Example. F and W. Normal. F = 60cos 60 N = 30N. Block accelerates to the right. θ 1 F 1 F 2


 Rosa Daniels
 1 years ago
 Views:
Transcription
1 Physic 3 Lecture 7 Newton s 3 d Law: When a body exerts a force on another, the second body exerts an equal oppositely directed force on the first body. Frictional forces: kinetic friction: fk = μk N static friction f N s < μ s Examples.
2 Example Two forces, F and F, act on the kg block shown in the drawing. The magnitudes of the forces are F =60 N and F = 5 N. What is the horizontal acceleration (magnitude and direction) of the block? 60 0 F Normal W Normal force cancels the y components of F F,y + Normaly W = 0,x ( o ) F = 60cos 60 N = 30N F and W F = F F = 30N 5N = 5N net,x F F m 60 N 5 N 5 kg θ o 60 θ a? a = F /m= 5N/5kg = m / s net Block accelerates to the right.
3 conceptual question Consider a person standing in an elevator that t is accelerating upward. The upward normal force N exerted by the elevator floor on the person is a) )larger than b) identical to c) smaller than the downward weight W of the person.
4 Example: with balance scale marked in Newtons, not the usual scale, but a quite reasonable one. A 00 kg man stands on a bathroom scale in an elevator. Starting ti from rest, the elevator ascends, attaining its maximum speed of. m/s in 0.80 s. It travels with this constant speed for 5.0 s, undergoes a uniform negative acceleration for.5 s and comes to rest. What does the scale register (a) before the elevator starts to move? (b) during the first 0.8 s? (c) while the elevator is traveling at constant speed? (d) during the negative acceleration? Scale reading =Normal force N? N mg = ma : scale = N (in Newtons) m v f Δt 00 kg. m/s 0.8 s a) : a=0; N = mg : scale = N = 980 Newtons b) : N mg = ma : scale = N a =Δv / Δ t = (.m / s) / 0.8s =.5m / s N = m(g + a);scale = m(g + a) scale = (00kg)(9.8m / s +.5m / s ) = 30Newtons c) : N = mg : scale = N = 980Newtons v i. m/s N v f 0 d) : a = (vf v i) / Δ t =.m / s / (.5s) = 0.8m / s Δt.5 s N = m(g + a);scale = m(g + a) = 900Newtons
5 No Acceleration: Static Equilibrium All objects are at rest and remain so. The net force on any object must vanish. I.e. on an object: F = 0 i i Example: Three ropes are arranged so as to support a 4 kg mass as shown below. Determine the tension in each rope. T A ( 0 Fi,x = 0= T + T cos 60 ) T i T 60 o T 3 T 3 4 kg 4 kg Solve by considering forces at point A mg i 0= T+ T /; T = T / ( 0 ) F = 0 = T sin 60 T i,y 3 ( 0 ) T = T / sin 60 =.6T 3 3 T3 = mg = 39N;T 39.N;T = 45.3N 453N T =.6N
6 Atwood s machine Consider the Atwood machine to the right. The massless string passes over a massless and frictionless pulley. It is under tension T, which we define to be the magnitude of the tension force. By this definition it is a positive number. Choosing up to be positive, what is the net force on mass? a) Tm g b) T+m g c) m gt d) none of the above m m
7 Choosing up to be positive, what is the net force on mass? a) m gt b) T+m g c) Tm g d) none of the above Atwood s machine m m
8 From Newton s nd law: T m g T = = m a m a + m g Atwood s machine Also T m g = m a T = m a + m g m If m exceeds m, m goes down and m goes up. If m exceeds m, m goes down and m goes up. In either Putting it together: case m a + m g = m a + m g Δy = Δy = ma + mg v = v ma + ma = mg mg a = a ( m ) m g net force a = pulling m m + m up total mass and m down. m
9 Reading Quiz 4. An action/reaction pair of forces A. point in the same direction. B. act on the same object. C. are always longrange forces. D. act on two different objects. Slide 43
10 Newton s Third Law When a body bd exerts a force on another, the second dbd body exerts an equal oppositely directed force on the first body. Note: the two forces act on different bodies Force on body due to body : F Force on body due to body : F 3 d law: body body F = F
11 Example Two skaters, an 8 kg man and a 48kg woman, are standing on ice. Neglect any friction between the skate blades and the ice. The woman pushes the man with a force of 45 N due east. Determine the accelerations (magnitude and direction) of the man and the woman. East x components (West is positive) a a man woman 45N = = 8kg 45N = = 48kg 0.55m / s east 0.94m / s west
12 quiz Two skaters, an 00 kg man and a 50 kg woman, are standing on ice. Neglect any friction between the skate blades and the ice. By pushing the man, the woman is accelerated at m/s in the direction of due west. What is the corresponding acceleration of the man? a) 4 m/s due east b) m/s due east c) m/s due east d).5 m/s due east F = F m a = m a woman_on_man man_on_woman man man woman woman East choosing west to be negative (just to be contra ry) mwoman 50 aman,x = a woman,x = ( m/s ) = m/s east m 00 man Note: the direction would still be east even if you chose west to be positive
13 F = 60 N Example N m =0 kg N m = 5 kg A block with mass 5 kg and a second block with mass 0 kg are supported by a frictionless surface. A force of 60 N is applied to the 0 kg mass. What is the force of the 5 kg block on the 0 kg block? x components: d body : N,x = ma x; N,x = N,x from Newtons 3 law body : F + N = ma ; F = N + ma x,x x x,x x ( ) F = N + ma = ma + ma = m + m a ax = F x /( m + m) N = N = ma = mf / m + m x,x x x x x ( ),x,x x x N = 5kg60N / (5kg) = 0N N,x,x = 0N to the left If objects move together, the acceleration is governed by the total mass
14 Friction Friction impedes the motion of one object along the surfaces of another. It occurs because the surfaces of the two objects temporarily stick together via microwelds. The frictional force can be larger if the two surfaces are at rest with respect to each other. Experimentally we have two cases: N kinetic friction: f v k fk = μk N N static friction f F s f < μ N s s The coefficient of static friction generally exceeds that for kinetic friction: μ > s μ k Frictional forces always oppose the motion of one surface with respect to the other.
15 Example with static friction Consider the figure below, with M =05 kg and M =44. kg. What is the minimum static coefficient of friction necessary to keep the block from slipping. T = M g If M doesn t move T= f s μ N = μ Mg s s Putting it together Mg μs Mg M s M μ If this isn t true, M will slip
16
17
example Δy gravity Δy can
Physic 3 Lecture 5 Main points of today s lecture: Newton s st law: If there is no net force, the velocity of a mass remains constant (neither the magnitude nor the direction of the velocity changes).
More informationReading Quiz. Chapter 5. Physics 111, Concordia College
Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic
More informationNewton s 3 Laws of Motion
Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of
More informationThe Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples
The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal
More informationCHAPTER 4 TEST REVIEW  Answer Key
AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST
More informationLECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich
LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 61 to 64! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!
More informationWhich, if any, of the velocity versus time graphs below represent the movement of the sliding box?
Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone
More informationPhysics 111 Lecture 4 Newton`s Laws
Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac
More informationPhysics Mechanics. Lecture 11 Newton s Laws  part 2
Physics 170  Mechanics Lecture 11 Newton s Laws  part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More informationPhys 1401: General Physics I
1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?
More informationKinematics and Dynamics
AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1 supp.html 201516 AP Physics: Kinematics Study Guide The study guide will help you review all
More informationQ16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)
Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest
More informationPHYSICS 231 INTRODUCTORY PHYSICS I
PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces
More informationNewton s First Law and IRFs
Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D
More informationChapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationChapter 4. The Laws of Motion. 1. Force. 2. Newton s Laws. 3. Applications. 4. Friction
Chapter 4 The Laws of Motion 1. Force 2. Newton s Laws 3. Applications 4. Friction 1 Classical Mechanics What is classical Mechanics? Under what conditions can I use it? 2 Sir Isaac Newton 1642 1727 Formulated
More informationPhysics 1100: 2D Kinematics Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Physics 1100: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The initial velocity
More informationDynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i
Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationPHYSICS 231 Laws of motion PHY 231
PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was
More informationPhysics A  PHY 2048C
Physics A  PHY 2048C Mass & Weight, Force, and Friction 10/04/2017 My Office Hours: Thursday 2:003:00 PM 212 Keen Building Warmup Questions 1 Did you read Chapters 6.16.6? 2 In your own words: What
More informationDynamics; Newton s Laws of Motion
Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude
More informationPS113 Chapter 4 Forces and Newton s laws of motion
PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two
More informationChapter 7 Newton s Third Law
Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 72 Chapter 7 Preview Slide 73 Chapter 7 Preview Slide 74 Chapter 7 Preview Slide 76 Chapter
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationChapter 5. Force and MotionI
Chapter 5 Force and MotionI 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames
More informationLecture 4. Newton s 3rd law and Friction
Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state
More informationPhys101 Lecture 5 Dynamics: Newton s Laws of Motion
Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects FreeBody Diagrams Ref: 41,2,3,4,5,6,7. Page
More informationPart A Atwood Machines Please try this link:
LAST NAME FIRST NAME DATE Assignment 2 Inclined Planes, Pulleys and Accelerating Fluids Problems 83, 108 & 109 (and some handouts) Part A Atwood Machines Please try this link: http://www.wiley.com/college/halliday/0470469080/simulations/sim20/sim20.html
More informationChapter 5. The Laws of Motion
Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics
More informationChapter Four Holt Physics. Forces and the Laws of Motion
Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces  a. Force  a push or a pull. It can change the motion of an object; start or stop movement; and,
More informationNewton s Laws and FreeBody Diagrams General Physics I
Newton s Laws and FreeBody Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are
More informationPhys101 Second Major152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1
Phys101 Second Major15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a
More informationChapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationConcept of Force Challenge Problem Solutions
Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw
More informationLecture Presentation Chapter 5 Applying Newton s Laws
Lecture Presentation Chapter 5 Applying Newton s Laws Suggested Videos for Chapter 5 Prelecture Videos Static and Dynamic Equilibrium Weight and Apparent Weight Friction Video Tutor Solutions Applying
More informationReview 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)
1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force
More informationPhysics Lecture 12. P. Gutierrez. Department of Physics & Astronomy University of Oklahoma
Physics 2514 Lecture 12 P. Gutierrez Department of Physics & Astronomy University of Oklahoma P. Gutierrez (University of Oklahoma) Physics 2514 February 21, 2011 1 / 13 Goal Goals for today s lecture:
More informationSteps to Solving Newtons Laws Problems.
Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationLecture Outline Chapter 6. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 6 Physics, 4 th Edition James S. Walker Chapter 6 Applications of Newton s Laws Units of Chapter 6 Frictional Forces Strings and Springs Translational Equilibrium Connected Objects
More informationApplying Newton s Laws
Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationChapter 4. The Laws of Motion
Chapter 4 The Laws of Motion Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical Mechanics does not
More informationB C = B 2 + C 2 2BC cosθ = (5.6)(4.8)cos79 = ) The components of vectors B and C are given as follows: B x. = 6.
1) The components of vectors B and C are given as follows: B x = 6.1 C x = 9.8 B y = 5.8 C y = +4.6 The angle between vectors B and C, in degrees, is closest to: A) 162 B) 111 C) 69 D) 18 E) 80 B C = (
More informationUniversity Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1
University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction
More informationAP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.
P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the
More informationPractice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)
Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of
More informationDynamics Notes 1 Newton s Laws
Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:
More informationIsaac Newton. What is a force? Newton s Three Laws of Motion. What is the acceleration of the car?
Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes
More informationF = 0. x o F = k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = k x 1. PHYSICS 151 Notes for Online Lecture 2.4.
PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.
More informationEndofChapter Exercises
EndofChapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass
More informationChapter 5 Applying Newton s Laws
Chapter 5 Applying Newton s Laws In this chapter we will introduce further applications of Newton s 1 st and 2 nd law. In summary, all of the contact forces and actionatadistance forces will go on the
More informationChapter 4. Forces and Mass. Classical Mechanics. Forces. Newton s First Law. Fundamental (Field) Forces. Contact and Field Forces
Chapter 4 Classical Mechanics Forces and Mass does not apply for very tiny objects (< atomic sizes) objects moving near the speed of light Newton s First Law Forces If the net force!f exerted on an object
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationMass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.
Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)
More information第 1 頁, 共 7 頁 Chap5 1. Test Bank, Question 9 The term "mass" refers to the same physical concept as: weight inertia force acceleration volume 2. Test Bank, Question 17 Acceleration is always in the direction:
More informationConcept of Force and Newton s Laws of Motion
Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.17.4 Chapter 8 Applications of Newton s Second Law, Sections 8.18.4.1 Announcements W02D3 Reading
More informationDISPLACEMENT AND FORCE IN TWO DIMENSIONS
DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient
More informationPhysics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line
Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible
More informationTwentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test
Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,
More informationPhys101T121First Major Exam Zero Version, choice A is the correct answer
Phys101T121First Major Exam Zero Version, choice A is the correct answer Q1. Find the mass of a solid cylinder of copper with a radius of 5.00 cm and a height of 10.0 inches if the density of copper
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationPhysics 12 Unit 2: Vector Dynamics
1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be
More informationForces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics
FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.
More informationNewton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.
Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies
More information5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously.
5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. The applied forces may cancel so the net force is zero; in such a case,
More informationChapter 5. Force and Motion I
Chapter 5. Force and Motion I Newton s Laws Concepts of Mass and Force Newton s Three Laws But first, let s review the last lecture.. Physics, Page 1 Summary of the last lecture 1. Projectile Motion x
More informationTwo Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while
Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2  Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are
More informationChapter 4. Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Types of Forces: An Overview Examples of Nonfundamental Forces  All of these are derived from the electroweak force: normal or support forces friction tension
More informationW = 750 m. PHYS 101 SP17 Exam 1 BASE (A) PHYS 101 Exams. The next two questions pertain to the situation described below.
PHYS 101 Exams PHYS 101 SP17 Exa BASE (A) The next two questions pertain to the situation described below. A boat is crossing a river with a speed to the water. The river is flowing at a speed W = 750
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationUNIT07. Newton s Three Laws of Motion
1. Learning Objectives: UNIT07 Newton s Three Laws of Motion 1. Understand the three laws of motion, their proper areas of applicability and especially the difference between the statements of the first
More informationThe magnitude of this force is a scalar quantity called weight.
Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationVersion PREVIEW Semester 1 Review Slade (22222) 1
Version PREVIEW Semester 1 Review Slade () 1 This printout should have 48 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A
More informationConnected Bodies 1. Two 10 kg bodies are attached to a spring balance as shown in figure. The reading of the balance will be 10 kg 10 kg 1) 0 kgwt ) 10 kgwt 3) Zero 4) 5 kgwt. In the given arrangement,
More informationChapter 5: Applications of Newton's laws Tuesday, September 17, :00 PM. General strategy for using Newton's second law to solve problems:
Ch5 Page 1 Chapter 5: Applications of Newton's laws Tuesday, September 17, 2013 10:00 PM General strategy for using Newton's second law to solve problems: 1. Draw a diagram; select a coördinate system
More informationMarch 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song
Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F
More informationForces I. Newtons Laws
Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N
More informationChapter 4. Forces and Newton s Laws of Motion. F=ma; gravity
Chapter 4 Forces and Newton s Laws of Motion F=ma; gravity 0) Background Galileo inertia (horizontal motion) constant acceleration (vertical motion) Descartes & Huygens Conservation of momentum: mass x
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationAP Physics First Nine Weeks Review
AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the
More information1 A car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true?
Slide 1 / 30 1 car moves around a circular path of a constant radius at a constant speed. Which of the following statements is true? The car s velocity is constant The car s acceleration is constant The
More informationAnnouncements Oct 16, 2014
Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always
More informationConceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION
Conceptual Physics Fundamentals Chapter 3: EQUILIBRIUM AND LINEAR MOTION This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass A Measure of Inertia Net Force The
More information= F 4. O Which force produces the greatest torque about the point O (marked by the blue dot)? E. not enough information given to decide
Q10.1 The four forces shown all have the same magnitude: F 1 = F 2 = F 3 = F 4. F 1 F 3 O Which force produces the greatest torque about the point O (marked by the blue dot)? F 2 F 4 A. F 1 B. F 2 C. F
More informationApplying Newton s Laws
Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 5 To use and apply Newton s Laws
More informationPhysics 2A Chapter 4: Forces and Newton s Laws of Motion
Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will
More informationIsaac Newton ( )
Isaac Newton (16421727) In the beginning of 1665 I found the rule for reducing any degree of binomial to a series. The same year in May I found the method of tangents and in November the method of fluxions
More information5. The graph represents the net force acting on an object as a function of time. During which time interval is the velocity of the object constant?
1. A 0.50kilogram cart is rolling at a speed of 0.40 meter per second. If the speed of the cart is doubled, the inertia of the cart is A) halved B) doubled C) quadrupled D) unchanged 2. A force of 25
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationFriction forces. Lecture 8. Chapter 6. Physics I. Course website:
Lecture 8 Physics I Chapter 6 Friction forces Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 6: Some leftover (Ch.5) Kinetic/Static Friction:
More information1982B1. The first meters of a 100meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant
1982B1. The first meters of a 100meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90 meters are run with the same velocity
More informationSo now that we ve practiced with Newton s Laws, we can go back to combine kinematics with Newton s Laws in this example.
Lecture 7 Force and Motion Practice with Freebody Diagrams and ewton s Laws So now that we ve practiced with ewton s Laws, we can go back to combine kinematics with ewton s Laws in this example. Example
More informationPHYSICS 1 Forces & Newton s Laws
Advanced Placement PHYSICS 1 Forces & Newton s Laws Presenter 20142015 Forces & Newton s Laws What I Absolutel Have to Know to Survive the AP* Exam Force is an push or pull. It is a vector. Newton s Second
More informationTue Sept 15. Dynamics  Newton s Laws of Motion. Forces: Identifying Forces Freebody diagram Affect on Motion
Tue Sept 15 Assignment 4 Friday Preclass Thursday Lab  Print, do prelab Closed toed shoes Exam Monday Oct 5 7:159:15 PM email me if class conflict or extended time Dynamics  Newton s Laws of Motion
More information