# K20: Temperature, Heat, and How Heat Moves

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 K20: Temperature, Heat, and How Heat Moves Definition of Temperature Definition of Heat How heat flows (Note: For all discussions here, particle means a particle of mass which moves as a unit. It could be a single atom (like the noble gas Argon in our atmosphere), or a molecule (like CO2) made up of atoms bound together. It may or may not have internal vibrational etc. motions as well. fluid means a liquid, or a gas

2 Imagine a Gas.

3 3 2 kt = 1 2 m < V 2 > The temperature of a large assembly of particles is proportional to the kinetic energy per particle in a simple way for an atmosphere. (a particle here being an atom, or molecules in an atmosphere). For solids and liquids, more complicated internals come in, but still you will get higher T with higher particle vibrational velocities. k = Boltzmann s constant m = mass of the particle (for us here, usually an atom or a molecule) <V 2 > is the average of the squared velocities of all the particles T = the temperature in Kelvins

4 The Thermal Energy of an Object (its Heat ), Can Flow from One Place to Another, by Three Different Mechanisms 1. Radiation 2. Conduction 3. Convection

5 Heat Transfer by Radiation Photons have energy, which they carry away from their source, and deposit where the photon is absorbed How? One way, we have already examined: electrons falling to a lower energy level in an atom, or molecular vibration/rotation energy level going to a lower level. This gives photon emission, followed by absorption by another atom/molecule and putting it into an excited state. But there are other ways

6 Mean Free Path The emitted photons in a materials move in random directions until they are scattered or absorbed The mean free path length is how far the photon, on average, travels between emission and absorption or scattering off another particle The denser the medium, the shorter the mean free path, and the slower will radiation be able to move heat from one place to another Radiation moves freely at the top of the atmosphere, and has a REALLY hard time doing anything underground, where conduction instead does most of the heat transfer.

7 Thermal radiators in the Real World emit a broad thermal spectrum according to this version of the Stefan-Boltzmann equation L = εσ T 4 A (Why the little ε= emissivity? A perfect blackbody lets its interior photons emerge perfectly, but in a real object, the photons excite motions in the electron shells (especially for metals, whose outer electrons are poorly bound to the atom) which can absorb or reflect the photon energy, so that the probability for it to emerge is less than 100%. Such an object has an emissivity factor ε which is less than 1. A third option for a photon, besides being absorbed or reflected, is simply to pass through the material without interaction (transparency), glass is an obvious example. Atmospheres can be partially transparent as well, depending on the wavelength of light. ε for insulators tends to be near 1, but for metals, especially shiny ones, ε can be small, less even than 0.1.

8 Blackbody curves

9 The hotter object will radiate more and receive less than cooler objects, and hence will cool off by radiation heat loss

10 Heat Transfer by Conduction: Particle-banging-against-Particle This is the simplest to understand. Moving particles bang up against neighbors who in turn bang up against their neighbors, jostling them, etc. Faster moving particles will on average slow down when they hit a slower mover, and the slower mover will speed up when hit by a faster mover, thus transferring kinetic energy So the fast-jiggling particles on the hot side have spent some of their energy by making their slower neighbors jiggle more Meaning, those neighbors are now hotter, and the fast-jiggling particles are now cooler than they were.

11 The rate at which heat flows by conduction is proportional to the gradient (dt/dx) in the temperature, to the conductivity (k) of the material, and the area (A) across which the heat is flowing. Conductivity k; (related to the R factor for insulation materials. R ~1/k). Some materials allow this bumping together of neighboring atoms more easily than other materials. Marketers like R Value, because then they can charge you MORE when you see you re getting MORE R (that s business for you) for your styrofoam Metal has a very high k, styrofoam very low k

12 Heat always moves from hotter towards cooler places. Conduction moves heat by particle-bangingagainst particle, whether the particles are gas molecules, atoms in a glass, wood in a door frame

13 Conduction: General Features Heat flows by conductivity rapidly when the material is dense and the atoms very close. Like liquids (water for example) and metals especially. Heat flow by conduction is faster when the gradient in temperature is larger (more temperature difference across the material). Actually, this is true for all 3 heat transfer mechanisms

14 Heat flow by conduction is less in low density materials which are solids. However, for atmospheres it s more complicated because while there are more collisions in a denser medium, the mean free path is also shorter in a compensating way, and so other quantities in the equations being equal, the rate of conduction in a gas near typical atmosphere conditions, is more or less independent of density.

15 The thermal conductivity k of a gas where v is the velocity of the gas molecules, l is the mean free path, C v is the thermal capacitance of the gas, and V m is the volume in question, where both C v and V m should be taken with the same volume. (source Click the link for alternative but equivalent formulae if this is confusing). Simplifying further, if the gas atoms have no internal degrees of freedom to excite and can be considered as little hardballs, then the conductivity is just proportional to the velocity (i.e. roughly the square root of the temperature). Hotter gases have higher thermal conductivity, other things being equal. The point above to note, is that the density of the gas doesn t enter the equation, because the mean free path is inversely proportional to the density, while the mean free path itself enters in the numerator, and so cancels out of the equation altogether, in this situation.

16 R Value and Insulation Engineers, physicists think in terms of conductivity, but marketers of insulation to consumers (like Home Depot) like to think in terms of R Value, because they want you to see a BIGGER R value when they ask you to pay more. Pay more, get more! Get it? R value, like for your thermal windows is thermal resistance. Higher R, higher thermal resistance Adding greenhouse gases to the atmosphere means more absorption of outgoing radiation (which is in the infrared) from the ground, so the R value of the atmosphere goes up. By adding CO2, we are adding insulation, in a sense, to the Earth; adding R value

17 Heat Transfer and the Medium It Happens In Both conduction and convection require a medium (some sort of mass, like a gas, or liquid, or for conduction, a solid). Radiation heat transfer, however, will happen best when there s no medium to get in the way of the photons) Usually, conduction is MOST efficient in a dense medium, and radiation is LEAST efficient in a dense medium.

18 Heat Transfer by Convection So, how does convection differ from conduction?

19 Convection Physically Moves the Hot Fluid to a Colder Place Here s Why - When heat is input to a material too fast for that material to conduct it away to surrounding material, that material will retain the excess heat, expand, so that its density drops. If there is cooler denser adjacent material, it will be heavier and displace the lighter, hotter, expanded material, i.e. force upward, that hotter lower density material. Convection requires Gravity! A fact not nearly stressed enough in the literature!

20 Here, heating from below is too strong, initiating convection

21 With Higher Temperature Difference, Radiation (yellow) Comes to Dominate

22 These Rules Usually Hold Within a medium (a gas, liquid, etc) CONDUCTION usually dominates when temperature gradients are low CONVECTION usually dominates (in fluids only) when temperature gradients are higher RADIATION will dominate if the temperature gradient gets high enough The lower the density of the medium, the sooner will radiation come to dominate heat transfer

23 Key Points: K20 Temperature and Heat Transfer Conduction: Particles hitting particles. Convection: Hot, bouyant material forced upward by denser, heavier falling surrounding material. Convection requires Gravity to happen at all. Radiation: Photons carry the heat, goes up as temperature to the 4 th power. Works best in a vacuum. Given a mass getting hotter & hotter, radiation comes eventually to dominate heat transfer to its surroundings. All 3 mechanisms are important within atmospheres or fluids. R value is inverse of conductivity, although it s a more general term that can apply for all heat transfer modes The higher the R value of a medium, the higher the temperature gradient must be to force a given amount of heat across the medium from one side to the other. Therefore, increase the R value of an atmosphere, you force the surface temperature to be higher to achieve that higher temperature gradient. As you steepen temperature gradient, first conduction, then convection, and finally radiation, will dominate heat transfer

### The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

### Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

### Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

Composition, Structure and Energy ATS 351 Lecture 2 September 14, 2009 Composition of the Atmosphere Atmospheric Properties Temperature Pressure Wind Moisture (i.e. water vapor) Density Temperature A measure

Conduction Thermal energy is transferred from place to place by conduction, convection, and radiation. Conduction is the transfer of thermal energy by collisions between particles in matter. Conduction

### Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

### Exercises Conduction (pages ) 1. Define conduction. 2. What is a conductor?

Exercises 22.1 Conduction (pages 431 432) 1. Define conduction. 2. What is a conductor? 3. are the best conductors. 4. In conduction, between particles transfer thermal energy. 5. Is the following sentence

### Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.

Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain

### Chapter 11. Energy in Thermal Processes

Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

### Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators?

### SPH3U1 Lesson 03 Energy

THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

### Demonstrate understanding of aspects of heat

Demonstrate understanding of aspects of heat Heat Transfer Temperature - temperature is a measure of the average kinetic energy of the particles making up an object (measured in C or K) 0 K = -273 o C

### 5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

### Heat can be transferred by. and by radiation Conduction

Heat can be transferred by conduction, by convection, and by radiation. The spontaneous transfer of heat is always from warmer objects to cooler objects. If several objects near one another have different

### Simultaneous Conduction and Radiation Energy Transfer

Simultaneous Conduction and Radiation Energy Transfer Radiant energy can transfer from a colder to a warmer radiator. ###########, PhD Chemical Process Control Systems Engineer, PE TX & CA Abstract The

### Heat and Temperature

Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

### Conduction is the transfer of heat by the direct contact of particles of matter.

Matter and Energy Chapter 9 energy flows from a material at a higher temperature to a material at a lower temperature. This process is called heat transfer. How is heat transferred from material to material,

### Science 7 Unit C: Heat and Temperature. Topic 6. Transferring Energy. pp WORKBOOK. Name:

Science 7 Unit C: Heat and Temperature Topic 6 Transferring Energy pp. 226-236 WORKBOOK Name: 0 Read pp. 226-227 object or material that can transfer energy to other objects Example: light bulb, the Sun

### ME 476 Solar Energy UNIT TWO THERMAL RADIATION

Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

### AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

### What Is Air Temperature?

2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

### General Physics (PHY 2130)

General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

### Kinetic Theory of Matter. Matter & Energy

Kinetic Theory of Matter Matter & Energy 1 Kinetic Theory of Matter All matter is made up of atoms and molecules that act as tiny particles. 2 Kinetic Theory of Matter These tiny particles are always in

### Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

### P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

### Temperature and Heat. Chapter 10. Table of Contents. Chapter 10. Chapter 10. Bellringer. Objectives. Chapter 10. Chapter 10

Heat and Heat Technology Table of Contents Temperature and Heat Section 3 Matter and Heat Bellringer Objectives The temperature of boiling water is 100 on the Celsius scale and 212 on the Fahrenheit scale.

### The Basics of Light. Sunrise from the Space Shuttle, STS-47 mission. The Basics of Light

The Basics of Light The sun as it appears in X-ray light (left) and extreme ultraviolet light (right). Light as energy Light is remarkable. It is something we take for granted every day, but it's not something

### * Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

* Defining Temperature * We associate temperature with how hot or cold an object feels. * Our sense of touch serves as a qualitative indicator of temperature. * Energy must be either added or removed from

### L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

### Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

### AT 350 EXAM #1 February 21, 2008

This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

### Physics 1501 Lecture 35

Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

### GARP 0102 Earth Radiation Balance (Part 1)

Class 8: Earth s Radiation Balance I (Chapter 4) 1. Earth s Radiation Balance: Sun, Atmosphere, and Earth s Surface as a System 2. Electromagnetic Radiation: Shortwave vs. longwave radiation (Page 69-71)

### Thermal Effects. IGCSE Physics

Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

### Conduction and Convection

Conduction and Convection Convection Currents Definition Convection is the transfer of heat in liquids and gases. The hotter the liquid/gas the particles move faster and spread out. This means the gas/liquid

### Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection, and Radiation 16-1

### THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION

VISUAL PHYSICS ONLINE THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION Radiation is the energy transferred by electromagnetic waves mainly infrared (IR), visible and ultraviolet (UV). All materials radiate

### Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3.

Overview of the Earth s Atmosphere Composition 99% of the atmosphere is within 30km of the Earth s surface. N 2 78% and O 2 21% The percentages represent a constant amount of gas but cycles of destruction

### Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection.

Section 2 Atmospheric Heating Key Concept Heat in Earth s atmosphere is transferred by radiation, conduction, and convection. What You Will Learn Solar energy travels through space as radiation and passes

### What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

Heat and Temperature Section 1: Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? 1 Intro: Discussion A person

### Physics 101: Lecture 26 Conduction, Convection, Radiation

Final Physics 101: Lecture 26 Conduction, Convection, Radiation Today s lecture will cover Textbook Chapter 14.4-14.9 Physics 101: Lecture 26, Pg 1 Review Heat is FLOW of energy Flow of energy may increase

### Heat Transfer. Phys101 Lectures 33, 34. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation.

Phys101 Lectures 33, 34 Heat Transfer Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation. Ref: 14-1,2,3,4,6,7,8. Page 1 Heat as Energy Transfer We often

### Chapter 11. Energy in Thermal Processes

Chapter 11 Energy in Thermal Processes Vocabulary, 3 Kinds of Energy Internal Energy U = Energy of microscopic motion and intermolucular forces Work W = -F x = -P V is work done by compression (next chapter)

### The Atom and its particles The electromagnetic field Light traveling electromagnetic waves, quantized as photons A changing electric field generates

Astro 3 & 4: Chapter 5 Light, Matter, Heat Flow The Atom and its particles The electromagnetic field Light traveling electromagnetic waves, quantized as photons A changing electric field generates a magnetic

### Heat. Conduction. Heat moves in three ways. They are conduction, convection, and radiation.

Heat Heat doesn t stay put. It moves. It gets passed from one thing to another. This idea may sound very simple. There are some big ideas behind it. The study of heat is called thermodynamics (thurmoh-dye-nam-iks).

### Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

### IB Physics Lesson Year Two: Standards from IB Subject Guide beginning 2016

IB Physics Lesson Year Two: Standards from IB Subject Guide beginning 2016 Planet Designer: Kelvin Climber IB Physics Standards taken from Topic 8: Energy Production 8.2 Thermal energy transfer Nature

### !U = Q " P!V. Q = mc!t. Vocabulary, 3 Kinds of Energy. Chapter 11. Energy in Thermal Processes. Example Temperature and Specific Heat

Vocabulary, 3 Kinds of Energy Chapter 11 Energy in Thermal Processes Internal Energy U = Energy of microscopic motion and intermolucular forces Work W = -F!x = -P!V is work done by compression (next chapter)

### PHYSICS 289 Experiment 3 Fall Heat transfer and the Greenhouse Effect

PHYSICS 289 Experiment 3 Fall 2006 Heat transfer and the Greenhouse Effect Only a short report is required: worksheets, graphs and answers to the questions. Introduction In this experiment we study the

### Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

### The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

### The atom cont. +Investigating EM radiation

The atom cont. +Investigating EM radiation Announcements: First midterm is 7:30pm on Sept 26, 2013 Will post a past midterm exam from 2011 today. We are covering Chapter 3 today. (Started on Wednesday)

### 1. The most important aspects of the quantum theory.

Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

### Recall: The Importance of Light

Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

### The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background Key Concepts 1) The universe is filled with a Cosmic Microwave Background (CMB). 2) The microwave radiation that fills the universe is nearly

### Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Periodic Table of Elements Taking Fingerprints of Stars, Galaxies, and Other Stuff Absorption and Emission from Atoms, Ions, and Molecules Universe is mostly (97%) Hydrogen and Helium (H and He) The ONLY

### Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model

Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model Lana Sheridan De Anza College May 1, 2017 Last time more about phase changes work, heat, and the first law of thermodynamics P-V

### Earth s Energy Budget: How Is the Temperature of Earth Controlled?

1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

### Spectroscopy Lesson Outline

Spectroscopy Lesson Outline Syllabus References 9.7.3.1 Spectroscopy is a vital tool for astronomers and provides a wealth of information Pre-video Activity: Spectroscopy Worksheet Resources Video: Spectra

### Chapter 17. Work, Heat, and the First Law of Thermodynamics Topics: Chapter Goal: Conservation of Energy Work in Ideal-Gas Processes

Chapter 17. Work, Heat, and the First Law of Thermodynamics This false-color thermal image (an infrared photo) shows where heat energy is escaping from a house. In this chapter we investigate the connection

### Atoms and Spectra October 8th, 2013

Atoms and Spectra October 8th, 2013 Announcements Second writing assignment due two weeks from today (again, on a news item of your choice). Be sure to make plans to visit one of the open observing nights

### Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning How do we experience light? How do light and matter interact? How do we experience light?

### Solar and Renewable Energies

Physics 162: Solar and Renewable Energies February 16, 2010 Prof. Raghuveer Parthasarathy raghu@uoregon.edu Winter 2010 Lecture 12: Announcements Reading: Wolfson Chapter 4 Homework: Problem Set 6, due

### Absorption and scattering

Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

### Teacher of the Week DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Teacher of the Week DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON E-2 STELLAR RADIATION IB Assessment Statements Topic E-2, Stellar Radiation and Stellar Types Energy Source E.2.1.

### Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both.

Light carries energy Lecture 5 Understand Light Reading: Chapter 6 You feel energy carried by light when light hits your skin. Energy Conservation: Radiation energy will be given to molecules making your

### 2Energy in transit UNCORRECTED PAGE PROOFS. CHApteR

CHApteR 2Energy in transit Thermal imaging shows the temperature of these people. Their faces and hands are red and white as these areas are producing heat and are not covered by clothing. ReMeMBeR Before

### Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Or, what happens to the energy received from the sun? First We Need to Understand The Ways in Which Heat Can be Transferred in the Atmosphere

### Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Purpose Investigate Kirchhoff s Laws for continuous, emission and absorption spectra Analyze the solar spectrum and identify unknown lines

### Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

### Chapter: Heat and States

Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

### HEAT How is thermal energy transferred?

HEAT How is thermal energy transferred? Give an example of conduction? What is a convection current? Explain radiant energy? 1/3/2017 Heat Notes 1 1/3/2017 Heat Notes 2 NEED TO KNOW VOCABULARY: Conduction

### Temperature, Thermal Energy, and Heat

Temperature, Thermal Energy, and Heat Textbook pages 424 435 Section 10.1 Summary Before You Read We often use the terms heat and temperature interchangeably. Do you think they mean the same thing? Explain

### Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

### Electric energy Radiant energy Nuclear energy

CHAPTER 7 LESSON 1: FORMS OF ENERGY Potential Energy Stored Energy Energy Kinetic Potential Work What is Energy? Mechanical Sound Thermal Electric Radiant Nuclear Potential is stored due to the interactions

### Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

### HEAT HISTORY. D. Whitehall

1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

### Inner Planets (Part II)

Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

### Physical Science. Thermal Energy & Heat

Physical Science Thermal Energy & Heat Sometimes called internal energy Depends on the object's mass, temperature, and phase (solid, liquid, gas) TOTAL potential and kinetic energy of all the particles

### Heat Transfer. Heat Transfer. Convection Heat transfer due to the actual motion of a fluid. Conduction Heat transfer by successive atomic collisions

Heat Transfer What are the different ways that heat can move from one place to another? Heat Transfer What are the different ways that heat can move from one place to another? Conduction Convection Radiation

### Energy Transfers. Heat Transfer. Internal Energy. Going With The Flow! 5/12/17. à Thermal Energy. Q = mcdt Q =DU. U = N(1/2mv 2 )

Energy Transfers What Type of Energy Can be transformed into Thermal Energy? Heat Transfer à Thermal Energy Internal Energy What happens to the energy when it absorbed by the object? U = N(1/2mv 2 ) Where:

### Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter

Chapter 5 Lecture The Cosmic Perspective Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact?

### C12 technical supplement

C12 technical supplement scientific notation 2 density, unit conversion 3 gravitational force 4 light:wavelengths, etc. 5 thermal radiation (overview) 6 thermal radiation (stefan-boltzmann law) 7 thermal

### 18.13 Review & Summary

5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

### Greenhouse Effect. Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose

Greenhouse Effect Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose What is the Greenhouse Effect? The greenhouse effect is a natural occurrence caused by Earth's atmosphere

### The gases: gases: H2O O and What What are The two two most most abundant gases The The two two most most abundant abundant Greenhouse

This gas is NOT a Greenhouse Gas. 1. O 2 2. O 3 CH 4 3. CH 4. Freon 11 (a CFC) What are The gases: H 2 O and CO 2. 1. The two most abundant gases. 2. The two most abundant Greenhouse gases. 3. The two

### Chapter 5 Light and Matter

Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

### Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

### Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

### Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

### HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

### Light and Atoms

Light and Atoms ASTR 170 2010 S1 Daniel Zucker E7A 317 zucker@science.mq.edu.au ASTR170 Introductory Astronomy: II. Light and Atoms 1 Overview We ve looked at telescopes, spectrographs and spectra now

### Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

### Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Selective absorption Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out

### Assess why particular characteristics are necessary for effective conduction KEY POINTS

Conduction LEARNING OBJECTIVES Assess why particular characteristics are necessary for effective conduction KEY POINTS On a microscopic scale, conduction occurs as rapidly moving or vibrating atoms and

### Energy - Heat, Light, and Sound

Energy - Heat, Light, and Sound Source: Utah State Office of Education A two-year-old has plenty of it, and the sun has a bunch of it. Do you know what it is? If not, let me give you a definition: A source

### Spectrographs: instrument to separate white light into the bands of color.

(BIG BANG PACKET 2) Name: Period: wavelength and lowest frequencies Broadcast waves and microwaves Infrared Rays Wavelength shorter than radio waves The invisible you feel Visible Light You can see The