Fourier Transform Methods for Partial Differential Equations

Size: px
Start display at page:

Download "Fourier Transform Methods for Partial Differential Equations"

Transcription

1 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio,, Vol, No 3, -57 Avill oli t Si d Edutio Pulihig DOI:69/ijpd--3- Fourir Trorm Mthod or Prtil Dirtil Equtio Nol Tu Ngro * Dprtmt o Mthmti, Collg o Nturl d Computtiol Si, Wollg Uivrity, P o 395 Corrpodig uthor: tit@gmilom Rivd My 6, ; Rvid Ju, ; Aptd Ju 9, Atrt Th purpo o thi mir ppr i to itrodu th Fourir trorm mthod or prtil dirtil qutio Th itrodutio oti ll th poil ort to ilitt th udrtdig o Fourir trorm mthod or whih qulittiv thory i vill d lo om illutrtiv mpl w giv Th rultig Fourir trorm mp utio did o phyil p to utio did o th p o rqui, who vlu qutiy th mout o h priodi rquy otid i th origil utio th ivr Fourir trorm rotrut th origil utio rom it trorm Kyword: ourir trorm, prtil dirtil qutio Cit Thi Artil: Nol Tu Ngro, Fourir Trorm Mthod or Prtil Dirtil Equtio Itrtiol Jourl o Prtil Dirtil Equtio d Applitio, vol, o 3 (: -57 doi: 69/ijpd--3- Itrodutio Th Fourir trorm i th turl tio o Fourir ri to utio ( o iiit priod [] Thi ppr dvlop o o th udmtl topi i lyi d i PDE, mly orthogol pio Diitio: Th t o utio {Y (:,, } h o whih i piwi otiuou i iiit or iit itrvl [α,β], i id to orthogol i [α,β] with rpt to th wight utio r(>, i β Ym, Y r Ym Y d or ll m d α β r Y d or ll α W hll lwy um tht r( h oly iit umr o zro i [α,β] d th itgrl β r Y d,, it α Diitio: Th orm o utio Y ( i dotd y Y did th ir produt o utio with itl d writt β Y r Y d α A rl - vlud utio Y ( i lld qur - itgrl o th itrvl i [α,β] with rpt to th wight utio r( wh β α r Y d < + Th orthogol t {Y (:,, } i [α,β] with rpt to th wight utio r( i id to orthoorml t i r Y β d or ll [8] α I {Y (} i orthoorml t o utio th β m m ( α Y, Y r Y Y d δ m i m Whr δm i th Krokr dlt [6] i m Thu, orthoorml utio hv th m proprti orthogol utio, ut, i dditio, thy hv ormlizd [5], i, h utio Y ( o th orthogol t h dividd y th orm o tht utio, whih i β did Y r Y d H i α orthogol t o utio {Y (} i did o th itrvl [α,β], with Y w lwy otrut orthoorml t o utio X ( y diig Y X, α β [] Y I t i viw o (, β r Ym Y d X m,x ϕm, ϕ δm Ym Y Ym Y α d h X or ll Empl: Th t o utio Y i,or,,, i t o orthogol

2 5 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio utio ovr th itrvl <X< With rpt to th wight utio r( Thi i how y lultig th ir produt m m Ym, Y i,i i i d i ( m i ( m +, m, ( m ( m+ d Th orm qurd or h utio i giv y m m m m m Y, Y Y i d o d m i m For m,, Th rult r writt i ir produt ottio i m m i,i δm i m Th mir ppr diu priodi utio whih pdd i trm o iiit um o i d oi i whih mot utio outrd i girig r priodi utio Diitio: Fourir trigoomtri ri o utio o ( did o i did o - X, i th iiit trigoomtri ri ~ + o + i, Who oiit r giv y th ir produt ormul ( t dt t ( o dt, t ( i dt, Howvr, i th utio ( i odd, th i ( o tdt, ( t i tdt ( t i tdt, th Fourir trigoomtri ri rdu to th Fourir i ri: Whr o ~ i ( t i tdt, Thu, w olud tht i ( i odd, or did oly o(, d w mk it odd tio th th Fourir i ri otid Etly, i th m wy i ( i v, or did oly o (, d w mk it v tio th i ( t o tdt ( t o tdt, ( i tdt, th Fourir trigoomtri ri rdu to th Fourir oi ri: Whr ~ + o ( ( otdt, Empl: W hll id th Fourir oi ri o th < < Clrly, utio, to tdt tdt,, i t i t t o tdt t dt o (, + Thu, rom (, w hv ( ~ + o, < < Thorm: (Fourir thorm [ [7] ]t ( d ( piwi otiuou i th itrvl [-,] Th, th Fourir trigoomtri ri o ( ovrg to + _ ( + ( t h poit i th op itrvl (-, + _ ( + ( d t ± th ri ovrg to Empl: Coidr th utio [ [,,,, Clrly, CP (, d h igl jump diotiuity t For thi utio, th Fourir ( ( trigoomtri oiit r,, Thu, w hv ( ~ + i (, y F (3

3 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 6 From Fourir thorm i (,3 th qulity F( ( hold t h poit i th op itrvl (-, d (, whr t th right hd id i / whih i th m + _ ( + id i gi / whih i th m Alo, t ± th right hd + _ ( + Th Fourir itgrl i turl tio o Fourir trigoomtri ri i th tht it rprt piwi mooth utio who domi i mi-iiit or iiit [] A priodi utio ( did i iit itrvl (-, prd i Fourir ri y tdig thi opt, o priodi utio did i -<< (or ll prd Fourir itgrl t p ( priodi utio o priod p tht rprtd y Fourir ri ( i, + o + Whr dt o tdt, i dt, p Th prolm w hll oidr i wht hpp to th ov ri wh or thi w irt d, to oti o ( otdt ( dt + + i ( i tdt ( + W ow t + Th, d w my writ th Fourir ri i th orm ( dt ( o ( otdt ( + + (i ( dt Thi rprttio i vlid or y id p, ritrrily lrg, ut id W ow lt d um tht th rultig lim i olutly opriodi utio i itgrl o th -i, i, d < Th,, d th vlu o th irt trm o th right id o ( pproh zro Alo, d th iiit ri i ( om itgrl rom to, whih rprt (, i, o ( otdt (5 + ( tdt Now i w itrodu th ottio A ( otdt, B ( tdt (6 Th (5 writt [ + ] Ao B d (7 Thi rprttio o ( i lld Fourir itgrl Thorm: (Fourir Itgrl Thorm: t (, - << piwi otiuou o h iit itrvl, < (-, i, i olutly itgrl d d, o(-, Th, ( rprtd y Fourir itgrl (7 A o + B d Furthr, t h ( + + ( Empl: Fid th Fourir itgrl rprttio o th igl pul utio i < i > From (6 w hv A ( otdt otdt B t tdt Thu, (7 giv th rprttio o i d (8 Now rom thi Thorm it i lr tht i < o ( + d i ± (9 i >

4 7 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio Thi itgrl i lld Dirihlt diotiuity tor Sttig i (9 yild th importt itgrl d ( kow th Dirihlt itgrl Thorm : (Fourir Coi Itgrl Thorm: I ( tii th Dirihlt oditio o th o gtiv rl li d i olutly itgrll o (,, th, whr A A o tdt t otdt Thorm : (Fourir Si Itgrl Thorm: I ( tii th Dirihlt oditio o th o gtiv rl li d i olutly itgrll o (,, th ; whr B B i d t tdt Idd, i ( i v utio, th B( i (3 t otdt d th Fourir itgrl (7 d A rdu to th Fourir oi itgrl, A o td ( Similrly, i ( i odd, th i (6w hv A( t tdt d th Fourir itgrl (7 d B rdu to th Fourir i itgrl B i dtd ( i Empl: Epr Fourir i > i itgrl d h vlut o o ( Th Fourir i itgrl or ( d i i d ( tdt d ( tdt o d o d o i < d i > At, whih poit o diotiuity o (,th vlu o th ov itgrl ( + ( + + W ot tht (5 i th m ( [ oo t] dtd + ( o( d Th itgrl i rkt i v utio o, w dot it y F ( Si o( i v utio o, th utio do ot dpd o, d w itgrt with rpt to t (ot, th itgrl o F ( rom to i / tim th itgrl o F ( rom - to Thu, t t dt d From th ov rgumt it i lr tht ( o( dtd A omitio o (3 d ( giv o( (3 ( i ( t t dtd (5 Thi i lld th ompl Fourir itgrl From th ov rprttio o (, w hv t i ( dt d (6 Diitio: I th Fourir itgrl o ( i th ompl orm giv y t i ( dt d th prio i rkt i utio o, i dotd y F( or F( d i lld Fourir trorm o Now writig or t w gt F d (7 Ad with thi (6 om F d (8 Th rprttio (8 i lld th ivr Fourir trorm o F( Filly, i Thorm-, i (, - << i piwi otiuou o h iit itrvl,

5 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 8 Th, th Fourir trorm (7 d d < o ( it Furthr, t h, F d ( + + ( Empl: Fid th Fourir trorm o th qur wv utio From (7, w hv, <,, > F i d d i Furthr it ollow tht,,, <, i d, < < i,, < Th i thiqu or olvig prtil dirtil qutio (PDE o oudd ptil domi i th Fourir mthod [] Th mir ppr dl with th prolm o th Fourir trorm mthod or prtil dirtil qutio oidrig irt prolm i iiit domi whih tivly olvd y idig th Fourir trorm or th Fourir i or oi trorm o th ukow utio Howvr, or uh prolm uully th mthod o prtio o vril do ot work u th Fourir ri r ot dqut to yild omplt olutio Thi i du to th t tht ot th prolm rquir otiuou uprpoitio o prtd olutio I thi mir ppr w gi y motivtig th otrutio y ivtigtig how Fourir ri hv th lgth o th itrvl go to iiity Thror, thi ppr dvlop th thory o th Fourir trorm mthod or prtil dirtil qutio i whih qulittiv thory it Th mi ojtiv o thi ppr i to diu Fourir trorm mthod or prtil dirtil qutio (PDE whih ot hlp ull i pproimtio to th tru itutio d tht mor rliti modl would ilud om o th priodi utio writt i trm o iiit um o i d oi ri y uig Fourir trorm whih wr omplitd wh w r uig Fourir ri Trorm o Prtil Drivtiv Diitio: I th Fourir itgrl o ( i th ompl orm giv y t i ( dt d th prio i rkt i utio o, i dotd y F( or F( d i lld Fourir trorm o Now writig or t w gt F d ( Ad with thi (8 om F d ( Th rprttio ( i lld th ivr Fourir trorm o F( Filly, i Thorm-, i (, - << i piwi otiuou o h iit itrvl, d d < Th, th Fourir trorm ( o ( it Furthr, t h, F d ( + + ( Empl: Fid th Fourir trorm o th qur wv utio, <,, > From (, w hv F i d d i,, Furthr it ollow tht, <, i d, < < i,, < Thorm (Covolutio Thorm: Suppo tht ( d g( r piwi otiuou, oudd, d olutly itgrl utio o th -i Th F * g F( F( g (3

6 9 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio Whr *g i th ovolutio o utio d g did ( * ( ( g t g t dt g t t dt Proo: By th diitio d itrhg o th ordr o itgrtio, w hv F ( * g ( T g ( T dtd ( T g ( T ddt Now w mk th utitutio -Tv, o tht T+ν d ( T+ ν F ( * g ( T g ( v dvdt T F( Gg v T dt g v dv By tkig th ivr Fourir trorm o oth id o (3 d writig F( d F( g g otig tht d ( *, d l h othr, w oti g g d ( Th olutio o IBVP oitig o prtil dirtil qutio togthr with oudry d iitil oditio olvd y th Fourir trorm mthod I o dimiol oudry vlu prolm, th prtil dirtil qutio ily trormd ito ordiry dirtil qutio y pplyig uitl trorm Th rquird olutio i th otid y olvig thi qutio d ivrtig y m o th ompl ivrio ormul or y y othr mthod I two dimiol prolm, it i omtim rquird to pply th trorm twi d th dird olutio i otid y doul ivrio Suppo tht u(, i utio o two vril d t, whr -<< d t> Bu o th pr o two vril, r i dd i idtiyig th vril with rpt to whih th Fourir trorm i omputd For mpl, or id t, th utio u(, om utio o th ptil vril, d uh, w tk it Fourir trorm with rpt to th vril W dot thi trorm y u(, Thu, Fu ( ( t, u(, u( t, d Thi trorm i lld Fourir trorm i th vril [] To illutrt th u o thi ottio w omput om vry uul trorm Fourir Trorm d Prtil Drivtiv Giv u(, with -<< d t>, w hv d F( ( u( t, u(, ; dt d F( ( u( t, u(,,,, ; dt F( ( u( t, u(, ; F( ( u( t, ( u(,,,, To prov (i w trt with th right id d dirtit udr th itgrl ig with rpt to t: d d u (, u (, d dt dt u (, Th lt prio i th Fourir trorm o u( t, utio o, d (i ollow Rptd dirtitio udr th itgrl ig with rpt to t yild (ii Fourir Si d Coi Trorm For v utio ( Fourir itgrl i th Fourir oi itgrl (5 whr A( i giv y (6 W t A F, whr idit oi Th rplig t y W gt d d F o d (5 F od (6 Formul (5 giv rom ( w utio F ( lld th Fourir oi trorm o ( whr (6 F, d w ll it th ivr giv k ( rom Fourir oi trorm o F Rltio (5 d (6 togthr orm Fourir oi trorm pir Similrly, or odd utio ( th Fourir i trorm i d th ivr Fourir i trorm i F i d (7 d th ivr Fourir i trorm i F d (8

7 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 5 Empl : Fid th Fourir oi trorm o >, > Solutio F od od ( th itgrl i v th imgiry prt itgrt d to zro u it i odd ( y orm F diitio o Fourir tr y Empl : Coidr th utio i i i > Epr uig ivr Fourir oi d th ivr i trorm Solutio: W irt trt y omputig th Fourir oi trorm From (8, ( o o + F io d Uig (6, w oti th ivr oi trorm rprttio ( o o + od( W omput th i trorm imilrly y uig (6 F o o ( d thu th ivr i trorm rprttio ( i i i d( Coi d Si Trorm o Drivtiv o Futio I ( i olutly itgrl o th poitiv -i d piwi otiuou o vry iit itrvl, th th Fourir oi d i trorm o it Furthrmor, it i lr tht F d F r lir oprtor, i, F + g F ( + F ( d F + g F + F Thorm: t ( otiuou d olutly itgrl o th -i, lt ( piwi otiuou o h iit itrvl, d lt ( Th, ' F ( F ( F F [ ] ( (9 ' ( Proo: To how (i, w itgrt y prt, to oti ' ' FC ood o o + i d ( + F ( Alo w itgrt y prt, to oti ' ' FC d ( [ i i ( o o d ] F Similrly, ( ( '' ' ' FC F By ormul (ii with itd o giv ( ( '' ' ' FC ' ( F ( ( ' F ( '' ' ( F F ( ( By ormul ( with itd o giv '' ( ( ' F F h y (9 '' ( ( F F ( F ( ( W hv y th Fourir trorm, F d ( By imilr produr w id rltio tw th i d oi Fourir trorm o th drivtiv o utio, uh d FC ood d + d d d [ oo ] d( d ( itgrtig y pr α +

8 5 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio Udr th umptio, d α d Similrly, itgrtig, m d d d d (3 d d Equtio, ( d (3 yild, m α ( or '( or '( i odd d i tht w writ αo pl o '( rptig th produr my prd th um o d ithr W thu hv will our wh r r ( r + ( r Ad i α + r r + ( r + ( r α Similr produr with hlp o ( d (3 will yild α m r r r r d ( α + ( + r r + + r r ( α + + ( Similrly th ollowig rult r ily dduil, d (i o o d F d 3 df d F Wh, d 3 d d (ii ood F d d (iii d F d d F wh, F d d (iv d F d F Empl: W oud tht Applyig (ii with, w oti F F H F Covolutio thorm or Fourir i d oi trorm Thorm: t F ( d G trorm o ( d g(, rptivly, d lt F ( d G rptivly Th th Fourir oi th Fourir i trorm o ( d g( F [ F G ] g( ( + ( + d W hv F G od F odg ( od g( df ood g( d F [ o( o( ] d + + g( ( + ( + d Empl: (Covolutio with Coi Suppo tht i itgrl d v (- ( or ll g o Show tht, or ll rl umr ; d lt * g o( ( Solutio From th diitio d th t tht ; *gg*, w hv * g ( o [ ( ] dt ( o o( ( t o o ( dt + i i i Si i v, th produt ( it i odd, h, t it d o * g o( ( o o( dt ( o o( o o o( ( dt i i( o o o it ( ( dt (

9 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 5 3 Th Fourir Trorm mthod W ummriz th Fourir trorm mthod ollow: Stp : Fourir trorm th giv oudry vlu prolm i u(, d gt ordiry dirtil qutio i u u (, i th vril t Stp : olv th ordiry dirtil qutio d id (, Stp 3: ivr Fourir trorm u(, to gt u(, Thi mthod i uul i trtig vrity o prtil dirtil qutio, ut it h it limittio, i w hv to um tht th utio i th prolm d it olutio hv Fourir trorm Nvrthl, th mthod or u opportuiti yod th limittio, w ow illutrt Th mthod o olutio i t plid through th ollowig mpl Empl : W will how how th Fourir trorm ppli to th ht qutio W oidr th ht low prolm o iiitly log thi r iultd o it ltrl ur, whih i modld y th ollowig iitilvlu prolm u u < <, t>, > t u d u, iit, t > u,, < <, ( whr th utio i piwi mooth d olutly itgrl i (-, t u(, th Fourir trorm o u(, Thu, rom th Fourir trorm pir, w hv u(, u(, d u (, u (, d Aumig tht th drivtiv tk udr th itgrl, w gt u u u u (, u, t ( d (, d u t d I ordr or u(, to tiy th ht qutio, w mut hv u u u(, + u(, d Thu, u mut olutio o th ordiry dirtil qutio u + u Th iitil oditio i dtrmid y u (, u (, d d F Thror, w hv d h Now i (, u t F t t u( t, F d (5 /( t i d, t i i ( w dot F d g th rom (5 it ollow tht ( µ /( t u( t, ( µ dµ t (6 ( µ /( ( µ dµ t Thi ormul i du to Gu Thi ormul i du to Gu d Wirtr For h µ th utio ( µ /( u t, / t i olutio o th ht qutio d i lld th udmtl olutio Thu, (6 giv rprttio o th olutio otiuou uprpoitio o th udmtl olutio Th tdrd orml ditriutio utio Ф i did ( µ /( / t Thi i otiuou irig utio with Ф(, Ф(,Ф(, I <, th w writ ( µ t z t ( µ dµ dz, z t t t ( ( t z t z dz dz (7 Ф Ф t t

10 53 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio From (6 d (7 it i lr tht th olutio o th prolm C writt ut u, < <, t>, < u(,,, > u( t, Ф Ф t t Now uig th proprti Ф(, Ф(,Ф(, w vriy tht, <, lim u( t,, < < t,, > Empl : Coidr th prolm ut u, >, t>, u,, t> (8 u d u iit, t > u,, > whih ppr i ht low i mi iiit rgio I (8 th utio i piwi mooth d olutly itgrl i [, W di th odd utio Th rom (6 w hv ( µ /(, > (, < µ dµ t ( µ /( ( µ /( ( µ dµ + ( µ dµ t t I th irt itgrl w hg µ to -µ d u th odd o, to oti ( µ /( ( + µ /( µ dµ µ dµ t t Thu, th olutio o th prolm (8 writt ( µ /( ( + µ /( u( t, ( µ dµ t Th ov produr to id th olutio o (8 i lld th mthod o img I logou wy it how tht th olutio o th prolm t u u, >, t>, u,, t> (9 u d u iit, t > writt u,, > ( µ /( ( + µ /( u( t, ( µ dµ t Hr, o our, w d to td ( to v utio, > (, < I (9 th phyil igii o th oditio u, i tht thr i prt iultio, i, thr i o ht lu ro th ur Empl 3: Coidr th iitil-vlu prolm or th wv qutio ut u, < <, t>, > u d u iit, t > ( u,, < <, u,, < <, t whr th utio d r piwi mooth d olutly itgrl i (-, To id th olutio o thi prolm, w itrodu th Fourir trorm Fj j d, j, d it ivrio ormul j Fj d, j, W lo d th Fourir rprttio o th olutio u(,, Whr u(, u( t, u (, d i ukow utio, whih w will ow dtrmi For thi, w utitut thi ito th dirtil qutio (, to oti u(, u(, t + d Thu, u mut olutio o th ordiry dirtil qutio

11 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 5 u + u who olutio writt (, + u t ot t To id ( d, w ot tht u(, d u (, d d h F d F Thror, it ollow tht F u (, F ot + t d h th Fourir rprttio o th olutio i F u (, F ot + t d i i i i + Now i o, i w hv i F ( o d F ( d + ( + t ( F ( d + ( + t + ( t Similrly, ( ξ + t ξ F d dξ t + t t t F d t t F d ( + ( F + t ξ t dξ F dξ d d Puttig th togthr yild d Almrt ormul + t t u (, [ ( + t + ( t ] + ( ξ dξ Empl : Coidr th ollowig prolm ivolvig th pl qutio i hl-pl: u + uyy, < <, y > u(,, < < uy (, M, < <, y>, whr th utio i piwi mooth d olutly itgrl i (-, I, th w lo hv th implid oudry oditio lim uy,, lim uy, For thi, w lt, y +, F d, F d d u(,y u (, y d W id tht u + u u, y + d u, yy Thu, u (, y y mut tiy th ordiry dirtil qutio u y u d th iitil oditio u(, F or h Th grl olutio o th ordiry dirtil y y qutio i + I w impo th iitil oditio d th oudd oditio, th olutio om y F, u(, y F y F, < y Thu, th dird Fourir rprttio o th olutio i y u(,y F d To oti pliit rprttio, w irt th ormul or F( d ormlly itrhg th ordr o itgrtio, to oti

12 55 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio ξ y u(,y ( ξ dξ d Now th ir itgrl i ( ξ y d ( ξ dξ ( ξ y ( ξ y d R d y R yi ( ξ y + ( ξ Thror, th olutio u(,y pliitly writt y ξ ( y + ( ξ u(,y ( ξ d Thi rprttio i kow Poio itgrl ormul I prtiulr, or, < < u(,, othrwi Thu, ( om y dξ / y y + ( ξ ( ξ + y (,y dξ u ξ Uig th utitutio v w hv dξ ydv, o y tht (,y u ( / y + v ( / y t t y y Th Fourir Si d Coi Trorm Mthod W will motivt th itrodutio o Fourir i d oi trorm y oidrig impl phyil prolm I ordr to u th Fourir i d oi trorm to olv prtil dirtil qutio: I th oudry oditio r o th Dirihlt typ: whr th utio vlu i prrid o th oudry, th th Fourir i trorm i ud I th oudry oditio r o th Num typ: whr th drivtiv o utio i prrid o oudry, th Fourir oi trorm i pplid I ithr, th PDE rdu to ODE i Fourir trorm whih i olvd Th th ivr Fourir i (or oi trorm will giv th olutio to th prolm Iiit Fourir oi d i Trorm Mthod To olv prtil dirtil qutio (otiig od drivtiv did o mi-iiit itrvl, dv uig Fourir oi trorm, ( mut kow I ut (,, i giv th w mploy oi o u trorm to rmov Diitio: Th iiit Fourir oi trorm o utio ( or <<,i did F i i d ig poitiv itgr Hr ( i lld th ivr Fourir oi trorm o F ( d i did F ( o d Similrly, th Fourir i trorm my ud or mi-iiit prolm i ( i giv Furthrmor, prolm r mor rdily olvd i th oudry oditio r homogou Thu, i (, prtio o vril motivt th u o i oly Similrly, ( impli th u o oi Diitio: Th iiit Fourir i trorm o utio ( o uh tht << i dotd y F (, ig poitiv itgr d i did F i i d Hr ( i lld th ivr Fourir i trorm o F ( d did F ( i d Empl: W hll mploy th Fourir i trorm to id th olutio o th ollowig prolm ivolvig th pl qutio i mi-iiit trip: u + uyy, < <,< y < u(,, < <, u(, y, < y < u,, < <, whr th utio i piwi mooth d olutly itgrl i [, W hll lo d th oudry lim uy, lim u y, oditio d d, For thi, w lt, F d, F d u (,y u (, y d

13 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio 56 W id tht u (, y u, + uyy u (, y + d y Thu, u d h mut tiy th ordiry dirtil qutio u y u + u, y oh y ih y Now th oudry oditio u ( Thu, w hv, yild ih oh ih u (, y oh y + ih y oh ih ( y oh Now i u (, F F ih, d thror ih (, u y F Thi giv th olutio ih ( y ih, w id ih ( y u (,y F d ih ih ( y ( t t dtd ih Fiit Fourir oi d i Trorm Mthod Wh th domi o th phyil prolm i iit, it i grlly ot ovit to u th trorm with iiit rg o itgrtio I my, iit Fourir trorm ud with dvtg Diitio: Th iit Fourir i trorm o,< < i did F ( i i d Whr i itgr Th utio ( i th lld th ivr iit Fourir i trorm o F ( d i giv y F( i F( i ( Diitio: Th iit Fourir oi trorm o,< < i did F ( o d, Whr i itgr Th utio ( i th lld th ivr iit Fourir oi trorm o F ( d i giv y F + F( o( o Fiit Fourir trorm r uul i olvig prtil dirtil qutio For thi, w ot tht (, u t i d u( t, i u( t, o d Ad h u F F( d imilrly, u F F( [ u(, u( t, o ], u u F F (3 F (, (, o + u t u t u F F (, (, o u t u t Empl: Fid th olutio o th prolm u u, < <, t > u,,< < u, t u, t, t > Tkig th iit Fourir i trorm with o oth id o th prtil dirtil qutio giv d u u i i d Writig u or F ( d uig (3 with u, t, u, t ld to du(, t dt 6, whih olvd to oti u (, u /6 Now tkig th iit Fourir i trorm o th oditio u( w hv

14 57 Itrtiol Jourl o Prtil Dirtil Equtio d Applitio u (, i d o / i / / /6 3 o Si u (, it ollow tht 3 u( t, o Thu, rom ( w gt t /6 6 o t (, /6 u t i 3 Coluio Howvr, Phyil prolm vr I thi work, wh modlig prolm ovr rgio tht tdd vry r i t lt o dirtio, w ot idlizd th itutio to tht o prolm hvig iiit tt i o or mor dirtio, whr y oudry oditio tht would hv pplid o th r-wy oudri r dirdd i vor o impl oudd oditio o th olutio th pproprit vril i t to iiity Suh prolm wr mthmtilly modld y dirtil qutio did o iiit rgio For o-dimiol prolm w ditiguih two typ o iiit rgio: iiit itrvl tdig rom - to d mi-iiit itrvl tdig rom o poit (uully th origi to iiit (uully + r iiit, ut y itroduig mthmtil modl with iiit tt, w r l to dtrmi hvior o prolm i th itutio i whih th ilu o tul oudri r ptd to gligil Thu th mir ppr dvlopd th Fourir trorm mthod d pplid it to olv: ht low prolm o iiitly log thi r iultd o it ltrl ur, ht low i mi iiit rgio, wv qutio, pl qutio i hl-pl d i miiiit trip, d om prtil dirtil qutio o th tir rl li Ev though urvy o thi mir ppr how tht wht i tully tudid Fourir trorm mthod to PDE i tht, w tk th Fourir trorm o PDE d it iitil d oudry oditio to rdu it ito ODE W th olvd thi ODE or th trormd utio W ivrtd thi utio to dtrmi th olutio to our PDE Thi i ot jut mthod tht i pii to th Fourir trorm u thi mthod lo work or th pl trorm d i grl or my itgrl trorm Th itgrl diig th Fourir trorm d it ivr r rmrkly lik, d thi ymmtry w ot ploitd, or mpl wh mlig ppdi giv or Fourir trorm O oditio o thi i tht th vril you tk to th itgrl trorm it domi mut mth th rg o itgrtio o th itgrl trorm Th typ o oudry d iitil oditio tht r giv hould lo plyd rol i whih trorm hould ud I, th Fourir trorm i ud to lyz oudry vlu prolm o th tir li Th tio o Fourir mthod to th tir rl li ld turlly to th Fourir trorm, trmly powrul mthmtil tool or th lyi o opriodi utio It i rol to pt Fourir trorm mthod pply to olv dirt orm o prtil dirtil qutio uh Tlgrph qutio: utt + ( α + β ut + αβu u or th αβ>, Th Fourir trorm i o udmtl import i rod rg o pplitio, iludig oth ordiry d prtil dirtil qutio, qutum mhi, igl d img proig, otrol thory, d proility, to m ut w Rr [] Agrwl R d R Dol, 9 Ordiry d prtil dirtil Equtio With Spil Futio, Fourir Sri, d Boudry vlu Prolm, Sprig Strt, Nw York [] Amr N, Prtil Dirtil Equtio With Fourir Sri Ad Boudry Vlu Prolm, d ditio, Plo Prti Hll, Uitd Stt o Amri [3] Bdru V, 8 Highr Egirrig Mthmti, Tt M Grw-Hill Pulihig Compy imitd, Nwdlhi [] Duy D, 998 Advd Egirig Mthmti, CRC Pr C, Nw York [5] Hrm R, 987 Elmtry Applid prtil Dirtil qutio With Fourir ri d Boudry Vlu Prolm, Eglwood Cli, Nw Jry [6] Piku A d Zry S, 997 Fourir Sri d Itgrl Trorm, Cridg Uivrity Pr, Uitd Kigdom [7] Puri P, 997 Prtil Dirtil Equtio d Mthmti, CRC Pr, Nw York [8] Tvito A, 998 Itrodutio to Prtil Dirtil Equtio A Computtiol pproh, Sprigr-Vrlg, Nw York, I

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

ENGI 3424 Appendix Formulæ Page A-01

ENGI 3424 Appendix Formulæ Page A-01 ENGI 344 Appdix Formulæ g A-0 ENGI 344 Egirig Mthmtics ossibilitis or your Formul Shts You my slct itms rom this documt or plcmt o your ormul shts. Howvr, dsigig your ow ormul sht c b vlubl rvisio xrcis

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

MM1. Introduction to State-Space Method

MM1. Introduction to State-Space Method MM Itroductio to Stt-Spc Mthod Wht tt-pc thod? How to gt th tt-pc dcriptio? 3 Proprty Alyi Bd o SS Modl Rdig Mtril: FC: p469-49 C: p- /4/8 Modr Cotrol Wht th SttS tt-spc Mthod? I th tt-pc thod th dyic

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms Cotmpo Egiig Si Vol. 4 o. 6 69-88 Rltio o Fiit Mlli Itgl Tom with Lpl d Foui Tom S. M. Khi R. M. Pi* d J. N. Sluk** Dptmt o Mthmti Mhht Adm o Egiig Aldi-45Pu Idi mkhi7@gmil.om *Dptmt o Mthmti (A.S.&H.

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

TWO MARKS WITH ANSWER

TWO MARKS WITH ANSWER TWO MARKS WITH ANSWER MA65/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS REGULATION: UNIT I PARTIAL DIFFERENTIAL EQUATIONS Formtio o rti dirti utio Sigur itgr -- Soutio o tdrd t o irt ordr rti dirti utio

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

COMSACO INC. NORFOLK, VA 23502

COMSACO INC. NORFOLK, VA 23502 YMOL 9. / 9. / 9. / 9. YMOL 9. / 9. OT:. THI RIG VLOP ROM MIL--/ MIL-TL-H, TYP II, L ITH VITIO OLLO:. UPO RULT O HOK TTIG, HOK MOUT (ITM, HT ) HV IR ROM 0.0 THIK TO 0.090 THIK LLO Y MIL-TL-H, PRGRPH...

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Model of the multi-level laser

Model of the multi-level laser Modl of th multilvl lsr Trih Dih Chi Fulty of Physis, Collg of turl Sis, oi tiol Uivrsity Tr Mh ug, Dih u Kho Fulty of Physis, Vih Uivrsity Astrt. Th lsr hrtristis dpd o th rgylvl digrm. A rsol rgylvl

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist Clulus Cht Sht Limits Dfiitios Pris Dfiitio : W sy lim f L if Limit t Ifiity : W sy lim f L if w for vry ε > 0 thr is δ > 0 suh tht mk f ( ) s los to L s w wt y whvr 0 < < δ th f L < ε. tkig lrg ough positiv.

More information

Chapter 8 Approximation Methods, Hueckel Theory

Chapter 8 Approximation Methods, Hueckel Theory Witr 3 Chm 356: Itroductory Qutum Mchics Chptr 8 Approimtio Mthods, ucl Thory... 8 Approimtio Mthods... 8 Th Lir Vritiol Pricipl... mpl Lir Vritios... 3 Chptr 8 Approimtio Mthods, ucl Thory Approimtio

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Chapter 6 Perturbation theory

Chapter 6 Perturbation theory Ct 6 Ptutio to 6. Ti-iddt odgt tutio to i o tutio sst is giv to fid solutios of λ ' ; : iltoi of si stt : igvlus of : otool igfutios of ; δ ii Rlig-Södig tutio to ' λ..6. ; : gl iltoi ': tutio λ : sll

More information

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system orir Sri Priodi io A io i lld priodi io o priod p i p p > p: ir I boh d r io o priod p h b i lo io o priod p orir Sri Priod io o priod b rprd i rm o rioomri ri o b i I h ri ovr i i lld orir ri o hr b r

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Energy, entropy and work function in a molecule with degeneracy

Energy, entropy and work function in a molecule with degeneracy Avill oli t www.worldsitifiws.om WS 97 (08) 50-57 EISS 39-9 SHOR COMMICAIO Ergy, tropy d work futio i molul with dgry Mul Mlvr Dprtmt of si Sis, Mritim ivrsity of th Cri, Cti l Mr, ul E-mil ddrss: mmf.um@gmil.om

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

Rectangular Waveguides

Rectangular Waveguides Rtgulr Wvguids Wvguids tt://www.tllguid.o/wvguidlirit.tl Uss To rdu ttutio loss ig rquis ig owr C ort ol ov rti rquis Ats s ig-ss iltr Norll irulr or rtgulr W will ssu losslss rtgulr tt://www..surr..u/prsol/d.jris/wguid.tl

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Application of Maple on the Differential Problem

Application of Maple on the Differential Problem Uivrsl Jourl o Applid Si : - DOI:./ujs.. http://www.hrpu.or Applitio o Mpl o th Dirtil Prol Chii-Hui Yu Dprtt o Mt d Iortio N Jo Uivrsit o Si d Tholo Ti Cit Tiw *Corrspodi Author: hiihui@il.ju.du.tw Copriht

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Updtd: Tudy, Octor 8, EE 434 - Cotrol Sytm LECTUE Copyright FL Lwi 999 All right rrvd BEEFTS OF FEEBACK Fdc i uivrl cocpt tht ppr i turl ytm, itrctio of pci, d iologicl ytm icludig th ic cll d mucl cotrol

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS Diol Bgyoko (0) I.INTRODUCTION LINEAR d ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS I. Dfiiio All suh diffril quios s i h sdrd or oil form: y + y + y Q( x) dy d y wih y d y d dx dx whr,, d

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

An Investigation of Continued Fractions

An Investigation of Continued Fractions Ivetigtio o Cotiued rtio Kriti Ptto Ohio Norther Uiverity d Ohio 8 Emil: k-ptto@ou.edu dvior: Dr. dr hroeder -hroeder@ou.edu d Dr. Rihrd Dquil rdquil@mukigum.edu btrt: The tudy o otiued rtio h produed

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus)

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus) Th Rig of Gc d Lif Rom 5:12-21 (5:12-14, 17 focu) Th Ifluc of O h d ud Adolph H J o ph Smith B i t l m t Fid Idi Gdhi Ci Lu Gu ich N itz y l M d i M ch Nlo h Vig T L M uhmmd B m i o t T Ju Chit w I N h

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE   FOR DETAILS uortig Iormtio: Pti moiitio oirmtio vi 1 MR: j 5 FEFEFKFK 8.6.. 8.6 1 13 1 11 1 9 8 7 6 5 3 1 FEFEFKFK moii 1 13 1 11 1 9 8 7 6 5 3 1 m - - 3 3 g i o i o g m l g m l - - h k 3 h k 3 Figur 1: 1 -MR or th

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Constructing solutions using auxiliary vector potentials

Constructing solutions using auxiliary vector potentials 58 uilir Vtor Pottil Costrutig solutios usig uilir tor pottils Th obti o M thor is to id th possibl M ild oigurtios (ods or gi boudr lu probl iolig w propgtio rditio or sttrig. This b do b idig th ltri

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Lectures 5-8: Fourier Series

Lectures 5-8: Fourier Series cturs 5-8: Fourir Sris PHY6 Rfrcs Jord & Smith Ch.6, Bos Ch.7, Kryszig Ch. Som fu jv pplt dmostrtios r vilbl o th wb. Try puttig Fourir sris pplt ito Googl d lookig t th sits from jhu, Flstd d Mths Oli

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

Approximately Inner Two-parameter C0

Approximately Inner Two-parameter C0 urli Jourl of ic d pplid Scic, 5(9: 0-6, 0 ISSN 99-878 pproximly Ir Two-prmr C0 -group of Tor Produc of C -lgr R. zri,. Nikm, M. Hi Dprm of Mmic, Md rc, Ilmic zd Uivriy, P.O.ox 4-975, Md, Ir. rc: I i ppr,

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

First assignment of MP-206

First assignment of MP-206 irt igmet of MP- er to quetio - 7- Norml tre log { : MP Priipl tree: I MP II MP III MP Priipl iretio: { I { II { III Iitill uppoe tht i tre tte eribe i the referee tem ' i the me tre tte but eribe i other

More information

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information