A Formal Analysis for Capturing Replay Attacks in Cryptographic Protocols

Size: px
Start display at page:

Download "A Formal Analysis for Capturing Replay Attacks in Cryptographic Protocols"

Transcription

1 ASIAN 07 A Formal Analysis for Capturing Replay Attacks in Cryptographic s Han Gao 1, Chiara Bodei 2, Pierpaolo Degano 2, Hanne Riis Nielson 1 Informatics and Mathematics Modelling, Technical University of Denmark 1 Dipartimento di Informatica, Università di Pisa 2 ASIAN 07 Doha, December 2007

2 Replay Attacks in s (Bob, Alice, Msg) (Carol, Alice, Msg)

3 Needham-Schroeder Invented in 1978 Flaw discovered in A S : A, B, N a 2. S A : {N a,b,k,{k, A} Kb } Ka 3. A B : {A, K} Kb 4. B A : {N b } K 5. A B : {N b 1} K 6. A B : {Msg} K Key distribution steps: The key should be known to both A and B Authentication steps: A and B make sure that they both know the key Message exchange step

4 Needham-Schroeder The Denning-Sacco Attack 1. A S : A, B, N a 2. S A : { N a,b,k,{k, A} Kb } Ka 3. A B : {A, K} Kb 4. B A : { N b } K 5. A B : { N b 1} K 6. A B : {Msg} K An old session key K is leaked M(A) B : {A, K 0 } Kb 4. B M(A) : {N b } K 0 5. M(A) B : {N b 1} K 0 6. M(A) B : {Msg} K 0 A is convinced that K is fresh B believes he is talking to A! No such guarantee for B

5 protocol narrations Whole Picture Lysa Lysa Find the Denning-Saccoattack in lessthan 3 sec Dolev-Yao Control Flow Analysis

6 Calculus One global channel 1. A S : A, B, N a sender receiver payload ha, S, A, B, N a i. 2. S A : {N a,b,k,{k, A} Kb } Ka 3. A B : {A, K} Kb 4. B A : {N b } K 5. A B : {N b 1} K 6. A B : {Msg} K ha, B, {A, K} Kb i. pattern matching variable binding (A, B; y). decrypt y as {A; k} Kb in... P = P A P B P S

7 Session Identifiers protocol run 1 ha, S, N a i. (A, S; x). protocol run 2 ha, S, N a i. (A, S; x).

8 Session Identifiers protocol run 1 [ha, S, N a i.] 1 [(A, S; x).] 1 protocol run 2 [ha, S, N a i.] 2 [(A, S; x).] 2

9 Session Identifiers protocol run 1 T ([ha, S, N a i.] 1 ) T ([(A, S; x).] 1 ) protocol run 2 T ([ha, S, N a i.] 2 ) T ([(A, S; x).] 2 )

10 F T Dipartimento di Informatica - Università di Pisa Calculus Stops when reaching n or x F Terms E E Processes P P T Stops when reaching 0 or! F([{N} K ] s )={[N] s } [K]s T ([hni.0!((; x).0)] s )= T ([hni.0] s ) T([!((; x).0)] s )= h[n s ]i.0 [!((; x).0)] s 1. A S : A, B, N a ha, S, A, B, N a i. 2. S A : {N a,b,k,{k, A} Kb } Ka 3. A B : {A, K} Kb 4. B A : {N b } K 5. A B : {N b 1} K ha, B, {A, K} Kb i. (A, B; y). decrypt y as {A; k} Kb... in P = P A P B P S P =[!P ] 0 Unfold once in each semantics step 6. A B : {Msg} K

11 Freshness Property Equality with sessin IDs ingnored Extract the session ID E 0 E 0 0 E 1 E 0 1 R(I(E 0 ), I(E 0 0)) R(I(E 1 ), I(E 0 1)) decrypt [{E 1, E 2 } E0 ] s as {E 0 1 ; x 2} E 0 0 in P R P[E 2 /x 2 ] decrypt {[N a ] 1, [N b ] 1 } [K]1 as {[N a ] 1 ; x} [K]1 in 0 decrypt {[N a ] 2, [N b ] 2 } [K]2 as {[N a ] 1 ; x} [K]1 in 0

12 Static Analysis Approximation Over-Approximation Algorithms Control Flow Analysis All possible solutions Under-approxmation Actual Solution Over-approximation

13 Static Analysis Analysis of Terms ρ = E : ϑ Determine the possible values that each term may evaluate to Analysis of Processes ρ, κ = RM P : ψ Collect the values that may flow on the network Error component analysis(t ([P ] 0 )) analysis(t ([P ] 1 )) analysis(p)

14 The Error Component The error component collects labels of decryption where freshness violations may happen. For example: l ψ The empty error component implies free of replay attacks at run time

15 The Capabilities Eavesdrop Alter Insider or outsider or both Obtain old session keys

16 Analysis of Needham-Schroeder 1. A S : A, B, N a 2. S A : {N a,b,k,{k, A} Kb } Ka 3. A B : {A, K} Kb 4. B A : {N b } K 5. A B : {N b 1} K (A, B; y). 6. A B : {Msg} K ha, B, {A, K} Kb i. decrypt y as {A; k} Kb in... P = P A P B P S P =[!P ] 0 analysis(t ([P] 0 )) analysis(t ([P] 1 )) analysis(p) 0 T ([ha, B, {A, K} Kb i] 0 ) T ([(A, B, y). decrypt y as {A; k} Kb in] 0 ) Session 1 T ([ha, B, {A, K} Kb i] 1 ) T ([(A, B, y). decrypt y as {A; k} Kb in] 1 )

17 Conclusion Simply process calculus with cryptographic primitives for modelling security protocols Automatic algorithm for providing security assurances for protocols Semantics correct and sound Implementation has been used to validate a number of protocols

18 Thank You!

19 The Control Flow Analysis Over-approximate the protocol behaviour The values of the variables The messages flowing on the network For example: ρ : X P(Val) κ P(Val ) h[a] 1, [B] 1, [N] 1 i κ [N] 1 ρ(x)

20 Judgement for Decryption At each decryption point, check whether freshness may be violated ρ = E : ϑ E 1 : ϑ 1 ρ = E 0 : ϑ 0 [{v 1,v 2 } v0 ] s ϑ : v 0 ϑ 0 v 1 ϑ 1 v 2 ρ(x 2 ) (I(v 1 ) 6=I(E 1 ) l ψ) ρ, κ = P : ψ ρ, κ = decrypt E as {E 1 ; x 1 } l E 0 in P : ψ evaluate terms evaluate key for all encrypted values pattern matching variable binding freshness checking analyse the rest : membership relation with session IDs ignored

A Formal Analysis for Capturing Replay Attacks in Cryptographic Protocols

A Formal Analysis for Capturing Replay Attacks in Cryptographic Protocols A Formal Analysis for Capturing Replay Attacks in Cryptographic Protocols Han Gao 1,ChiaraBodei 2, Pierpaolo Degano 2, and Hanne Riis Nielson 1 1 Informatics and Mathematical Modelling, Technical University

More information

Control Flow Analysis of Security Protocols (I)

Control Flow Analysis of Security Protocols (I) Control Flow Analysis of Security Protocols (I) Mikael Buchholtz 02913 F2005 Mikael Buchholtz p. 1 History of Protocol Analysis Needham-Schroeder 78 Dolev-Yao 81 Algebraic view of cryptography 02913 F2005

More information

A Logic of Authentication

A Logic of Authentication A Logic of Authentication by Burrows, Abadi, and Needham Presented by Adam Schuchart, Kathryn Watkins, Michael Brotzman, Steve Bono, and Sam Small Agenda The problem Some formalism The goals of authentication,

More information

Notes on BAN Logic CSG 399. March 7, 2006

Notes on BAN Logic CSG 399. March 7, 2006 Notes on BAN Logic CSG 399 March 7, 2006 The wide-mouthed frog protocol, in a slightly different form, with only the first two messages, and time stamps: A S : A, {T a, B, K ab } Kas S B : {T s, A, K ab

More information

Time-Bounding Needham-Schroeder Public Key Exchange Protocol

Time-Bounding Needham-Schroeder Public Key Exchange Protocol Time-Bounding Needham-Schroeder Public Key Exchange Protocol Max Kanovich, Queen Mary, University of London, UK University College London, UCL-CS, UK Tajana Ban Kirigin, University of Rijeka, HR Vivek

More information

A Calculus for Control Flow Analysis of Security Protocols

A Calculus for Control Flow Analysis of Security Protocols International Journal of Information Security manuscript No. (will be inserted by the editor) A Calculus for Control Flow Analysis of Security Protocols Mikael Buchholtz, Hanne Riis Nielson, Flemming Nielson

More information

Analysis and Reconstruction of Attacks on Authentication Protocols. Master Thesis by Nikolaj Hjelm Kaplan

Analysis and Reconstruction of Attacks on Authentication Protocols. Master Thesis by Nikolaj Hjelm Kaplan Analysis and Reconstruction of Attacks on Authentication Protocols Master Thesis by Nikolaj Hjelm Kaplan Institute of Informatics and Mathematical Modelling The Technical University of Denmark IMM-THESIS-2004-36

More information

Automatic Verification of Complex Security Protocols With an Unbounded Number of Sessions

Automatic Verification of Complex Security Protocols With an Unbounded Number of Sessions Automatic Verification of Complex Security Protocols With an Unbounded Number of Sessions Kaile Su, Weiya Yue and Qingliang Chen Department of Computer Science, Sun Yat-sen University Guangzhou, P.R. China

More information

Encoding security protocols in the cryptographic λ-calculus. Eijiro Sumii Joint work with Benjamin Pierce University of Pennsylvania

Encoding security protocols in the cryptographic λ-calculus. Eijiro Sumii Joint work with Benjamin Pierce University of Pennsylvania Encoding security protocols in the cryptographic λ-calculus Eijiro Sumii Joint work with Benjamin Pierce University of Pennsylvania An obvious fact Security is important Cryptography is a major way to

More information

Analysis of Security Protocols by Annotations

Analysis of Security Protocols by Annotations Downloaded from orbit.dtu.dk on: Dec 01, 2017 Analysis of Security Protocols by Annotations Gao, Han; Nielson, Hanne Riis; Nielson, Flemming Publication date: 2008 Document Version Publisher's PDF, also

More information

Models and analysis of security protocols 1st Semester Security Protocols Lecture 6

Models and analysis of security protocols 1st Semester Security Protocols Lecture 6 Models and analysis of security protocols 1st Semester 2010-2011 Security Protocols Lecture 6 Pascal Lafourcade Université Joseph Fourier, Verimag Master: October 18th 2010 1 / 46 Last Time (I) Symmetric

More information

Primitives for authentication in process algebras

Primitives for authentication in process algebras Theoretical Computer Science 283 (2002) 271 304 www.elsevier.com/locate/tcs Primitives for authentication in process algebras Chiara Bodei a, Pierpaolo Degano a;, Riccardo Focardi b, Corrado Priami c a

More information

A Logic of Authentication. Borrows, Abadi and Needham TOCS 1990, DEC-SRC 1989

A Logic of Authentication. Borrows, Abadi and Needham TOCS 1990, DEC-SRC 1989 A Logic of Authentication Borrows, Abadi and Needham TOCS 1990, DEC-SRC 1989 Logic Constructs P believes X : P may act as though X is true. P sees X : a message containing X was sent to P; P can read and

More information

Verification of the TLS Handshake protocol

Verification of the TLS Handshake protocol Verification of the TLS Handshake protocol Carst Tankink (0569954), Pim Vullers (0575766) 20th May 2008 1 Introduction In this text, we will analyse the Transport Layer Security (TLS) handshake protocol.

More information

BAN Logic A Logic of Authentication

BAN Logic A Logic of Authentication BAN Logic A Logic of Authentication Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1 BAN Logic The BAN logic was named after its inventors, Mike Burrows, Martín Abadí,

More information

Proving Security Protocols Correct. Lawrence C. Paulson Computer Laboratory

Proving Security Protocols Correct. Lawrence C. Paulson Computer Laboratory Proving Security Protocols Correct Lawrence C. Paulson Computer Laboratory How Detailed Should a Model Be? too detailed too simple concrete abstract not usable not credible ``proves'' everything ``attacks''

More information

Proving Properties of Security Protocols by Induction

Proving Properties of Security Protocols by Induction Proving Security Protocols 1 L. C. Paulson Proving Properties of Security Protocols by Induction Lawrence C. Paulson Computer Laboratory University of Cambridge Proving Security Protocols 2 L. C. Paulson

More information

Verification of Security Protocols in presence of Equational Theories with Homomorphism

Verification of Security Protocols in presence of Equational Theories with Homomorphism Verification of Security Protocols in presence of Equational Theories with Homomorphism Stéphanie Delaune France Télécom, division R&D, LSV CNRS & ENS Cachan February, 13, 2006 Stéphanie Delaune (FT R&D,

More information

Exam Security January 19, :30 11:30

Exam Security January 19, :30 11:30 Exam Security January 19, 2016. 8:30 11:30 You can score a maximum of 100. Each question indicates how many it is worth. You are NOT allowed to use books or notes, or a (smart) phone. You may answer in

More information

CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols

CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols CryptoVerif: A Computationally Sound Mechanized Prover for Cryptographic Protocols Bruno Blanchet CNRS, École Normale Supérieure, INRIA, Paris March 2009 Bruno Blanchet (CNRS, ENS, INRIA) CryptoVerif March

More information

Term Rewriting applied to Cryptographic Protocol Analysis: the Maude-NPA tool

Term Rewriting applied to Cryptographic Protocol Analysis: the Maude-NPA tool Term Rewriting applied to Cryptographic Protocol Analysis: the Maude-NPA tool Santiago Escobar Departamento de Sistemas Informáticos y Computación Universitat Politècnica de València sescobar@dsic.upv.es

More information

Strand Spaces Proving Protocols Corr. Jonathan Herzog 6 April 2001

Strand Spaces Proving Protocols Corr. Jonathan Herzog 6 April 2001 Strand Spaces Proving Protocols Corr Jonathan Herzog 6 April 2001 Introduction 3Second part of talk given early last month Introduced class of cryptographic protocols Modeled at high level of abstraction

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Introduction to Modern Cryptography Lecture 5 Number Theory: 1. Quadratic residues. 2. The discrete log problem. Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary - Math Part

More information

Extending ProVerif s Resolution Algorithm for Verifying Group Protocols

Extending ProVerif s Resolution Algorithm for Verifying Group Protocols Extending ProVerif s Resolution Algorithm for Verifying Group Protocols Miriam Paiola miriam.paiola@ens.fr Ecole Normale Supérieure June 25, 2010 Extending ProVerif s Resolution Algorithm, for Verifying

More information

Preliminary Proceedings

Preliminary Proceedings Preliminary Proceedings 5th International Workshop on Security Issues in Concurrency (SecCo 07) Lisbon, Portugal September 3rd, 2007 Editors: Daniele Gorla Catuscia Palamidessi ii Contents Preface v Cédric

More information

A Cryptographic Decentralized Label Model

A Cryptographic Decentralized Label Model A Cryptographic Decentralized Label Model Jeffrey A. Vaughan and Steve Zdancewic Department of Computer and Information Science University of Pennsylvania IEEE Security and Privacy May 22, 2007 Information

More information

Analysing privacy-type properties in cryptographic protocols

Analysing privacy-type properties in cryptographic protocols Analysing privacy-type properties in cryptographic protocols Stéphanie Delaune LSV, CNRS & ENS Cachan, France Wednesday, January 14th, 2015 S. Delaune (LSV) Verification of cryptographic protocols 14th

More information

Practice Assignment 2 Discussion 24/02/ /02/2018

Practice Assignment 2 Discussion 24/02/ /02/2018 German University in Cairo Faculty of MET (CSEN 1001 Computer and Network Security Course) Dr. Amr El Mougy 1 RSA 1.1 RSA Encryption Practice Assignment 2 Discussion 24/02/2018-29/02/2018 Perform encryption

More information

Notes for Lecture 17

Notes for Lecture 17 U.C. Berkeley CS276: Cryptography Handout N17 Luca Trevisan March 17, 2009 Notes for Lecture 17 Scribed by Matt Finifter, posted April 8, 2009 Summary Today we begin to talk about public-key cryptography,

More information

A derivation system and compositional logic for security protocols

A derivation system and compositional logic for security protocols Journal of Computer Security 13 2005) 423 482 423 IOS Press A derivation system and compositional logic for security protocols Anupam Datta a,, Ante Derek a, John C. Mitchell a and Dusko Pavlovic b a Computer

More information

MSR 3.0: The Logical Meeting Point of Multiset Rewriting and Process Algebra. Iliano Cervesato. ITT Industries, NRL Washington, DC

MSR 3.0: The Logical Meeting Point of Multiset Rewriting and Process Algebra. Iliano Cervesato. ITT Industries, NRL Washington, DC MSR 3.0: The Logical Meeting Point of Multiset Rewriting and Process Algebra Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, inc @ NRL Washington, DC http://theory.stanford.edu/~iliano ISSS 2003,

More information

An Efficient Cryptographic Protocol Verifier Based on Prolog Rules

An Efficient Cryptographic Protocol Verifier Based on Prolog Rules An Efficient Cryptographic Protocol Verifier Based on Prolog Rules Bruno Blanchet INRIA Rocquencourt Domaine de Voluceau B.P. 105 78153 Le Chesnay Cedex, France Bruno.Blanchet@inria.fr Abstract We present

More information

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms

2. Cryptography 2.5. ElGamal cryptosystems and Discrete logarithms CRYPTOGRAPHY 19 Cryptography 5 ElGamal cryptosystems and Discrete logarithms Definition Let G be a cyclic group of order n and let α be a generator of G For each A G there exists an uniue 0 a n 1 such

More information

Lecture th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics

Lecture th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics 0368.4162: Introduction to Cryptography Ran Canetti Lecture 11 12th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics Introduction to cryptographic protocols Commitments 1 Cryptographic

More information

MSR by Examples. Iliano Cervesato. ITT Industries, NRL Washington DC.

MSR by Examples. Iliano Cervesato. ITT Industries, NRL Washington DC. MSR by Examples Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, Inc @ NRL Washington DC http://www.cs.stanford.edu/~iliano/ IITD, CSE Dept. Delhi, India April 24 th,2002 Outline Security Protocols

More information

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties

Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties CS 380S Oblivious Transfer and Secure Multi-Party Computation With Malicious Parties Vitaly Shmatikov slide 1 Reminder: Oblivious Transfer b 0, b 1 i = 0 or 1 A b i B A inputs two bits, B inputs the index

More information

Quantum Wireless Sensor Networks

Quantum Wireless Sensor Networks Quantum Wireless Sensor Networks School of Computing Queen s University Canada ntional Computation Vienna, August 2008 Main Result Quantum cryptography can solve the problem of security in sensor networks.

More information

A process algebraic analysis of privacy-type properties in cryptographic protocols

A process algebraic analysis of privacy-type properties in cryptographic protocols A process algebraic analysis of privacy-type properties in cryptographic protocols Stéphanie Delaune LSV, CNRS & ENS Cachan, France Saturday, September 6th, 2014 S. Delaune (LSV) Verification of cryptographic

More information

CHRISTIAN-ALBRECHTS-UNIVERSITÄT KIEL

CHRISTIAN-ALBRECHTS-UNIVERSITÄT KIEL INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK A Constraint-Based Algorithm for Contract-Signing Protocols Detlef Kähler, Ralf Küsters Bericht Nr. 0503 April 2005 CHRISTIAN-ALBRECHTS-UNIVERSITÄT KIEL

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 11 October 7, 2015 CPSC 467, Lecture 11 1/37 Digital Signature Algorithms Signatures from commutative cryptosystems Signatures from

More information

MSR by Examples. Iliano Cervesato. ITT Industries, NRL Washington DC.

MSR by Examples. Iliano Cervesato. ITT Industries, NRL Washington DC. MSR by Examples Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, Inc @ NRL Washington DC http://www.cs.stanford.edu/~iliano/ PPL 01 March 21 st, 2001 Outline I. Security Protocols II. MSR by Examples

More information

Abstract Specification of Crypto- Protocols and their Attack Models in MSR

Abstract Specification of Crypto- Protocols and their Attack Models in MSR Abstract Specification of Crypto- Protocols and their Attack Models in MSR Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, Inc @ NRL Washington DC http://www.cs.stanford.edu/~iliano/ Software

More information

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1

+ = OTP + QKD = QC. ψ = a. OTP One-Time Pad QKD Quantum Key Distribution QC Quantum Cryptography. θ = 135 o state 1 Quantum Cryptography Quantum Cryptography Presented by: Shubhra Mittal Instructor: Dr. Stefan Robila Intranet & Internet Security (CMPT-585-) Fall 28 Montclair State University, New Jersey Introduction

More information

KEY DISTRIBUTION 1 /74

KEY DISTRIBUTION 1 /74 KEY DISTRIBUTION 1 /74 The public key setting Alice M D sk[a] (C) C Bob pk[a] C $ E pk[a] (M) σ $ S sk[a] (M) M,σ Vpk[A] (M,σ) Bob can: send encrypted data to Alice verify her signatures as long as he

More information

CS 395T. Probabilistic Polynomial-Time Calculus

CS 395T. Probabilistic Polynomial-Time Calculus CS 395T Probabilistic Polynomial-Time Calculus Security as Equivalence Intuition: encryption scheme is secure if ciphertext is indistinguishable from random noise Intuition: protocol is secure if it is

More information

One Year Later. Iliano Cervesato. ITT Industries, NRL Washington, DC. MSR 3.0:

One Year Later. Iliano Cervesato. ITT Industries, NRL Washington, DC.  MSR 3.0: MSR 3.0: The Logical Meeting Point of Multiset Rewriting and Process Algebra MSR 3: Iliano Cervesato iliano@itd.nrl.navy.mil One Year Later ITT Industries, inc @ NRL Washington, DC http://www.cs.stanford.edu/~iliano

More information

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography

Lecture 19: Public-key Cryptography (Diffie-Hellman Key Exchange & ElGamal Encryption) Public-key Cryptography Lecture 19: (Diffie-Hellman Key Exchange & ElGamal Encryption) Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies

More information

Protocol Insecurity with a Finite Number of Sessions and Composed Keys is NP-complete

Protocol Insecurity with a Finite Number of Sessions and Composed Keys is NP-complete Protocol Insecurity with a Finite Number of Sessions and Composed Keys is NP-complete Michaël Rusinowitch and Mathieu Turuani LORIA-INRIA- Université Henri Poincaré, 54506 Vandoeuvre-les-Nancy cedex, France

More information

Lecture 11: Key Agreement

Lecture 11: Key Agreement Introduction to Cryptography 02/22/2018 Lecture 11: Key Agreement Instructor: Vipul Goyal Scribe: Francisco Maturana 1 Hardness Assumptions In order to prove the security of cryptographic primitives, we

More information

Elliptic Curves. Giulia Mauri. Politecnico di Milano website:

Elliptic Curves. Giulia Mauri. Politecnico di Milano   website: Elliptic Curves Giulia Mauri Politecnico di Milano email: giulia.mauri@polimi.it website: http://home.deib.polimi.it/gmauri May 13, 2015 Giulia Mauri (DEIB) Exercises May 13, 2015 1 / 34 Overview 1 Elliptic

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

On the Verification of Cryptographic Protocols

On the Verification of Cryptographic Protocols On the Verification of Cryptographic Protocols Federico Cerutti Dipartimento di Ingegneria dell Informazione, Università di Brescia Via Branze 38, I-25123 Brescia, Italy January 11, 2011 Talk at Prof.

More information

Cryptographical Security in the Quantum Random Oracle Model

Cryptographical Security in the Quantum Random Oracle Model Cryptographical Security in the Quantum Random Oracle Model Center for Advanced Security Research Darmstadt (CASED) - TU Darmstadt, Germany June, 21st, 2012 This work is licensed under a Creative Commons

More information

Cryptography IV: Asymmetric Ciphers

Cryptography IV: Asymmetric Ciphers Cryptography IV: Asymmetric Ciphers Computer Security Lecture 7 David Aspinall School of Informatics University of Edinburgh 31st January 2011 Outline Background RSA Diffie-Hellman ElGamal Summary Outline

More information

Models for an Adversary-Centric Protocol Logic

Models for an Adversary-Centric Protocol Logic Workshop on Logical Aspects of Cryptographics 2001 Preliminary Version Models for an Adversary-Centric Protocol Logic Peter Selinger Department of Mathematics and Statistics University of Ottawa Ottawa,

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 11 February 21, 2013 CPSC 467b, Lecture 11 1/27 Discrete Logarithm Diffie-Hellman Key Exchange ElGamal Key Agreement Primitive Roots

More information

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography

CIS 6930/4930 Computer and Network Security. Topic 5.2 Public Key Cryptography CIS 6930/4930 Computer and Network Security Topic 5.2 Public Key Cryptography 1 Diffie-Hellman Key Exchange 2 Diffie-Hellman Protocol For negotiating a shared secret key using only public communication

More information

Discrete Logarithm Problem

Discrete Logarithm Problem Discrete Logarithm Problem Finite Fields The finite field GF(q) exists iff q = p e for some prime p. Example: GF(9) GF(9) = {a + bi a, b Z 3, i 2 = i + 1} = {0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i} Addition:

More information

CS-E4320 Cryptography and Data Security Lecture 11: Key Management, Secret Sharing

CS-E4320 Cryptography and Data Security Lecture 11: Key Management, Secret Sharing Lecture 11: Key Management, Secret Sharing Céline Blondeau Email: celine.blondeau@aalto.fi Department of Computer Science Aalto University, School of Science Key Management Secret Sharing Shamir s Threshold

More information

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC)

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC) A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC) Majid Alshammari and Khaled Elleithy Department of Computer Science and Engineering University of Bridgeport

More information

Lecture 28: Public-key Cryptography. Public-key Cryptography

Lecture 28: Public-key Cryptography. Public-key Cryptography Lecture 28: Recall In private-key cryptography the secret-key sk is always established ahead of time The secrecy of the private-key cryptography relies on the fact that the adversary does not have access

More information

Typed MSR: Syntax and Examples

Typed MSR: Syntax and Examples Typed MSR: Syntax and Examples Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, Inc @ NRL Washington DC http://www.cs.stanford.edu/~iliano/ MMM 01 St. Petersburg, Russia May 22 nd, 2001 Outline

More information

Private Authentication

Private Authentication Private Authentication Martín Abadi University of California at Santa Cruz Cédric Fournet Microsoft Research Abstract Frequently, communication between two principals reveals their identities and presence

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

2 Message authentication codes (MACs)

2 Message authentication codes (MACs) CS276: Cryptography October 1, 2015 Message Authentication Codes and CCA2 Instructor: Alessandro Chiesa Scribe: David Field 1 Previous lecture Last time we: Constructed a CPA-secure encryption scheme from

More information

APPLICATIONS OF BAN-LOGIC JAN WESSELS CMG FINANCE B.V.

APPLICATIONS OF BAN-LOGIC JAN WESSELS CMG FINANCE B.V. APPLITIONS OF AN-LOGIC JAN WESSELS CMG FINANCE.V. APRIL 19, 2001 Chapter 1 Introduction This document is meant to give an overview of the AN-logic. The AN-logic is one of the methods for the analysis of

More information

CPSA and Formal Security Goals

CPSA and Formal Security Goals CPSA and Formal Security Goals John D. Ramsdell The MITRE Corporation CPSA Version 2.5.1 July 8, 2015 Contents 1 Introduction 3 2 Syntax 6 3 Semantics 8 4 Examples 10 4.1 Needham-Schroeder Responder.................

More information

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1

Cryptography CS 555. Topic 25: Quantum Crpytography. CS555 Topic 25 1 Cryptography CS 555 Topic 25: Quantum Crpytography CS555 Topic 25 1 Outline and Readings Outline: What is Identity Based Encryption Quantum cryptography Readings: CS555 Topic 25 2 Identity Based Encryption

More information

The Elliptic Curve in https

The Elliptic Curve in https The Elliptic Curve in https Marco Streng Universiteit Leiden 25 November 2014 Marco Streng (Universiteit Leiden) The Elliptic Curve in https 25-11-2014 1 The s in https:// HyperText Transfer Protocol

More information

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer

RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis. Daniel Genkin, Adi Shamir, Eran Tromer RSA Key Extraction via Low- Bandwidth Acoustic Cryptanalysis Daniel Genkin, Adi Shamir, Eran Tromer Mathematical Attacks Input Crypto Algorithm Key Output Goal: recover the key given access to the inputs

More information

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols

Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols Discrete vs. Dense Times in the Analysis of Cyber-Physical Security Protocols Max Kanovich 1,5 Tajana Ban Kirigin 2 Vivek Nigam 3 Andre Scedrov 4,5 and Carolyn Talcott 6 1 Queen Mary, University of London

More information

Analysing Layered Security Protocols

Analysing Layered Security Protocols Analysing Layered Security Protocols Thomas Gibson-Robinson St Catherine s College University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2013 Abstract Many security protocols

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

A simple procedure for finding guessing attacks (Extended Abstract)

A simple procedure for finding guessing attacks (Extended Abstract) A simple procedure for finding guessing attacks (Extended Abstract) Ricardo Corin 1 and Sandro Etalle 1,2 1 Dept. of Computer Science, University of Twente, The Netherlands 2 CWI, Center for Mathematics

More information

Lecture 3,4: Multiparty Computation

Lecture 3,4: Multiparty Computation CS 276 Cryptography January 26/28, 2016 Lecture 3,4: Multiparty Computation Instructor: Sanjam Garg Scribe: Joseph Hui 1 Constant-Round Multiparty Computation Last time we considered the GMW protocol,

More information

Probabilistic Model Checking of Security Protocols without Perfect Cryptography Assumption

Probabilistic Model Checking of Security Protocols without Perfect Cryptography Assumption Our Model Checking of Security Protocols without Perfect Cryptography Assumption Czestochowa University of Technology Cardinal Stefan Wyszynski University CN2016 Our 1 2 3 Our 4 5 6 7 Importance of Security

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 19 November 8, 2017 CPSC 467, Lecture 19 1/37 Zero Knowledge Interactive Proofs (ZKIP) ZKIP for graph isomorphism Feige-Fiat-Shamir

More information

Verifiable Security of Boneh-Franklin Identity-Based Encryption. Federico Olmedo Gilles Barthe Santiago Zanella Béguelin

Verifiable Security of Boneh-Franklin Identity-Based Encryption. Federico Olmedo Gilles Barthe Santiago Zanella Béguelin Verifiable Security of Boneh-Franklin Identity-Based Encryption Federico Olmedo Gilles Barthe Santiago Zanella Béguelin IMDEA Software Institute, Madrid, Spain 5 th International Conference on Provable

More information

The Laws of Cryptography Zero-Knowledge Protocols

The Laws of Cryptography Zero-Knowledge Protocols 26 The Laws of Cryptography Zero-Knowledge Protocols 26.1 The Classes NP and NP-complete. 26.2 Zero-Knowledge Proofs. 26.3 Hamiltonian Cycles. An NP-complete problem known as the Hamiltonian Cycle Problem

More information

Complexity of Checking Freshness of Cryptographic Protocols

Complexity of Checking Freshness of Cryptographic Protocols Complexity of Checking Freshness of Cryptographic Protocols Zhiyao Liang Rakesh M Verma Computer Science Department, University of Houston, Houston TX 77204-3010, USA Email: zliang@cs.uh.edu, rmverma@cs.uh.edu

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Authentication CPSC 467b: Cryptography and Computer Security Lecture 18 Michael J. Fischer Department of Computer Science Yale University March 29, 2010 Michael J. Fischer CPSC 467b, Lecture 18

More information

TAuth: Verifying Timed Security Protocols

TAuth: Verifying Timed Security Protocols TAuth: Verifying Timed Security Protocols Li Li 1, Jun Sun 2, Yang Liu 3, and Jin Song Dong 1 1 National University of Singapore 2 Singapore University of Technology and Design 3 Nanyang Technological

More information

Quantum threat...and quantum solutions

Quantum threat...and quantum solutions Quantum threat...and quantum solutions How can quantum key distribution be integrated into a quantum-safe security infrastructure Bruno Huttner ID Quantique ICMC 2017 Outline Presentation of ID Quantique

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

Smooth Projective Hash Function and Its Applications

Smooth Projective Hash Function and Its Applications Smooth Projective Hash Function and Its Applications Rongmao Chen University of Wollongong November 21, 2014 Literature Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm for Adaptive

More information

Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis. Standard analysis methods. Compositionality

Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis. Standard analysis methods. Compositionality Probabilistic Polynomial-Time Process Calculus for Security Protocol Analysis J. Mitchell, A. Ramanathan, A. Scedrov, V. Teague P. Lincoln, P. Mateus, M. Mitchell Standard analysis methods Finite-state

More information

Lecture 15 - Zero Knowledge Proofs

Lecture 15 - Zero Knowledge Proofs Lecture 15 - Zero Knowledge Proofs Boaz Barak November 21, 2007 Zero knowledge for 3-coloring. We gave a ZK proof for the language QR of (x, n) such that x QR n. We ll now give a ZK proof (due to Goldreich,

More information

Lectures 1&2: Introduction to Secure Computation, Yao s and GMW Protocols

Lectures 1&2: Introduction to Secure Computation, Yao s and GMW Protocols CS 294 Secure Computation January 19, 2016 Lectures 1&2: Introduction to Secure Computation, Yao s and GMW Protocols Instructor: Sanjam Garg Scribe: Pratyush Mishra 1 Introduction Secure multiparty computation

More information

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen.

Introduction on Block cipher Yoyo Game Application on AES Conclusion. Yoyo Game with AES. Navid Ghaedi Bardeh. University of Bergen. Yoyo Game with AES Navid Ghaedi Bardeh University of Bergen May 8, 2018 1 / 33 Outline 1 Introduction on Block cipher 2 Yoyo Game 3 Application on AES 4 Conclusion 2 / 33 Classical Model of Symmetric Cryptography

More information

A Verifiable Language for Cryptographic Protocols

A Verifiable Language for Cryptographic Protocols Downloaded from orbit.dtu.dk on: Jan 30, 2018 A Verifiable Language for Cryptographic Protocols Nielsen, Christoffer Rosenkilde; Nielson, Flemming; Nielson, Hanne Riis Publication date: 2009 Document Version

More information

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security

Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Lecture 17 - Diffie-Hellman key exchange, pairing, Identity-Based Encryption and Forward Security Boaz Barak November 21, 2007 Cyclic groups and discrete log A group G is cyclic if there exists a generator

More information

Automated Verification of Privacy in Security Protocols:

Automated Verification of Privacy in Security Protocols: Automated Verification of Privacy in Security Protocols: Back and Forth Between Theory & Practice LSV, ENS Paris-Saclay, Université Paris-Saclay, CNRS April 21st 2017 PhD advisors: David Baelde & Stéphanie

More information

An Introduction. Dr Nick Papanikolaou. Seminar on The Future of Cryptography The British Computer Society 17 September 2009

An Introduction. Dr Nick Papanikolaou. Seminar on The Future of Cryptography The British Computer Society 17 September 2009 An Dr Nick Papanikolaou Research Fellow, e-security Group International Digital Laboratory University of Warwick http://go.warwick.ac.uk/nikos Seminar on The Future of Cryptography The British Computer

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

A Semantics for a Logic of Authentication. Cambridge, MA : A; B

A Semantics for a Logic of Authentication. Cambridge, MA : A; B A Semantics for a Logic of Authentication (Extended Abstract) Martn Abadi Digital Equipment Corporation Systems Research Center 130 Lytton Avenue Palo Alto, CA 94301 ma@src.dec.com Abstract: Burrows, Abadi,

More information

MASTER S THESIS FROM FORMAL TO COMPUTATIONAL AUTHENTICITY DISTRIBUTED AND EMBEDDED SYSTEMS DEPARTMENT OF COMPUTER SCIENCE AALBORG UNIVERSITY

MASTER S THESIS FROM FORMAL TO COMPUTATIONAL AUTHENTICITY DISTRIBUTED AND EMBEDDED SYSTEMS DEPARTMENT OF COMPUTER SCIENCE AALBORG UNIVERSITY DISTRIBUTED AND EMBEDDED SYSTEMS DEPARTMENT OF COMPUTER SCIENCE AALBORG UNIVERSITY MASTER S THESIS MICHAEL GARDE FROM FORMAL TO COMPUTATIONAL AUTHENTICITY AN APPROACH FOR RECONCILING FORMAL AND COMPUTATIONAL

More information

A compositional logic for proving security properties of protocols

A compositional logic for proving security properties of protocols Journal of Computer Security 11 (2003) 677 721 677 IOS Press A compositional logic for proving security properties of protocols Nancy Durgin a, John Mitchell b and Dusko Pavlovic c a Sandia National Labs,

More information

Solutions to the Midterm Test (March 5, 2011)

Solutions to the Midterm Test (March 5, 2011) MATC16 Cryptography and Coding Theory Gábor Pete University of Toronto Scarborough Solutions to the Midterm Test (March 5, 2011) YOUR NAME: DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. INSTRUCTIONS:

More information

Introduction to Cryptography. Lecture 8

Introduction to Cryptography. Lecture 8 Introduction to Cryptography Lecture 8 Benny Pinkas page 1 1 Groups we will use Multiplication modulo a prime number p (G, ) = ({1,2,,p-1}, ) E.g., Z 7* = ( {1,2,3,4,5,6}, ) Z p * Z N * Multiplication

More information