Math 425 Fall All About Zero

Size: px
Start display at page:

Download "Math 425 Fall All About Zero"

Transcription

1 Math 425 Fall 2005 All About Zero These notes supplement the discussion of zeros of analytic functions presented in 2.4 of our text, pp Throughout: Unless stated otherwise, f is a function analytic on a domain D of the plane, z 0 is a point of D, and is the largest open disc in D centered at z 0. We ve seen previously that: 1. Zeros and Power Series f can be represented by a power series with center at z 0 : (1) f(z) = a n (z z 0 ) n valid for all z, n=0 We ve also noted that by repeatedly differentiating both sides of (1) above (using the term-by-term differentiation theorem on the right), and evaluating at z 0 we obtain the coefficients a n in terms of the derivatives of f at z 0 : (2) a n = f (n) (z 0 ) n! for n = 0, 1, 2,..., where the conventions for n = 0 are: f (0) (z 0 ) = f(z 0 ), and 0! = 1. 1 In particular, f(z 0 ) = a 0, hence: (3) f(z 0 ) = 0 a 0 = 0 f(z) = a n (z z 0 ) n, valid in Theorem. If f(z 0 ) = 0 then f(z) = (z z 0 )g(z) for z D, where g is a function analytic on D. Proof. By the power series representation in (3) the result is true, at least in, with n=1 (4) g(z) = a 1 + a 2 (z z 0 ) + a 3 (z z 0 ) 2 + (z ). In other words, if we define g(z) = f(z)/(z z 0 ) for z D\{z 0 } and g(z 0 ) = a 1, then in g is given by (4), and so is analytic in. But in D\{0} it s the quotient of two analytic functions, with the 1 That s just the way the things are... don t make to much of it! 1

2 2 denominator never vanishing, hence it s also analytic on D\{0}, hence on all of D. 2. Order We continue with the standing assumption that f is a function that is analytic on a domain D of the plane. Now let s assume it s not identically zero on D, but that some z 0 D is a zero of f. We want to examine the structure this imposes on f. Although we didn t mention this in the last section, the coefficient a 1 in (3) may also be zero. Since we assume f isn t identically zero in D, it follows from (1) some that coefficient isn t zero. Let a m be the first non-zero coefficient, so (5) a 0 = a 1 = = a m 1 = 0 but a m 0. In this case we say z 0 is a zero of order m. For z 0 a zero of order m the power series representation for f in is: (6) f(z) = a m (z z 0 ) m + a m+1 (z z 0 ) m+1 + = (z z 0 ) m g(z) where g(z) = a m +a m+1 (z z 0 )+a m+2 (z z 0 ) 2, the series converging in. In particular, g is analytic in and g(z 0 ) = a m 0. With this definition we can refine Theorem 1.1 as follows: 2.1. Theorem. Suppose f(z 0 ) = 0. Then the following three statements are equivalent: (a) z 0 is a zero of f of order m. (b) f(z 0 ) = f (z 0 ) = f (m 1) (z 0 ) = 0 but f (m) (z 0 ) 0. (c) f(z) = (z z 0 ) m g(z) for z D, where g is analytic in and g(z 0 ) 0. Proof. (a) (b): This follows from the definition of order m and formula (2) giving power series coefficients in terms of derivatives. (a) (c): We observed this just before stating the theorem. (c) (a): Given (c), we have a power series expansion for g, valid in ; write it as: g(z) = a m + a m+1 (z z 0 ) + a m+2 (z z 0 ) 2, where g(z 0 ) = a m 0. Then multiply both sides of the above equation by (z z 0 ) m to get the power series expansion of f, which you now see begins with a m (z z 0 ) m, where a m 0. Thus f has a zero of order m

3 at z 0. The proof that g is actually analytic in all of D follows just as it did in the proof of Theorem 1.1, and I leave the argument to you Exercise. Show that: If f has a zero of order m at z 0. Then f n (n-th power of f) has a zero of order mn there Exercise. Show that: If f has a zero of order m at z 0, and h is analytic in D with h(z 0 ) 0, then fh has a zero of order m at z Exercise. More generally, show that: If f has a zero of order m at z 0 and h has a zero of order n there, then fh has a zero of order mn at z Example. The zeros of sin z all have order 1. Proof I. We saw on a previous handout that the zeros of sin z are just the ones we learned in Calculus: z 0 = nπ, where n runs through all integers. The way of seeing that nπ has order one is to differentiate: If f(z) = sin z then f (z) = cos z, so f (nπ) = cos nπ = ±1 0, hence the zero nπ has order 1 by part (b) of the above Theorem. Proof II. We know that sin z has power series expansion: sin z = z z3 3! + z5 5!, valid for all z C. This shows right away that 0 is a zero of order 1 in the sine function. In particular the expansion above is still valid if z nπ replaces z. But sin(z nπ) = ± sin z (with the plus sign if n is even and the minus sign if n is odd). Thus ] (z nπ)3 (z nπ)5 sin z = ± [(z nπ) +, 3! 5! valid for all z C, so by the definition of order of a zero, nπ has order Exercise. Show that each zero of sin 2 z has order 2. (Hint: use the result of a previous exercise.) 2.7. Contrast with Calculus I.. We ve seen above that if f is analytic on a domain D and not identically zero there, then each zero of f has integer strength (i.e. it has some positive integer order). This quantum phenomenon for zeros of analytic functions has no analogue for differentiable functions of a real variable! For example, consider the function f(x) = x 5/3, defined for all real x. It s differentiable at every point of R, but its lone zero, at the origin, does not have integer order 3

4 4 f(x) (in the sense that lim x 0 does not exist (finitely) for any positive x n integer n). If anything, we should say the origin is a zero of order 5/ Exercise. (a) Write down some more examples of this kind, where differentiable functions of a real variable can have fractional or even irrational orders. (b) Let f(z) = z 5/2. Why doesn t f serve as a counterexample to the statement that: zeros of analytic functions have integer orders? (c) Look ahead to the example of Remark 3.6 (if you don t wnat to look ahead, it s f(x) = x 2 forx 0 and f(x) = 0 if x < 0). What order would you assign to the zero x 0 = 1/2? 3. Uniqueness Theorems. It s clear from the power series representation (1), and the expression (2) of the series coefficients in terms of derivatives, that if all the derivatives of f at z 0 are zero, then f is identically zero in. In fact more is true: 3.1. Theorem. If f (n) (z 0 ) = 0 for each n = 0, 1, 2,..., then f 0 on D. Proof. (cf. pp of our text). Note that if D = C, i.e., if f is entire, then this is easy, for then we can take the disc to be the whole complex plane, so the result follows from the comment that led off this section. Suppose D is not the whole plane. Fix z in D. We wish to show that f(z) = 0. To do this, join z 0 to z by a polygonal curve Γ in D. 2 Write 0 for the original disc (the largest one centered at z 0 and contained in D, and draw a finite succession of open discs 1,... n, each with center on Γ, each having its center in the previous disc, and with n centered at z. 3 We ve already noted that f vanishes identically on 1. Thus it, and all its derivatives, vanish at the center of 2, hence (same argument with 2 replacing 1 ) it vanishes identically on 2. Repeat the argument, eventually arriving at the fact that f vanishes identically on n, so in particular at its center, z. 2 This is possible because D is connected. The textbook s definition of connectedness is: every pair of points in D can be joined by a polygonal curve lying entirely in D 3 Draw a picture, at least for Γ a straight line, to convince yourself that this can be done.

5 3.2. Corollary: The First Uniqueness Theorem. Suppose f and g are analytic on a domain D, and for some point z 0 D, f (n) (z 0 ) = g (n) (z 0 ) for n = 0, 1, 2,.... Then f g on D. 5 Proof. Apply Theorem 3.1 to the analytic function f g Corollary. The Second Uniqueness Theorem. Suppose: f and g are analytic on a domain D, {z 1, z 2,...} is a sequence in D that converges to a point z 0 of D, and f(z n ) = g(z n ) for each n = 1, 2,.... Then f g on D. Proof. Suppose first that g 0 on D, i.e. that f 0 on the set {z n } 1. Our goal is to show that f 0 on D. Since f is continuous on D, f(z 0 ) = lim n f(z n ) = 0, hence f f(z n ) f(z 0 ) (z 0 ) = lim = 0. 4 n z n z 0 Thus (by the work of 2) we have f(z) = (z z 0 )g(z) where g is analytic on D, and since f vanishes at each point z n, so does g. Using the result just proved, with g in place of f, we see that g (z 0 ) = 0. By the Product Rule: f (z) = (z z 0 )g (z) + g(z) so f (z) = (z z 0 )g (z) + 2g (z), hence f (z 0 ) = 0. Continuing in this fashion we see that f and all its derivatives vanish at z 0, hence, by Theorem 3.1, f 0 on D. To obtain the result for general g, just apply the result of the last paragraph to f g Remark. The Second Uniqueness Theorem shows that our extensions of the the trigonometric functions and the exponential function from the real line to analytic functions on the plane are unique. For example, suppose you ve found a function that s analytic on a domain D that contains a segment of the real line, and you know that your function takes the value sin x for each x in that segment. Then by the Second Uniqueness Theorem, you know your function must coincide with sin z on D. 5 4 because the numerator of the difference quotient is zero for each n. 5 because that segment contains lots of sequence that converge to points of D... right?

6 Exercise. Suppose you ve defined an function f analytic on D = C\{(, 0]} that agrees with the natural logarithm on the positive real axis. Show that f is the principal branch of the logarithm Remarks. (a) Nothing like these uniqueness theorems for analytic functions can be true for differentiable functions of a real variable. For example, the function f : R R defined by { x 2 if x 0 f(x) = 0 if x < 0 is differentiable at each point of R, identically zero on the negative real axis, but not identically zero on the real line. (b) Example (a) can be refined further: There exist functions f : R R that are infinitely differentiable on R and vanish identically on the negative real axis, but are not identically zero on R. One such example is: { e 1/x if x > 0 f(x) = 0 if x Exercise. (20 HW points!! Due last day of class). Show that for function f of part (b) above: f has derivatives of all orders at each point of the real line, 6 and that f (n) (0) = 0 for each n = 0, 1, 2,.... In particular, note that f has a Taylor series, center at the origin, that converges to zero for all x R. Lesson: Even if a Taylor series converges in some real interval, it may not converge to the function it s supposed to represent! 7 6 The origin is the only point in question here. 7 Remember: this never happens for analytic functions!

Math Lecture 23 Notes

Math Lecture 23 Notes Math 1010 - Lecture 23 Notes Dylan Zwick Fall 2009 In today s lecture we ll expand upon the concept of radicals and radical expressions, and discuss how we can deal with equations involving these radical

More information

Math 421 Midterm 2 review questions

Math 421 Midterm 2 review questions Math 42 Midterm 2 review questions Paul Hacking November 7, 205 () Let U be an open set and f : U a continuous function. Let be a smooth curve contained in U, with endpoints α and β, oriented from α to

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

3.4 Complex Zeros and the Fundamental Theorem of Algebra

3.4 Complex Zeros and the Fundamental Theorem of Algebra 86 Polynomial Functions 3.4 Complex Zeros and the Fundamental Theorem of Algebra In Section 3.3, we were focused on finding the real zeros of a polynomial function. In this section, we expand our horizons

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Contents 6 Exponential and Logarithmic Functions 6.1 The Exponential Function 2 6.2 The Hyperbolic Functions 11 6.3 Logarithms 19 6.4 The Logarithmic Function 27 6.5 Modelling Exercises 38 6.6 Log-linear

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

Complex Analysis Homework 9: Solutions

Complex Analysis Homework 9: Solutions Complex Analysis Fall 2007 Homework 9: Solutions 3..4 (a) Let z C \ {ni : n Z}. Then /(n 2 + z 2 ) n /n 2 n 2 n n 2 + z 2. According to the it comparison test from calculus, the series n 2 + z 2 converges

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers.

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers. 2 VECTORS, POINTS, and LINEAR ALGEBRA. At first glance, vectors seem to be very simple. It is easy enough to draw vector arrows, and the operations (vector addition, dot product, etc.) are also easy to

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN

INTRODUCTION TO COMPLEX ANALYSIS W W L CHEN INTRODUTION TO OMPLEX ANALYSIS W W L HEN c W W L hen, 986, 2008. This chapter originates from material used by the author at Imperial ollege, University of London, between 98 and 990. It is available free

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

Topic 7 Notes Jeremy Orloff

Topic 7 Notes Jeremy Orloff Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7. Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove

More information

Evaluating Limits Analytically. By Tuesday J. Johnson

Evaluating Limits Analytically. By Tuesday J. Johnson Evaluating Limits Analytically By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

Chapter 06: Analytic Trigonometry

Chapter 06: Analytic Trigonometry Chapter 06: Analytic Trigonometry 6.1: Inverse Trigonometric Functions The Problem As you recall from our earlier work, a function can only have an inverse function if it is oneto-one. Are any of our trigonometric

More information

Notes on Quadratic Extension Fields

Notes on Quadratic Extension Fields Notes on Quadratic Extension Fields 1 Standing notation Q denotes the field of rational numbers. R denotes the field of real numbers. F always denotes a subfield of R. The symbol k is always a positive

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

Topic 2 Notes Jeremy Orloff

Topic 2 Notes Jeremy Orloff Topic 2 Notes Jeremy Orloff 2 Analytic functions 2.1 Introduction The main goal of this topic is to define and give some of the important properties of complex analytic functions. A function f(z) is analytic

More information

POWER SERIES AND ANALYTIC CONTINUATION

POWER SERIES AND ANALYTIC CONTINUATION POWER SERIES AND ANALYTIC CONTINUATION 1. Analytic functions Definition 1.1. A function f : Ω C C is complex-analytic if for each z 0 Ω there exists a power series f z0 (z) := a n (z z 0 ) n which converges

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

MA10192: Mathematics I semester 1

MA10192: Mathematics I semester 1 MA09: Mathematics I 008-009 semester Contents Functions and equations 3. Polynomials.............................. 3. Exponentials and logarithms.................... 5.3 Trigonometric functions.......................

More information

Problem Set 5 Solution Set

Problem Set 5 Solution Set Problem Set 5 Solution Set Anthony Varilly Math 113: Complex Analysis, Fall 2002 1. (a) Let g(z) be a holomorphic function in a neighbourhood of z = a. Suppose that g(a) = 0. Prove that g(z)/(z a) extends

More information

Math 200 University of Connecticut

Math 200 University of Connecticut RELATIVISTIC ADDITION AND REAL ADDITION KEITH CONRAD Math 200 University of Connecticut Date: Aug. 31, 2005. RELATIVISTIC ADDITION AND REAL ADDITION 1 1. Introduction For three particles P, Q, R travelling

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

Rational Expressions and Radicals

Rational Expressions and Radicals Rational Expressions and Radicals Rules of Exponents The rules for exponents are the same as what you saw in Section 5.1. Memorize these rules if you haven t already done so. x 0 1 if x 0 0 0 is indeterminant

More information

MORE CONSEQUENCES OF CAUCHY S THEOREM

MORE CONSEQUENCES OF CAUCHY S THEOREM MOE CONSEQUENCES OF CAUCHY S THEOEM Contents. The Mean Value Property and the Maximum-Modulus Principle 2. Morera s Theorem and some applications 3 3. The Schwarz eflection Principle 6 We have stated Cauchy

More information

Chapter 3 Differentiation Rules

Chapter 3 Differentiation Rules Chapter 3 Differentiation Rules Derivative constant function if c is any real number, then Example: The Power Rule: If n is a positive integer, then Example: Extended Power Rule: If r is any real number,

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

PHYS 3900 Homework Set #03

PHYS 3900 Homework Set #03 PHYS 3900 Homework Set #03 Part = HWP 3.0 3.04. Due: Mon. Feb. 2, 208, 4:00pm Part 2 = HWP 3.05, 3.06. Due: Mon. Feb. 9, 208, 4:00pm All textbook problems assigned, unless otherwise stated, are from the

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

MI 4 Mathematical Induction Name. Mathematical Induction

MI 4 Mathematical Induction Name. Mathematical Induction Mathematical Induction It turns out that the most efficient solution to the Towers of Hanoi problem with n disks takes n 1 moves. If this isn t the formula you determined, make sure to check your data

More information

Complex Analysis Topic: Singularities

Complex Analysis Topic: Singularities Complex Analysis Topic: Singularities MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Topic: Singularities 1 / 15 Zeroes of Analytic Functions A point z 0 C is

More information

Lesson 3: Using Linear Combinations to Solve a System of Equations

Lesson 3: Using Linear Combinations to Solve a System of Equations Lesson 3: Using Linear Combinations to Solve a System of Equations Steps for Using Linear Combinations to Solve a System of Equations 1. 2. 3. 4. 5. Example 1 Solve the following system using the linear

More information

Cool Results on Primes

Cool Results on Primes Cool Results on Primes LA Math Circle (Advanced) January 24, 2016 Recall that last week we learned an algorithm that seemed to magically spit out greatest common divisors, but we weren t quite sure why

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

Exponential and logarithm functions

Exponential and logarithm functions ucsc supplementary notes ams/econ 11a Exponential and logarithm functions c 2010 Yonatan Katznelson The material in this supplement is assumed to be mostly review material. If you have never studied exponential

More information

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models Contents Mathematical Reasoning 3.1 Mathematical Models........................... 3. Mathematical Proof............................ 4..1 Structure of Proofs........................ 4.. Direct Method..........................

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Complex Differentials and the Stokes, Goursat and Cauchy Theorems

Complex Differentials and the Stokes, Goursat and Cauchy Theorems Complex Differentials and the Stokes, Goursat and Cauchy Theorems Benjamin McKay June 21, 2001 1 Stokes theorem Theorem 1 (Stokes) f(x, y) dx + g(x, y) dy = U ( g y f ) dx dy x where U is a region of the

More information

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Analysis I We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Copier s Message These notes may contain errors. In fact, they almost

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. Objectives Find a Taylor or Maclaurin series for a function.

More information

Finding local extrema and intervals of increase/decrease

Finding local extrema and intervals of increase/decrease Finding local extrema and intervals of increase/decrease Example 1 Find the relative extrema of f(x) = increasing and decreasing. ln x x. Also, find where f(x) is STEP 1: Find the domain of the function

More information

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C

THE RESIDUE THEOREM. f(z) dz = 2πi res z=z0 f(z). C THE RESIDUE THEOREM ontents 1. The Residue Formula 1 2. Applications and corollaries of the residue formula 2 3. ontour integration over more general curves 5 4. Defining the logarithm 7 Now that we have

More information

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6

MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS. Contents 1. Polynomial Functions 1 2. Rational Functions 6 MATH 2400 LECTURE NOTES: POLYNOMIAL AND RATIONAL FUNCTIONS PETE L. CLARK Contents 1. Polynomial Functions 1 2. Rational Functions 6 1. Polynomial Functions Using the basic operations of addition, subtraction,

More information

5.2 Infinite Series Brian E. Veitch

5.2 Infinite Series Brian E. Veitch 5. Infinite Series Since many quantities show up that cannot be computed exactly, we need some way of representing it (or approximating it). One way is to sum an infinite series. Recall that a n is the

More information

Stephen F Austin. Exponents and Logarithms. chapter 3

Stephen F Austin. Exponents and Logarithms. chapter 3 chapter 3 Starry Night was painted by Vincent Van Gogh in 1889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Exponents and Logarithms This chapter focuses on understanding

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES 2 LIMITS AND DERIVATIVES LIMITS AND DERIVATIVES 2.2 The Limit of a Function In this section, we will learn: About limits in general and about numerical and graphical methods for computing them. THE LIMIT

More information

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit. 1. The TI-89 calculator says, reasonably enough, that x 1) 1/3 1 ) 3 = 8. lim

More information

Derivatives of Constant and Linear Functions

Derivatives of Constant and Linear Functions These notes closely follow the presentation of the material given in James Stewart s textbook Calculus, Concepts an Contexts (2n eition). These notes are intene primarily for in-class presentation an shoul

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement)

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement) l Hǒpital s Rule and Limits of Riemann Sums Textbook Supplement The 0/0 Indeterminate Form and l Hǒpital s Rule Some weeks back, we already encountered a fundamental 0/0 indeterminate form, namely the

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

2 Write down the range of values of α (real) or β (complex) for which the following integrals converge. (i) e z2 dz where {γ : z = se iα, < s < }

2 Write down the range of values of α (real) or β (complex) for which the following integrals converge. (i) e z2 dz where {γ : z = se iα, < s < } Mathematical Tripos Part II Michaelmas term 2007 Further Complex Methods, Examples sheet Dr S.T.C. Siklos Comments and corrections: e-mail to stcs@cam. Sheet with commentary available for supervisors.

More information

Section 1.x: The Variety of Asymptotic Experiences

Section 1.x: The Variety of Asymptotic Experiences calculus sin frontera Section.x: The Variety of Asymptotic Experiences We talked in class about the function y = /x when x is large. Whether you do it with a table x-value y = /x 0 0. 00.0 000.00 or with

More information

Chapter 5. Number Theory. 5.1 Base b representations

Chapter 5. Number Theory. 5.1 Base b representations Chapter 5 Number Theory The material in this chapter offers a small glimpse of why a lot of facts that you ve probably nown and used for a long time are true. It also offers some exposure to generalization,

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

General Form: y = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0

General Form: y = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 Families of Functions Prepared by: Sa diyya Hendrickson Name: Date: Definition: function A function f is a rule that relates two sets by assigning to some element (e.g. x) in a set A exactly one element

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: Piecewise-Defined Functions; Limits and Continuity in Calculus 1.6: Combining Functions

More information

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( ) Chain Rule Page We ve taken a lot of derivatives over the course of the last few sections. However, if you look back they have all been functions similar to the following kinds of functions. 0 w ( ( tan

More information

Math221: HW# 7 solutions

Math221: HW# 7 solutions Math22: HW# 7 solutions Andy Royston November 7, 25.3.3 let x = e u. Then ln x = u, x2 = e 2u, and dx = e 2u du. Furthermore, when x =, u, and when x =, u =. Hence x 2 ln x) 3 dx = e 2u u 3 e u du) = e

More information

Problem Solving. Kurt Bryan. Here s an amusing little problem I came across one day last summer.

Problem Solving. Kurt Bryan. Here s an amusing little problem I came across one day last summer. Introduction Problem Solving Kurt Bryan Here s an amusing little problem I came across one day last summer. Problem: Find three distinct positive integers whose reciprocals add up to one. Prove that the

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing CHAPTER 3 ELEMENTARY FUNCTIONS We consider here various elementary functions studied in calculus and define corresponding functions of a complex variable. To be specific, we define analytic functions of

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

4 Uniform convergence

4 Uniform convergence 4 Uniform convergence In the last few sections we have seen several functions which have been defined via series or integrals. We now want to develop tools that will allow us to show that these functions

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

We can see that f(2) is undefined. (Plugging x = 2 into the function results in a 0 in the denominator)

We can see that f(2) is undefined. (Plugging x = 2 into the function results in a 0 in the denominator) In order to be successful in AP Calculus, you are expected to KNOW everything that came before. All topics from Algebra I, II, Geometry and of course Precalculus are expected to be mastered before you

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II Chapter 2 Further properties of analytic functions 21 Local/Global behavior of analytic functions;

More information

Continuity and One-Sided Limits

Continuity and One-Sided Limits Continuity and One-Sided Limits 1. Welcome to continuity and one-sided limits. My name is Tuesday Johnson and I m a lecturer at the University of Texas El Paso. 2. With each lecture I present, I will start

More information

Lecture 3f Polar Form (pages )

Lecture 3f Polar Form (pages ) Lecture 3f Polar Form (pages 399-402) In the previous lecture, we saw that we can visualize a complex number as a point in the complex plane. This turns out to be remarkable useful, but we need to think

More information

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions MATH 103 Pre-Calculus Mathematics Test #3 Fall 008 Dr. McCloskey Sample Solutions 1. Let P (x) = 3x 4 + x 3 x + and D(x) = x + x 1. Find polynomials Q(x) and R(x) such that P (x) = Q(x) D(x) + R(x). (That

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2014 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

Syllabus: for Complex variables

Syllabus: for Complex variables EE-2020, Spring 2009 p. 1/42 Syllabus: for omplex variables 1. Midterm, (4/27). 2. Introduction to Numerical PDE (4/30): [Ref.num]. 3. omplex variables: [Textbook]h.13-h.18. omplex numbers and functions,

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

Elementary Linear Algebra, Second Edition, by Spence, Insel, and Friedberg. ISBN Pearson Education, Inc., Upper Saddle River, NJ.

Elementary Linear Algebra, Second Edition, by Spence, Insel, and Friedberg. ISBN Pearson Education, Inc., Upper Saddle River, NJ. 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. APPENDIX: Mathematical Proof There are many mathematical statements whose truth is not obvious. For example, the French mathematician

More information

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook. Phys374, Spring 2008, Prof. Ted Jacobson Department of Physics, University of Maryland Complex numbers version 5/21/08 Here are brief notes about topics covered in class on complex numbers, focusing on

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

Math 110 HW 3 solutions

Math 110 HW 3 solutions Math 0 HW 3 solutions May 8, 203. For any positive real number r, prove that x r = O(e x ) as functions of x. Suppose r

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4

MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4 MATH 104, HOMEWORK #3 SOLUTIONS Due Thursday, February 4 Remember, consult the Homework Guidelines for general instructions. GRADED HOMEWORK: 1. Give direct proofs for the two following its. Do not use

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ). Connectedness 1 Motivation Connectedness is the sort of topological property that students love. Its definition is intuitive and easy to understand, and it is a powerful tool in proofs of well-known results.

More information

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is. The Exponential Function Lecture 9 The exponential function 1 plays a central role in analysis, more so in the case of complex analysis and is going to be our first example using the power series method.

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. # 04 Thermodynamics of Solutions Lecture No. # 25

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Chapter 5: Integrals

Chapter 5: Integrals Chapter 5: Integrals Section 5.5 The Substitution Rule (u-substitution) Sec. 5.5: The Substitution Rule We know how to find the derivative of any combination of functions Sum rule Difference rule Constant

More information

Chapter 1- Polynomial Functions

Chapter 1- Polynomial Functions Chapter 1- Polynomial Functions Lesson Package MHF4U Chapter 1 Outline Unit Goal: By the end of this unit, you will be able to identify and describe some key features of polynomial functions, and make

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

(a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff

(a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff Chapter 4: Functional Limits and Continuity Definition. Let S R and f : S R. (a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff ε > 0, δ

More information