = 3 tan xdx = sin x sin x 3 cos x dx = 3 cos x dx = 3 cos x d(cos x) = ln cos x. 3 u 2 = 3 dx = 3 x. 5. y p = u y + u 2 y 2 = 3 ex cos x ln cos x + 3 xex sin x. 6. y = e x (c cosx+c 2 sin x) + 3 ex cos x ln cos x + 3 xex sin x. 7

8 Question 7. [20 pionts] A 00-volt electromotive force is applied to an RC-series circuit in which the resistance is 200 ohms and the capacitance is 0 4 farad. (a) [6 points] Find the charge q(t) on the capacitor if q(0) = 0. Solution: Assume that R dq dt + C q = E(t) where R = 200 ohms, C = 0 4 farad, and E(t) = 00. Then 200 dq dt + 04 q = 00 = 2 dq dq + 00q = = dt dt + 50q = 2 = q = 00 + ce 50t Using I.C., we get c =. Hence the solution is 00 q = e 50t. (b) [4 points] Find the current i(t). Solution: i = dq dt = 00 ( 50)e 50t = 2 e 50t. 8

9 Question 8. [BONUS: 24 points] Find the general solution of x 4 y + x 3 y 4x 2 y = given that y = x 2 is a solution of the associated homogeneous equation. [HINT: Reduction of Order & Variation of Parameters] Solution: We are given that y = x 2 is a sol. of x 4 y + x 3 y 4x 2 y =. To find a second solution, we use reduction of order. Let y = x 2 u(x). Then the product rule gives y = x 2 u + 2xu and y = x 2 u + 4xu + 2n. So x 4 y + x 3 y 4x 2 y = x 5 (xu + 5u ) = 0 Letting w = u, this becomes xw + 5w = 0 Separating variables and integrating we have dw dt = 5 dx and ln w = 5ln x +C x Thus, w = x 5 and u = 4 x 4. A second solution is then y 2 = x 2 x 4 =, and the general solution of the homogeneous x 2 DE is y c = c x 2 + c 2. x 2 To find a particular solution, y p, we use variation of parameters. The Wronskian is W = 4 x. Identifying f (x) =, we obtain x 4 u = 4 x 5 = u = 6 x 4 u2 = 4 x = u 2 = 4 ln x So y p = 6 x 4 x 2 4 (ln x)x 2 = 6 x 2 4 x 2 ln x. The general solution is y = c x 2 + c 2 x 2 6 x2 ln x. 4x2 9

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 3

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 3 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 3 April 29, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Signature: Do not write your student

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework. Substitution and Nonexact Differential Equation Made Exact) [0] Solve dy dx = ey + 3e x+y, y0) = 0. Let u := e x, v = e y, and hence dy = v + 3uv) dx, du = u)dx, dv = v)dy = u)dv

More information

MAT 1341A Final Exam, 2011

MAT 1341A Final Exam, 2011 MAT 1341A Final Exam, 2011 16-December, 2011. Instructor - Barry Jessup 1 Family Name: First Name: Student number: Some Advice Take 5 minutes to read the entire paper before you begin to write, and read

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: CUID: Section: Fall 27 8., 8.2,. -.4 Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook,

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

for any C, including C = 0, because y = 0 is also a solution: dy

for any C, including C = 0, because y = 0 is also a solution: dy Math 3200-001 Fall 2014 Practice exam 1 solutions 2/16/2014 Each problem is worth 0 to 4 points: 4=correct, 3=small error, 2=good progress, 1=some progress 0=nothing relevant. If the result is correct,

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

MA 262, Fall 2017, Final Version 01(Green)

MA 262, Fall 2017, Final Version 01(Green) INSTRUCTIONS MA 262, Fall 2017, Final Version 01(Green) (1) Switch off your phone upon entering the exam room. (2) Do not open the exam booklet until you are instructed to do so. (3) Before you open the

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23 MATHEMATICS FOR ENGINEERS & SCIENTISTS 3.5. Second order linear O.D.E.s: non-homogeneous case.. We ll now consider non-homogeneous second order linear O.D.E.s. These are of the form a + by + c rx) for

More information

Math 116 Second Midterm November 14, 2012

Math 116 Second Midterm November 14, 2012 Math 6 Second Midterm November 4, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 8 problems. Note that

More information

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number:

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number: Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April 6 2018 Give your name, TA and section number: Name: TA: Section number: 1. There are 6 questions for a total of 100 points. The value of

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures College of Science MATHS : Calculus I (University of Bahrain) Integrals / 7 The Substitution Method Idea: To replace a relatively

More information

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations ENGI 344 - Second Order Linear ODEs age -01. Second Order Linear Ordinary Differential Equations The general second order linear ordinary differential equation is of the form d y dy x Q x y Rx dx dx Of

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

2.3 Linear Equations 69

2.3 Linear Equations 69 2.3 Linear Equations 69 2.3 Linear Equations An equation y = fx,y) is called first-order linear or a linear equation provided it can be rewritten in the special form 1) y + px)y = rx) for some functions

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section: MATH 251 Examination I October 8, 2015 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

MATH 312 Section 3.1: Linear Models

MATH 312 Section 3.1: Linear Models MATH 312 Section 3.1: Linear Models Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Population Growth 2 Newton s Law of Cooling 3 Kepler s Law Second Law of Planetary Motion 4

More information

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3 IV ORDINARY DIFFERENTIAL EQUATIONS REFERENCE: CROFT & DAVISON CHAPTER 0 BLOCKS 1-3 INTRODUCTION AND TERMINOLOGY INTRODUCTION A differential equation (d.e.) e) is an equation involving an unknown function

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Ordinary Differential Equations Lake Ritter, Kennesaw State University

Ordinary Differential Equations Lake Ritter, Kennesaw State University Ordinary Differential Equations Lake Ritter, Kennesaw State University 2017 MATH 2306: Ordinary Differential Equations Lake Ritter, Kennesaw State University This manuscript is a text-like version of the

More information

0.1 Problems to solve

0.1 Problems to solve 0.1 Problems to solve Homework Set No. NEEP 547 Due September 0, 013 DLH Nonlinear Eqs. reducible to first order: 1. 5pts) Find the general solution to the differential equation: y = [ 1 + y ) ] 3/. 5pts)

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

California State University Northridge MATH 255A: Calculus for the Life Sciences I Midterm Exam 3

California State University Northridge MATH 255A: Calculus for the Life Sciences I Midterm Exam 3 California State University Northrige MATH 255A: Calculus for the Life Sciences I Mierm Exam 3 Due May 8 2013. Instructor: Jing Li Stuent Name: Signature: Do not write your stuent ID number on this front

More information

MATH 23 Exam 2 Review Solutions

MATH 23 Exam 2 Review Solutions MATH 23 Exam 2 Review Solutions Problem 1. Use the method of reduction of order to find a second solution of the given differential equation x 2 y (x 0.1875)y = 0, x > 0, y 1 (x) = x 1/4 e 2 x Solution

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

MATH 101: PRACTICE MIDTERM 2

MATH 101: PRACTICE MIDTERM 2 MATH : PRACTICE MIDTERM INSTRUCTOR: PROF. DRAGOS GHIOCA March 7, Duration of examination: 7 minutes This examination includes pages and 6 questions. You are responsible for ensuring that your copy of the

More information

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014

APPM 2360 Section Exam 3 Wednesday November 19, 7:00pm 8:30pm, 2014 APPM 2360 Section Exam 3 Wednesday November 9, 7:00pm 8:30pm, 204 ON THE FRONT OF YOUR BLUEBOOK write: () your name, (2) your student ID number, (3) lecture section, (4) your instructor s name, and (5)

More information

5.4 Variation of Parameters

5.4 Variation of Parameters 202 5.4 Variation of Parameters The method of variation of parameters applies to solve (1) a(x)y + b(x)y + c(x)y = f(x). Continuity of a, b, c and f is assumed, plus a(x) 0. The method is important because

More information

THE USE OF CALCULATORS, BOOKS, NOTES ETC. DURING THIS EXAMINATION IS PROHIBITED. Do not write in the blanks below. 1. (5) 7. (12) 2. (5) 8.

THE USE OF CALCULATORS, BOOKS, NOTES ETC. DURING THIS EXAMINATION IS PROHIBITED. Do not write in the blanks below. 1. (5) 7. (12) 2. (5) 8. MATH 4 EXAMINATION II MARCH 24, 2004 TEST FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination consists of 2 problems. The first 6 are multiple choice questions, the next two are short

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Math 116 Second Midterm November 17, 2010

Math 116 Second Midterm November 17, 2010 Math 6 Second Midterm November 7, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are problems. Note that

More information

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Student s Printed Name:

Student s Printed Name: Student s Printed Name: Instructor: CUID: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or any

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N). Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 EXAM I SPRING 2016 FEBRUARY 25, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

20D - Homework Assignment 4

20D - Homework Assignment 4 Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment November, 03 0D - Homework Assignment First, I will give a brief overview of how to use variation of parameters. () Ensure that the differential

More information

Problem Max. Possible Points Total

Problem Max. Possible Points Total MA 262 Exam 1 Fall 2011 Instructor: Raphael Hora Name: Max Possible Student ID#: 1234567890 1. No books or notes are allowed. 2. You CAN NOT USE calculators or any electronic devices. 3. Show all work

More information

PRELIMINARY THEORY LINEAR EQUATIONS

PRELIMINARY THEORY LINEAR EQUATIONS 4.1 PRELIMINARY THEORY LINEAR EQUATIONS 117 4.1 PRELIMINARY THEORY LINEAR EQUATIONS REVIEW MATERIAL Reread the Remarks at the end of Section 1.1 Section 2.3 (especially page 57) INTRODUCTION In Chapter

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES. MAT9 - Calculus III - Fall 4 Solution for Term Test - November 6, 4 Time allotted: 9 minutes. Aids permitted: None. Full Name: Last First Student ID: Email: @mail.utoronto.ca Instructions DO NOT WRITE

More information

Problem # Max points possible Actual score Total 100

Problem # Max points possible Actual score Total 100 MIDTERM 1-18.01 - FALL 2014. Name: Email: Please put a check by your recitation section. Instructor Time B.Yang MW 10 M. Hoyois MW 11 M. Hoyois MW 12 X. Sun MW 1 R. Chang MW 2 Problem # Max points possible

More information

x gm 250 L 25 L min y gm min

x gm 250 L 25 L min y gm min Name NetID MATH 308 Exam 2 Spring 2009 Section 511 Hand Computations P. Yasskin Solutions 1 /10 4 /30 2 /10 5 /30 3 /10 6 /15 Total /105 1. (10 points) Tank X initially contains 250 L of sugar water with

More information

Second-Order Linear ODEs

Second-Order Linear ODEs C0.tex /4/011 16: 3 Page 13 Chap. Second-Order Linear ODEs Chapter presents different types of second-order ODEs and the specific techniques on how to solve them. The methods are systematic, but it requires

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

Math 152 Take Home Test 1

Math 152 Take Home Test 1 Math 5 Take Home Test Due Monday 5 th October (5 points) The following test will be done at home in order to ensure that it is a fair and representative reflection of your own ability in mathematics I

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Chap. 2 Second-Order Linear ODEs Sec. 2.1 Homogeneous Linear ODEs of Second Order On pp. 45-46 we extend concepts defined in Chap. 1, notably solution and homogeneous and nonhomogeneous, to second-order

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1) Chapter 3 3 Introduction Reading assignment: In this chapter we will cover Sections 3.1 3.6. 3.1 Theory of Linear Equations Recall that an nth order Linear ODE is an equation that can be written in the

More information

MA 262, Spring 2018, Midterm 1 Version 01 (Green)

MA 262, Spring 2018, Midterm 1 Version 01 (Green) MA 262, Spring 2018, Midterm 1 Version 01 (Green) INSTRUCTIONS 1. Switch off your phone upon entering the exam room. 2. Do not open the exam booklet until you are instructed to do so. 3. Before you open

More information

Math 116 Second Midterm November 16, 2011

Math 116 Second Midterm November 16, 2011 Math 6 Second Midterm November 6, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 9 problems. Note that

More information

Test 3 - Answer Key Version B

Test 3 - Answer Key Version B Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop,

More information

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

MAE140 - Linear Circuits - Winter 09 Midterm, February 5 Instructions MAE40 - Linear ircuits - Winter 09 Midterm, February 5 (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

Prelim 1 Solutions V2 Math 1120

Prelim 1 Solutions V2 Math 1120 Feb., Prelim Solutions V Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Problem ) ( Points) Calculate the following: x a)

More information

Spring 2016 Exam 1 without number 13.

Spring 2016 Exam 1 without number 13. MARK BOX problem points 0 5-9 45 without number 3. (Topic of number 3 is not on our Exam this semester.) Solutions on homepage (under previous exams). 0 0 0 NAME: 2 0 3 0 PIN: % 00 INSTRUCTIONS On Problem

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION. MATH 110 FINAL EXAM SPRING 2008 FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil on your scantron.

More information

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS EXAM Exam #1 Math 3350 Summer II, 2000 July 21, 2000 ANSWERS i 100 pts. Problem 1. 1. In each part, find the general solution of the differential equation. dx = x2 e y We use the following sequence of

More information

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 6 Practice for Exam Generated October 6, 5 Name: Instructor: Section Number:. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip over and return

More information

Math 240 Calculus III

Math 240 Calculus III Calculus III Summer 2015, Session II Monday, August 3, 2015 Agenda 1. 2. Introduction The reduction of technique, which applies to second- linear differential equations, allows us to go beyond equations

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

FACULTY OF ARTS AND SCIENCE University of Toronto FINAL EXAMINATIONS, APRIL 2016 MAT 133Y1Y Calculus and Linear Algebra for Commerce

FACULTY OF ARTS AND SCIENCE University of Toronto FINAL EXAMINATIONS, APRIL 2016 MAT 133Y1Y Calculus and Linear Algebra for Commerce FACULTY OF ARTS AND SCIENCE University of Toronto FINAL EXAMINATIONS, APRIL 206 MAT YY Calculus and Linear Algebra for Commerce Duration: Examiners: hours N. Hoell A. Igelfeld D. Reiss L. Shorser J. Tate

More information

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem.

Mixing Problems. Solution of concentration c 1 grams/liter flows in at a rate of r 1 liters/minute. Figure 1.7.1: A mixing problem. page 57 1.7 Modeling Problems Using First-Order Linear Differential Equations 57 For Problems 33 38, use a differential equation solver to determine the solution to each of the initial-value problems and

More information

November 20, Problem Number of points Points obtained Total 50

November 20, Problem Number of points Points obtained Total 50 MATH 124 E MIDTERM 2, v.b Autumn 2018 November 20, 2018 NAME: SIGNATURE: STUDENT ID #: GAB AB AB AB AB AB AB AB AB AB AB AB AB AB QUIZ SECTION: ABB ABB Problem Number of points Points obtained 1 14 2 10

More information

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015. APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

More information

Math 217 Fall 2000 Exam Suppose that y( x ) is a solution to the differential equation

Math 217 Fall 2000 Exam Suppose that y( x ) is a solution to the differential equation Math 17 Fall 000 Exam 1 Notational Remark: In this exam, the symbol x y( x ) means dy dx. 1. Suppose that y( x ) is a solution to the differential equation, x y( x ) F ( x, y( x )) y( x ) 0 y 0. Then y'(x

More information

Math 322. Spring 2015 Review Problems for Midterm 2

Math 322. Spring 2015 Review Problems for Midterm 2 Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly

More information

Review Problems for Exam 2

Review Problems for Exam 2 Review Problems for Exam 2 This is a list of problems to help you review the material which will be covered in the final. Go over the problem carefully. Keep in mind that I am going to put some problems

More information

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.

Turn off all cell phones, pagers, radios, mp3 players, and other similar devices. Math 25 B and C Midterm 2 Palmieri, Autumn 26 Your Name Your Signature Student ID # TA s Name and quiz section (circle): Cady Cruz Jacobs BA CB BB BC CA CC Turn off all cell phones, pagers, radios, mp3

More information

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009

Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009 Student name: Student ID: TA s name and/or section: MATH 3B (Butler) Midterm II, 20 February 2009 This test is closed book and closed notes. No calculator is allowed for this test. For full credit show

More information

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015 Math 2Z03 - Tutorial # 6 Oct. 26th, 27th, 28th, 2015 Tutorial Info: Tutorial Website: http://ms.mcmaster.ca/ dedieula/2z03.html Office Hours: Mondays 3pm - 5pm (in the Math Help Centre) Tutorial #6: 3.4

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH A Test #2. June 25, 2014 SOLUTIONS

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics. MATH A Test #2. June 25, 2014 SOLUTIONS YORK UNIVERSITY Faculty of Science Department of Mathematics an Statistics MATH 505 6.00 A Test # June 5, 04 SOLUTIONS Family Name (print): Given Name: Stuent No: Signature: INSTRUCTIONS:. Please write

More information

Test 2 - Answer Key Version A

Test 2 - Answer Key Version A MATH 8 Student s Printed Name: Instructor: Test - Answer Key Spring 6 8. - 8.3,. -. CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information