Solution of Tutorial 2 Converter driven DC motor drive

Size: px
Start display at page:

Download "Solution of Tutorial 2 Converter driven DC motor drive"

Transcription

1 chool of Electricl Engineering & Telecommunictions, UNW olution of Tutoril Converter driven DC motor drive Question 1. T V s D V I L E V 50 V,.5, I 0 A rted rted f 400 Hz, 0 rev/ min s rted (i) rd / sec 50 I A KE KE KE 3.18 V / rd / sec rev /min rd /sec V I K V E 150 D At constnt field, when the lod torque reduces to 50%, the rmture current is lso reduced by 50%. olution of Tutoril 1 F. hmn/aug 013

2 I 10 A 3 V V 15 D (ii) The pek-pek ripple cn be derived in the following procedure: I V 1 e E 1 e DT / mx T / I V E e 1 DT / e 1 min T / The pek-pek ripple is given by: DT / DT / V 1e V e 1 I Imx Imin T / T / 1e e 1 Multiplying both numertor nd denomintor of the first term by e T / T / ( 1D) T / DT / T / ( 1D) T / DT / V e e e 1 V e e e 1 I T / T / T / e 1 e 1 e 1 Mximum ripple occurs for D 05. T / 0. 5T / 0. 5T / T / 05T. / V e e e 1 V e e 1 I T / T / e 1 e 1 Let e x T / V x x 1 I x 1 For pek-pek ripple of 10%, 01I. V x x 1 x ( x1) 50 ( x 1)( x 1) or ( x 1) ( x 1) 50 olution of Tutoril F. hmn/aug 013

3 00x. 00. x 1 098x x so tht 05T. / e Ts T L L mh Question T E I L V s D V I V E e 1 DT / e 1 min T / For discontinuous conduction, I min 0 T 1/ f 1000 sec D 005., T DT 50 sec ON V V, , T 10 E D I V K T olution of Tutoril 3 F. hmn/aug 013

4 Where K T is found from 100 I KE KE 6. 8 K K V / rd /sec or Nm / A E T 50 / e / e , where is in msec. 50 / 1000 / e 1. 8 e / 1000 / or 1. 05e 0. 05e 1 olving this eqution itertively: 50 / in µsec 105e e / sec is the solution 6 L mh olution of Tutoril 4 F. hmn/aug 013

5 Question 3 V V V, I 400 A, , L mh, L / 5 10 sec 1 KE V / rd /sec, rted 0 rev /min T Nm, tted 1 T tted 393. Nm 393. I 00 A Assuming continuous conduction, 0 V DV I KE V D 05. Whether I is continuous cn be determined in two wys: For 800 rev /min, E V V V with continuous conduction V E I A which is ve I DT / V e 1 E min T / e 1 which is ve. ince I cn not be ve, when the motor is driven from 1-Q converter, it must be discontinuous. olution of Tutoril 5 F. hmn/aug 013

6 3(i) V s v E T on = DT s T off =(1-D)T s t I i t t T s V E t lne 1 1e E DT / DT / ln e 1 1e sec V ( ) E V V I A T Nm 3(ii) t V DV ( 1 ) E T rms 0. 5 ( ) V insted of V 05. V 184V for continuous conduction. rms s olution of Tutoril 6 F. hmn/aug 013

7 Question 4 V 00 V, 0. 33, L 11 mh, 100 rev /min, when D 1 I 0 A, 800 rev /min f 500Hz; T m sec. 00 I E K K E E KE V / rd /sec rpm E V V I E V D I V e 1 E 00 e e e DT / /( ) min T / /( ) I A is continuous. Question 5 I 5 A, V 50 V, 0. 7, L mh, f 1000Hz; T 1 msec. For D 1, 1000 rev /min V DV 50 I KE 1000 or, KE K E olution of Tutoril 7 F. hmn/aug 013

8 KE. V / rd /sec For just discontinuous conduction V DT / e 1 I min 0 T / e 1 E DT s/ e 1 E Vs e T/ s 1 Given D 0., 5 V 50 V, 0. 7, 3 3 L / 10 / sec 05T. s/ e 1 E V Ts/ e rd/sec K. E rev/min. DV E A s I T K I Nm. T olution of Tutoril 8 F. hmn/aug 013

9 Question 6 00Vdc T 1 D i L V s T D 1 E (i) T 100sec, sec Torque 15 Nm, I 15A, peed 150 rev /min rd /sec E K V E V E I V T sec, T 1. 1 sec ON OFF (ii) I V 1 e E 00 1 e e e TON / 008. mx T / A TON / 008. V e 1 E e 1 I min T / e e A Imx Imin A olution of Tutoril 9 F. hmn/aug 013

10 Note: ipple current clcultion t switching frequencies of 10 khz or so involves subtrction of two quntities which re nerly the sme. The switching times, so found, re lso smll, often few tens of microseconds. Gret cre thus must be tken in your clcultions. Up to six or seven deciml plces must be retined before rounding off. (iii) For brking D E I L + V s T V emember tht for the brking mode of opertion, T ON is the on time for D nd OFF time for T. For pek brking current of 3 A, TON TON / Vs e 1 E e 1 3 I min T e 1 e 1 TON / e /.. T ON e T ON / or e or T / ON 5 or T sec ON T (i.e., T is ON for = 63.4 sec) 100 Alterntive solution for (iii) Note tht the pek brking current is bout the sme s the DC current I (ssuming tht ripple is smll). With this ssumption we my lso write, olution of Tutoril 10 F. hmn/aug 013

11 I s DVs E 3 DV V s DVs D Diode D ON time = DT sec 36.6 sec s Thus, T ON time = = 63.4 sec, s found previously. (iv) When motor speed flls to 750 rev/min, E 750 KE V If the sme breking current is mintined, I s DVs E DVs DV V s 5.9 D Diode D ON time = DT sec 1.95 sec s At this speed, T ON time increses to: = sec. Using this procedure, you should be ble to find the speed t which the current controller comes out of limiting mode (i.e., becomes unble to mintin the breking current t -I rted ). olution of Tutoril 11 F. hmn/aug 013

12 Question 7 V~ V = hp 30V 100rev/min E Figure 1 K E = 0.18 V/rev/min = 0.18 V/rev/sec = A. I = 38 A T = K t I = = 66 Nm 0.18 rd/sec = 1.74 V/rd/sec B. E ; E = V I K E V mx cos I cos = = V N 105 rev/min 0.18 olution of Tutoril 1 F. hmn/aug 013

13 C. DC output power of converter, Pdc Wtts Input voltge, v s, V Output voltge, v o, V Input current, I p, A The input current wveform to the converter is the rms input current = 1 id 38 A 0 The input Volt-Ampere (VA) = rms input voltge rms input current = 38 = 9880 The input Power Fctor = Output Pdc of Converter Input VA lgging olution of Tutoril 13 F. hmn/aug 013

14 Question 8. While brking regenertively, (i.e., opertion in the second qudrnt), the polrity of the motor voltge nd motor-converter connections re s indicted in the figure Q. Note tht the motor rmture connections hve been reversed, so tht it is now ble to source current into the converter, llowing the motor overhuling energy to be returned to the AC source. V~ I V V Figure Q A. I 38 A The KVL round the rmture-converter circuit is V A V ( ) V V mx cos cos , so tht Power fed bck immeditely t the strt of breking V I Wtts B. I = 76 A V ( ) V olution of Tutoril 14 F. hmn/aug 013

15 V mx cos cos , so tht 136. Power fed bck immeditely t the strt of regenertive brking V I ,81 Wtts Question 9 V~ I L E A. T = K t I = = 66 Nm B. E V I Vmx 1cosI 1 cos Volts ev/min 0.18 DC power to the motor = P dc = = 8, Wtts olution of Tutoril 15 F. hmn/aug 013

16 Input voltge v s, V Output voltge v o, V Input current I p, A The rms input current to the converter is Input rms current, I rms = id = d A 180 Input Power fctor, PF = Pdc 8, V I rms rms 0.9 lgging Question 10 () A hlf-controlled converter will not llow regenertive brking, s opposed to the fullycontrolled converter which would. (b) 0V = I KE KE K 0 45 KE V/rd/sec 15.6 Vmx V For = 1000 rev/min, with full lod Vdc V V mx Vdc cos E olution of Tutoril 16 F. hmn/aug 013

17 cos (c) Brking torque = KT I Nm I A V I E ~ V dc I E KE E = 175V V mx cos cos V 1 85 cos (d) J Tm = 1.5 kg-m ; T Lm = N Nm D Tm = 0.1 Nm/rd/sec; J D T T Nm Tm m Tm m Lm m DTm TLm m 31 rd/sec J 1. 5 Tm 31. /sec L 31 rd 10 (e) V I E 0. 3I K 0. 3I I E V cos cos V I ( )/ A which is more thn 5% of I rted the lod current is continuous. 900 (f) At 900 rev/min, E Volts olution of Tutoril 17 F. hmn/aug 013

18 which is more thn the converter output voltge, V = V mx cos V V E I A, which is negtive. 0.3 The rmture current will be discontinuous. Question 11 Motor rtings re: 500W; 1000 rev/min Motor prmeters re: = 0.15, L = H T rted Prted rted 1000 Nm We will ssume tht the motor runs t the rted speed when the firing ngle 0. For opertion t rted speed, nd ssuming continuous conduction, the rted rmture voltge is V V 40 mx cos V We need to find the bck emf in order to find I min nd to determine whether the rmture current will be continuous. The motor voltge constnt K E nd the rted current hve not been given. I V E E.(1) 0.15 Now EI 500 () By solving equtions (1) nd () simultneously I.3 A nd E 15.7 V The condition for opertion t the cont/disc conduction boundry is given by eqution 4.3 which is: olution of Tutoril 18 F. hmn/aug 013

19 L For this problem, L e 1 E sin V L e 1 mx 1L tn tn [For the inequlity, LH = e 1 sin e 1 = H = V E mx Both sides of the inequlity re nerly equl so tht conduction (even with = 0) is on the verge of being discontinuous. At 500 rev/min (hlf the rted speed), the firing ngle is expected to be bout, so tht conduction is very likely to be discontinuous. Therefore, dditionl inductnce in the rmture circuit will thus be needed]. At 500 rev/min, becuse of the constnt lod torque, P T 50 W ince the lod torque is unchnged, rmture current I remins unchnged (for the. E. motor) nd the bck emf is hlved, so tht, E V V I E V V V cos mx E The H of the inequlity = V 340 mx olution of Tutoril 19 F. hmn/aug 013

20 By iterting the LH of the inequlity with vrious vlues of L, it cn be found tht L 54.7 mh Thus, the dditionl externl inductnce required = = 5. mh. Question 1 = ; L = H E = rev/min I rted = 89 A ; f = 50 Hz 3-phse, fully-controlled converter v o v n i L i T 1 T 3 T 5 = v bn i b V d L = H i c + T 4 T 6 T E V v cn (c) 3V mx Vdc 30 V cos For = 0, V dc = mximum = 30 V 30 V 40.7 V 3 mx V M, supply = V mx V (d) 6V cos7 cos 5 sin7 sin mx v6 sin6 t cos6 t The mplitude of v 6 is mximum when = 90. v 6 6Vmx 1 1 cos6t for = 90 (worst cse). 6Vmx 1 1 V6,M 0.3V mx V olution of Tutoril 0 F. hmn/aug 013

21 I 6 V6 Impednce to the 6th hrmonic voltge j I j A This is the dominnt ripple current in the rmture. ince the rted rmture current is 89 A, the motor current must be derted to: 3 new I rting = A (c) E 30 KE V/rd/sec = K T Nm/Amp 0 o 0 rev/min 6.8 rd/sec Vdc E I V Also, 3V V mx Vdc cos cos 79. 3V mx olution of Tutoril 1 F. hmn/aug 013

22 Question , L 0. 00H, K. V / rd /sec., I 500A E rted 1500 () rev /min 157 rd /sec. E K Volts E 0 3Vmx Vdc E I cos V Now Vmx V V cos dc V mx cos ( b ) 3 3Vmx 3 L Vdc cos I Volts E V I Volts dc rd /sec rd /sec rev /min 5. Question 14 For the fstest ccelertion, T mx = T rted Tmx KTI 40Nm Tmx T 40 5 mx 500 rd /sec J mt f Noting tht the friction torque ssists the decelertion, the mximum decelertion is Tmx T 40 5 mx 314 rd /sec J mt f olution of Tutoril F. hmn/aug 013

ELE B7 Power Systems Engineering. Power System Components Modeling

ELE B7 Power Systems Engineering. Power System Components Modeling Power Systems Engineering Power System Components Modeling Section III : Trnsformer Model Power Trnsformers- CONSTRUCTION Primry windings, connected to the lternting voltge source; Secondry windings, connected

More information

Section 2 - DC Motor Drives

Section 2 - DC Motor Drives Section 2 - DC Motor Drives eview of DC motors nd chrcteristics Switched mode PWM converters. Single nd three phse thyristor converter circuits. Anlysis of converter nd DC motor circuits. Effects of discontinuous

More information

The University of New South Wales FINAL EXAMINATION. Session ELEC4613 ELECTRIC DRIVE SYSTEMS. 1. Time allowed 3 hours

The University of New South Wales FINAL EXAMINATION. Session ELEC4613 ELECTRIC DRIVE SYSTEMS. 1. Time allowed 3 hours The University of New South Wles FINAL EXAMINATION Session 010 ELEC4613 ELECTRIC DRIVE SYSTEMS 1. Tie llowed 3 hours. Reding tie: 10 inutes 3. Totl nuber of questions in this pper = SIX 4. Answer ny FOUR

More information

POLYPHASE CIRCUITS. Introduction:

POLYPHASE CIRCUITS. Introduction: POLYPHASE CIRCUITS Introduction: Three-phse systems re commonly used in genertion, trnsmission nd distribution of electric power. Power in three-phse system is constnt rther thn pulsting nd three-phse

More information

Electrical Drive 4 th Class

Electrical Drive 4 th Class University Of Technology Electricl nd Electronics Deprtment Dr Nofl ohmmed Ther Al Kyt A drive consist of three min prts : prime mover; energy trnsmitting device nd ctul pprtus (lod), hich perform the

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 2

PHYS Summer Professor Caillault Homework Solutions. Chapter 2 PHYS 1111 - Summer 2007 - Professor Cillult Homework Solutions Chpter 2 5. Picture the Problem: The runner moves long the ovl trck. Strtegy: The distnce is the totl length of trvel, nd the displcement

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

WELCOME TO THE LECTURE

WELCOME TO THE LECTURE WELCOME TO THE LECTURE ON DC MOTOR Force on conductor If conductor is plced in mgnetic field nd current is llowed to flow through the conductor, the conductor will experience mechnicl force. N S Electric

More information

Cross-section section of DC motor. How does a DC Motor work? 2 Commutator Bars N X. DC Motors 26.1

Cross-section section of DC motor. How does a DC Motor work? 2 Commutator Bars N X. DC Motors 26.1 DC Motors 26.1 How does DC Motor work? Crosssection section of DC motor Mgnetic field vector, B oft Iron Core (otor) Wire length vector, dl Force vector, df Current, i Permnent Mgnet (ttor) Crosssection

More information

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations ME 3600 Control ystems Chrcteristics of Open-Loop nd Closed-Loop ystems Importnt Control ystem Chrcteristics o ensitivity of system response to prmetric vritions cn be reduced o rnsient nd stedy-stte responses

More information

Industrial Electrical Engineering and Automation

Industrial Electrical Engineering and Automation CODEN:LUTEDX/(TEIE-719)/1-7/(7) Industril Electricl Engineering nd Automtion Estimtion of the Zero Sequence oltge on the D- side of Dy Trnsformer y Using One oltge Trnsformer on the D-side Frncesco Sull

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

Analysis of Abnormal Modes of Hoisting DC Electric Drive System

Analysis of Abnormal Modes of Hoisting DC Electric Drive System Americn Journl of Applied Sciences 7 (4): 527-54, 2010 ISSN 154-929 2010Science Publictions Anlysis of Abnorml Modes of Hoisting DC Electric Drive System Kosms Zdrozis Deprtment of Automtion, Technologicl

More information

332:221 Principles of Electrical Engineering I Fall Hourly Exam 2 November 6, 2006

332:221 Principles of Electrical Engineering I Fall Hourly Exam 2 November 6, 2006 2:221 Principles of Electricl Engineering I Fll 2006 Nme of the student nd ID numer: Hourly Exm 2 Novemer 6, 2006 This is closed-ook closed-notes exm. Do ll your work on these sheets. If more spce is required,

More information

I do slope intercept form With my shades on Martin-Gay, Developmental Mathematics

I do slope intercept form With my shades on Martin-Gay, Developmental Mathematics AAT-A Dte: 1//1 SWBAT simplify rdicls. Do Now: ACT Prep HW Requests: Pg 49 #17-45 odds Continue Vocb sheet In Clss: Complete Skills Prctice WS HW: Complete Worksheets For Wednesdy stmped pges Bring stmped

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK 11 WRITTEN EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION MULTIPLE CHOICE QUESTIONS QUESTION QUESTION

More information

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph. nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + $

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

In the diagram below, the rotation continues until N-S alignment, resulting in lock-up that is, if nothing is done to prevent it.

In the diagram below, the rotation continues until N-S alignment, resulting in lock-up that is, if nothing is done to prevent it. 25-1 DC motors DC motors re importnt in mny pplictions. In portble pplictions using bttery power, DC motors re nturl choice. DC mchines re lso used in pplictions where high strting torque nd ccurte speed

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

The Periodically Forced Harmonic Oscillator

The Periodically Forced Harmonic Oscillator The Periodiclly Forced Hrmonic Oscilltor S. F. Ellermeyer Kennesw Stte University July 15, 003 Abstrct We study the differentil eqution dt + pdy + qy = A cos (t θ) dt which models periodiclly forced hrmonic

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Simple Harmonic Motion I Sem

Simple Harmonic Motion I Sem Simple Hrmonic Motion I Sem Sllus: Differentil eqution of liner SHM. Energ of prticle, potentil energ nd kinetic energ (derivtion), Composition of two rectngulr SHM s hving sme periods, Lissjous figures.

More information

Lec 3: Power System Components

Lec 3: Power System Components Lec 3: Power System Components Dr. Mlbik Bsu 8/0/2009 Lesson pln 3 nd L.O. Sequence nlysis exmple ( detil fult nlysis next sem) Trnsformer model recp, tp chnge nd phse chnge, 3-phse Modeling of Synchronous

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

fractions Let s Learn to

fractions Let s Learn to 5 simple lgebric frctions corne lens pupil retin Norml vision light focused on the retin concve lens Shortsightedness (myopi) light focused in front of the retin Corrected myopi light focused on the retin

More information

1 Techniques of Integration

1 Techniques of Integration November 8, 8 MAT86 Week Justin Ko Techniques of Integrtion. Integrtion By Substitution (Chnge of Vribles) We cn think of integrtion by substitution s the counterprt of the chin rule for differentition.

More information

Unit 5. Integration techniques

Unit 5. Integration techniques 18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A-1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd

More information

Chapter E - Problems

Chapter E - Problems Chpter E - Prolems Blinn College - Physics 2426 - Terry Honn Prolem E.1 A wire with dimeter d feeds current to cpcitor. The chrge on the cpcitor vries with time s QHtL = Q 0 sin w t. Wht re the current

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Department of Mechanical Engineering MECE 551 Final examination Winter 2008 April 16, 9:00 11:30. Question Value Mark

Department of Mechanical Engineering MECE 551 Final examination Winter 2008 April 16, 9:00 11:30. Question Value Mark Deprtment of Mechnicl Engineering MECE 55 Finl exmintion Winter 8 April 6, 9: :3 Notes: You my hve your text book nd one pge formul sheet Electronic devices re not llowed except n pproved clcultor NAME:

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Terminal Velocity and Raindrop Growth

Terminal Velocity and Raindrop Growth Terminl Velocity nd Rindrop Growth Terminl velocity for rindrop represents blnce in which weight mss times grvity is equl to drg force. F 3 π3 ρ L g in which is drop rdius, g is grvittionl ccelertion,

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

Math 360: A primitive integral and elementary functions

Math 360: A primitive integral and elementary functions Mth 360: A primitive integrl nd elementry functions D. DeTurck University of Pennsylvni October 16, 2017 D. DeTurck Mth 360 001 2017C: Integrl/functions 1 / 32 Setup for the integrl prtitions Definition:

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

(See Notes on Spontaneous Emission)

(See Notes on Spontaneous Emission) ECE 240 for Cvity from ECE 240 (See Notes on ) Quntum Rdition in ECE 240 Lsers - Fll 2017 Lecture 11 1 Free Spce ECE 240 for Cvity from Quntum Rdition in The electromgnetic mode density in free spce is

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

Homework Assignment 9 Solution Set

Homework Assignment 9 Solution Set Homework Assignment 9 Solution Set PHYCS 44 3 Mrch, 4 Problem (Griffiths 77) The mgnitude of the current in the loop is loop = ε induced = Φ B = A B = π = π µ n (µ n) = π µ nk According to Lense s Lw this

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Chapter 5 Exercise 5A

Chapter 5 Exercise 5A Chpter Exercise Q. 1. (i) 00 N,00 N F =,00 00 =,000 F = m,000 = 1,000 = m/s (ii) =, u = 0, t = 0, s =? s = ut + 1 t = 0(0) + 1 ()(00) = 00 m Q.. 0 N 100 N F = 100 0 = 60 F = m 60 = 10 = 1 m/s F = m 60

More information

SOLUTIONS TO CONCEPTS CHAPTER

SOLUTIONS TO CONCEPTS CHAPTER 1. m = kg S = 10m Let, ccelertion =, Initil velocity u = 0. S= ut + 1/ t 10 = ½ ( ) 10 = = 5 m/s orce: = = 5 = 10N (ns) SOLUIONS O CONCEPS CHPE 5 40000. u = 40 km/hr = = 11.11 m/s. 3600 m = 000 kg ; v

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions ENGI 44 Engineering Mthemtics Five Tutoril Exmples o Prtil Frctions 1. Express x in prtil rctions: x 4 x 4 x 4 b x x x x Both denomintors re liner non-repeted ctors. The cover-up rule my be used: 4 4 4

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop.

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop. Tody s gend: Potentil Chnges Around Circuit. You must e le to clculte potentil chnges round closed loop. Electromotive force (EMF), Terminl Voltge, nd Internl Resistnce. You must e le to incorporte ll

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

Mathematics Extension 1

Mathematics Extension 1 04 Bored of Studies Tril Emintions Mthemtics Etension Written by Crrotsticks & Trebl. Generl Instructions Totl Mrks 70 Reding time 5 minutes. Working time hours. Write using blck or blue pen. Blck pen

More information

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once.

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once. Exercises 341 Flow of Chrge (pge 681) potentil difference 1 Chrge flows when there is between the ends of conductor 2 Explin wht would hppen if Vn de Grff genertor chrged to high potentil ws connected

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

Not for reproduction

Not for reproduction AREA OF A SURFACE OF REVOLUTION cut h FIGURE FIGURE πr r r l h FIGURE A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundry of solid of revolution of the type

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point. PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

15. Quantisation Noise and Nonuniform Quantisation

15. Quantisation Noise and Nonuniform Quantisation 5. Quntistion Noise nd Nonuniform Quntistion In PCM, n nlogue signl is smpled, quntised, nd coded into sequence of digits. Once we hve quntised the smpled signls, the exct vlues of the smpled signls cn

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1.

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( ) lim where lim f or lim f limg. c g = c limg( ) = c = c = c How to find it: Try nd find limits by

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

Identify graphs of linear inequalities on a number line.

Identify graphs of linear inequalities on a number line. COMPETENCY 1.0 KNOWLEDGE OF ALGEBRA SKILL 1.1 Identify grphs of liner inequlities on number line. - When grphing first-degree eqution, solve for the vrible. The grph of this solution will be single point

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

than 1. It means in particular that the function is decreasing and approaching the x-

than 1. It means in particular that the function is decreasing and approaching the x- 6 Preclculus Review Grph the functions ) (/) ) log y = b y = Solution () The function y = is n eponentil function with bse smller thn It mens in prticulr tht the function is decresing nd pproching the

More information

Lecture 0. MATH REVIEW for ECE : LINEAR CIRCUIT ANALYSIS II

Lecture 0. MATH REVIEW for ECE : LINEAR CIRCUIT ANALYSIS II Lecture 0 MATH REVIEW for ECE 000 : LINEAR CIRCUIT ANALYSIS II Aung Kyi Sn Grdute Lecturer School of Electricl nd Computer Engineering Purdue University Summer 014 Lecture 0 : Mth Review Lecture 0 is intended

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11

The Islamic University of Gaza Faculty of Engineering Civil Engineering Department. Numerical Analysis ECIV Chapter 11 The Islmic University of Gz Fculty of Engineering Civil Engineering Deprtment Numericl Anlysis ECIV 6 Chpter Specil Mtrices nd Guss-Siedel Associte Prof Mzen Abultyef Civil Engineering Deprtment, The Islmic

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction Lesson : Logrithmic Functions s Inverses Prerequisite Skills This lesson requires the use of the following skills: determining the dependent nd independent vribles in n exponentil function bsed on dt from

More information

r = cos θ + 1. dt ) dt. (1)

r = cos θ + 1. dt ) dt. (1) MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Consolidation Worksheet

Consolidation Worksheet Cmbridge Essentils Mthemtics Core 8 NConsolidtion Worksheet N Consolidtion Worksheet Work these out. 8 b 7 + 0 c 6 + 7 5 Use the number line to help. 2 Remember + 2 2 +2 2 2 + 2 Adding negtive number is

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Chapter 10: Symmetrical Components and Unbalanced Faults, Part II

Chapter 10: Symmetrical Components and Unbalanced Faults, Part II Chpter : Symmetricl Components nd Unblnced Fults, Prt.4 Sequence Networks o Loded Genertor n the igure to the right is genertor supplying threephse lod with neutrl connected through impednce n to ground.

More information

Tests for the Ratio of Two Poisson Rates

Tests for the Ratio of Two Poisson Rates Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

More information

Shaped Time-Optimal Control for Disk Drive Systems with Back EMF, Slew Rate Limits, and Different Acceleration and Deceleration Rates

Shaped Time-Optimal Control for Disk Drive Systems with Back EMF, Slew Rate Limits, and Different Acceleration and Deceleration Rates Shped ime-optiml Control for Disk Drive Systems with Bck EMF, Slew Rte Limits, nd Different Accelertion nd Decelertion Rtes Chnt L-orpchrpn nd Lucy Y. Po Deprtment of Electricl nd Computer Engineering

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Homework Assignment #1 Solutions

Homework Assignment #1 Solutions Physics 56 Winter 8 Textook prolems: h. 8: 8., 8.4 Homework Assignment # Solutions 8. A trnsmission line consisting of two concentric circulr cylinders of metl with conductivity σ nd skin depth δ, s shown,

More information

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences.

Lecture 3. Introduction digital logic. Notes. Notes. Notes. Representations. February Bern University of Applied Sciences. Lecture 3 Ferury 6 ern University of pplied ciences ev. f57fc 3. We hve seen tht circuit cn hve multiple (n) inputs, e.g.,, C, We hve lso seen tht circuit cn hve multiple (m) outputs, e.g. X, Y,, ; or

More information

LECTURE 23 SYNCHRONOUS MACHINES (3)

LECTURE 23 SYNCHRONOUS MACHINES (3) ECE 330 POWER CIRCUITS AND ELECTROMECHANICS LECTURE 3 SYNCHRONOUS MACHINES (3) Acknowledgent-Thee hndout nd lecture note given in cl re bed on teril fro Prof. Peter Suer ECE 330 lecture note. Soe lide

More information

Model Solutions to Assignment 4

Model Solutions to Assignment 4 Oberlin College Physics 110, Fll 2011 Model Solutions to Assignment 4 Additionl problem 56: A girl, sled, nd n ice-covered lke geometry digrm: girl shore rope sled ice free body digrms: force on girl by

More information

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx...

Chapter 7 Notes, Stewart 8e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m x cos n (x) dx... Contents 7.1 Integrtion by Prts................................... 2 7.2 Trigonometric Integrls.................................. 8 7.2.1 Evluting sin m x cos n (x)......................... 8 7.2.2 Evluting

More information

Read section 3.3, 3.4 Announcements:

Read section 3.3, 3.4 Announcements: Dte: 3/1/13 Objective: SWBAT pply properties of exponentil functions nd will pply properties of rithms. Bell Ringer: 1. f x = 3x 6, find the inverse, f 1 x., Using your grphing clcultor, Grph 1. f x,f

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information