RELATIVITY. Einstein published two theories of relativity. In The Special Theory. For uniform motion a = 0. In The General Theory

Size: px
Start display at page:

Download "RELATIVITY. Einstein published two theories of relativity. In The Special Theory. For uniform motion a = 0. In The General Theory"

Transcription

1 RELATIVITY Einstein published two theories of relativity In 1905 The Special Theory For uniform motion a = 0 In 1916 The General Theory For non-uniform motion a 0.

2 First we will discuss The Special Theory At the beginning of the century most believed light was a wave. Thus must have something that waves: Sound has air Water has water, etc. 2

3 Physicists proposed that for waves of light something must wave. They called it the ether for light This ether then must fill the universe. The earth moves through the universe so: How fast are we traveling through the ether? To answer this we will start with a race between two boats (that run at exactly the same speed) in a river. 3

4 The boat going downstream will have speed c + v The boat going upstream will have speed c v 4

5 The calculated time for round trip is t L L 2Lc = + = c+ v c v c v // 2 2 The speed for the boat going cross-stream will have speed both ways c v 2 2 Therefore t cross = v 2L c 2 2 Then the ratio of the two times will be 5

6 t t // cross 1 = > 2 v 1 2 c 1 Therefore we see that the boat that goes across and back wins the race even though both boats travel the same speed relative to the water. The main point is the time to complete the race is different for the two boats. Note: 6

7 We can measure ratio of times for boats and calculate the speed of river if we know the speed of boats. 7

8 The Michelson-Morley Experiment Diagram of Apparatus 8

9 Drawing of actual apparatus We know the speed of light. We want the speed of the earth through the ether. 9

10 When light arrives at the eye it has traveled two paths to reach the observer. There will be interference either constructive or destructive The resulting image will be a series of lines. 10

11 Spectrometer lines Since the direction of the ether flow is not known the apparatus must be rotated. 11

12 First one than the other path will be parallel to the flow of ether. Therefore the interference lines should shift. Michelson and Morley did the experiment very carefully and did not find a shift. The conclusion has to be that: The Ether does not exist or the earth travels along with it. 12

13 Another experiment shows that we are not moving with it. Stellar Aberration is that experiment While the light travels down the telescope the telescope moves with the earth. 13

14 The telescope has to be tilted to keep the image in the center. If the ether (the substance that waves to cause the propagation of light) moves with the scope there would be no need to tilt the it. Therefore we conclude the ether does not exist. Classical Relativity The transformation equations before Einstein 14

15 x = x vt y = y z = z t = t These are the Galilean Equations that allow observers to compare observations in two different frames moving relative to each other with constant velocity. 15

16 Observer on ground and observer on railroad car moving in x-direction. The observer on the ground observes the birds separated by distance x 2 x 1 The distances are equal.. 16

17 If an airplane flies over the railroad car traveling in the + x direction at a speed u x measured by the observer on the ground what will be the speed ( u x ) of the airplane measured by the observer on the railroad car? We can use the transformation equation for x x = x vt and the equation for t t = t Differentiate and divide to get 17

18 dx dx dv = v t dt dt dt u = u v x x 0 if the velocity of the railroad car is constant. If the observer on the ground measures the velocity of the airplane as u x then the person on the railroad car will measure u x 18

19 What if the person on the ground points a flashlight in the + x direction? What will be the speed of light measured by the observer on the railroad car? 19

20 We get x u = u v x giving c = c v We must keep this result in mind as we discuss Einstein s Theory. 20

21 Einstein s postulates for the Special Theory of Relativity: 1. Fundamental laws of physics are identical for any two observers in uniform relative motion. 2. The speed of light is independent of the motion of the light source or observer. 21

22 These postulates cannot be satisfied using the Galilean Equations, as we will see. However Einstein found that the following equations worked. x = γ ( x vt) y = y z = z vx t = γ ( t ) 2 c where 1 γ = v 1 c

23 These are the Lorentz Transformation Equations. Now consider the airplane flying over the railroad car in the x-direction. What is the speed of the airplane as measured by the observer on the ground? What is the speed of the airplane as measured by the observer on the railroad car? We need to answer these questions by using the Einstein-Lorenze Equations. 23

24 x = γ ( x vt) and t vx = γ ( t ) c 2 differentiate dx = ( dx vdt) and γ dt vdx = γ ( dt ) c 2 divide dx dx vdt = dt vdx dt 2 24

25 divide by dt dx = dt or u x = dx v dt dx v 1 dt c 2 u x 1 v vu c x 2 Thus if an object (an airplane) flies over the railroad car the observer on the ground will 25

26 measure the speed in the x direction as u x. The observer on the car will find u x. What about the speed of light when a flashlight is pointed in the x-direction? The observer on the ground points a flashlight in the +x direction. What will be the speed of light measured by the observer on the car? u x c v c v c v = = = = vc v 1 1 ( c v)/ c 2 c c c 26

27 Both observers, even though they are moving relative to each other, measure the same value for the speed of light. This is in agreement with the Second Postulate. LENGTH CONTRACTION Read the section on Length Contraction in the book. We will do it a little differently. 27

28 The observer on the moving railroad car has a rod moving with him. He measures the length of the rod to be = x x L Use the Lorentz equations to get x = γ ( x vt ) x = γ ( x vt ) Then putting these in the equation 28

29 L = γ( x vt ) γ( x vt) [( ) ( )] L = γ x x vt t If the observer on the ground measures the far end and near end of the rod at the same time Then t = t 1 2 L = γ ( x x ) = γ L or L = L 0 γ and γ > 1 29

30 So the observer on the ground with the rod moving past in the x direction measures the rod to be shorter than what is measured by the observer at rest relative to the rod and on the car. Length Contraction is a prediction of the Lorentz Equations. TIME DILATION Again we will find time dilation a different way than the book. Then we will analyze the book s method. 30

31 Observer on railroad car moving in x-direction with firecrackers and another observer on ground. There is a firecracker on the top of the pole at x 1 and one on the top of the pole at x 2. Let s say the firecracker on the top of the pole at explodes and then some time later the one on x 1 31

32 top of the pole at x 2 explodes. We want to consider the time between the two events. The time interval between the two events as measured by the observer on the ground will be t = t t 2 1 Using the transformation equations we get t vx ( ) c 2 2 = γ t So t vx ( ) c 1 1 = γ t

33 vx2 vx1 t = γ ( t2 + ) γ ( t ) 2 c c or v t = γ t + ( ( x 2 2 x1) c The time interval is different for the two observers. For simplicity consider two firecrackers on the same post at then x = x = x

34 and v t t ( x x ) = γ + = γ t 2 c γ > So the time interval for the observer on the ground with the events moving relative to him is longer. MOVING CLOCKS RUN SLOWLY If an observer is moving relative to a clock the interval between ticks will be longer. This is Time Dilation 34

35 The book demonstration: 35

36 For the girl on the railroad car, O frame, the light travels up and back to the floor. The distance traveled is 2d The time to travel is t The speed of light is c So t = 2d c 36

37 The observer on the ground sees the light travel from the floor to the ceiling but during this time the railroad car moves carrying the mirror with it at a speed v. 37

38 The observer on the ground sees the light travel farther when it goes from floor to ceiling than the observer on the railroad car. For the girl distance traveled = d c t For the boy distance traveled = 2 Both observers must measure the speed of light as c. Therefore, since the distance traveled is longer for the boy than for the girl 38

39 t > t Consider triangle 39

40 We see that 2 2 c t v t = d 2 Solve for t or c v t = d t = 2 4d c v 2 2 and 40

41 2d 2d t = = c v v c 1 c Use t = 2d c to get 2d = c t and put in above equation to get 41

42 c t t t = = = γ t 2 2 v v c c c 42

43 Einstein / Lorentz Transformation Equations 1. Satisfy Einstein s Second Postulate 2. Predict Length contraction 3. Predict Time Dilation But are these correct? Must have an experiment to prove!!! 43

44 Muon lifetime Experiment Muons are particles created high in our atmosphere. They rain down continuously at high velocity at approximately v 8 = 2.994x10 m/s. If at rest they only exist for approximately τ 6 = 210 x seconds. The experiment is to set up a detector at the top of a mountain and stop the muons in the detector and measure how long they exist. 44

45 Then ask how far down would they have traveled if they had not been stopped in the detector. distance = (speed) x (time they exist) d = x m s x x s 8 6 ( / ) (2 10 ) = 600 m. If the mountain is 2000m tall, at bottom should find very few if any muons. 45

46 Move the apparatus to the bottom of the mountain and measure the number of the same type muons that reach sea level. The experiment showed that as many reached sea level as passed through the atmosphere at the level of the top of the mountain. Why? When moving relative to us the observer they exist not for τ = 2 x 10-6 s but for 46

47 t τ = γ = = = = 6 6 t 16t 16(2x10 ) s 32x10 s x ( ) x Thus distance traveled will be 8 6 d = (2.994x10 m/ s)(32x10 s) = 10, 000m well below sea level. Or viewed from the muon 47

48 Experiment also confirms length contraction. 48

Introduction to Relativity & Time Dilation

Introduction to Relativity & Time Dilation Introduction to Relativity & Time Dilation The Principle of Newtonian Relativity Galilean Transformations The Michelson-Morley Experiment Einstein s Postulates of Relativity Relativity of Simultaneity

More information

Newtonian or Galilean Relativity

Newtonian or Galilean Relativity Relativity Eamples 1. What is the velocity of an electron in a 400 kv transmission electron microscope? What is the velocity in the 6 GeV CESR particle accelerator?. If one million muons enter the atmosphere

More information

Modern Physics. Relativity: Describes objects moving close to or at the speed of light (spaceships, photons, electrons )

Modern Physics. Relativity: Describes objects moving close to or at the speed of light (spaceships, photons, electrons ) Modern Physics At the beginning of the twentieth century, two new theories revolutionized our understanding of the world and modified old physics that had existed for over 200 years: Relativity: Describes

More information

JF Theoretical Physics PY1T10 Special Relativity

JF Theoretical Physics PY1T10 Special Relativity JF Theoretical Physics PY1T10 Special Relativity 12 Lectures (plus problem classes) Prof. James Lunney Room: SMIAM 1.23, jlunney@tcd.ie Books Special Relativity French University Physics Young and Freedman

More information

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory

Relativity. An explanation of Brownian motion in terms of atoms. An explanation of the photoelectric effect ==> Quantum Theory Relativity Relativity In 1905 Albert Einstein published five articles in Annalen Der Physik that had a major effect upon our understanding of physics. They included:- An explanation of Brownian motion

More information

Chapter-1 Relativity Part I RADIATION

Chapter-1 Relativity Part I RADIATION Chapter-1 Relativity Part I RADIATION Radiation implies the transfer of energy from one place to another. - Electromagnetic Radiation - Light - Particle and Cosmic Radiation photons, protons, neutrons,

More information

Special Relativity 05/09/2008. Lecture 14 1

Special Relativity 05/09/2008. Lecture 14 1 How Fast Are You Moving Right Now? Special Relativity Einstein messes with space and time 0 m/s relative to your chair 400 m/s relative to earth center (rotation) 30,000 m/s relative to the sun (orbit)

More information

Lecture 8 : Special Theory of Relativity

Lecture 8 : Special Theory of Relativity Lecture 8 : Special Theory of Relativity The speed of light problem Einstein s postulates Time dilation 9/23/10 1 Sidney Harris I: THE SPEED OF LIGHT PROBLEM Recap Relativity tells us how to relate measurements

More information

CHAPTER 2 Special Theory of Relativity-part 1

CHAPTER 2 Special Theory of Relativity-part 1 CHAPTER 2 Special Theory of Relativity-part 1 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Chapter 26 Special Theory of Relativity

Chapter 26 Special Theory of Relativity Chapter 26 Special Theory of Relativity Classical Physics: At the end of the 19 th century, classical physics was well established. It seems that the natural world was very well explained. Newtonian mechanics

More information

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER

Modern Physics. Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER Modern Physics Third Edition RAYMOND A. SERWAY CLEMENT J. MOSES CURT A. MOYER 1 RELATIVITY 1.1 Special Relativity 1.2 The Principle of Relativity, The Speed of Light 1.3 The Michelson Morley Experiment,

More information

Principle of Relativity

Principle of Relativity Principle of Relativity Physical laws are the same in all inertial frames. 1) The same processes occur. But 2) the description of some instance depends on frame of reference. Inertial Frames An inertial

More information

PHYSICS - CLUTCH CH 34: SPECIAL RELATIVITY.

PHYSICS - CLUTCH CH 34: SPECIAL RELATIVITY. !! www.clutchprep.com CONCEPT: INERTIAL REFERENCE FRAMES A reference frame is a coordinate system that you make measurements in, and there are two types: - Inertial reference frames, which move at velocity

More information

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010

Physics 2D Lecture Slides Lecture 2. Jan. 5, 2010 Physics 2D Lecture Slides Lecture 2 Jan. 5, 2010 Lecture 1: Relativity Describing a Physical Phenomenon Event (s) Observer (s) Frame(s) of reference (the point of View! ) Inertial Frame of Reference Accelerated

More information

We search for the ether. Next time: The ether is missing Conspiracy? I think not!

We search for the ether. Next time: The ether is missing Conspiracy? I think not! We search for the ether Next time: The ether is missing Conspiracy? I think not! Waves Wave phenomena are important for the development of special relativity and for understanding quantum mechanics, so

More information

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity

Announcement. Einstein s Postulates of Relativity: PHYS-3301 Lecture 3. Chapter 2. Sep. 5, Special Relativity Announcement PHYS-3301 Lecture 3 Sep. 5, 2017 2 Einstein s Postulates of Relativity: Chapter 2 Special Relativity 1. Basic Ideas 6. Velocity Transformation 2. Consequences of Einstein s Postulates 7. Momentum

More information

Relativity. Overview & Postulates Events Relativity of Simultaneity. Relativity of Time. Relativity of Length Relativistic momentum and energy

Relativity. Overview & Postulates Events Relativity of Simultaneity. Relativity of Time. Relativity of Length Relativistic momentum and energy Relativity Overview & Postulates Events Relativity of Simultaneity Simultaneity is not absolute Relativity of Time Time is not absolute Relativity of Length Relativistic momentum and energy Relativity

More information

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc.

Chapter 36 The Special Theory of Relativity. Copyright 2009 Pearson Education, Inc. Chapter 36 The Special Theory of Relativity Units of Chapter 36 Galilean Newtonian Relativity The Michelson Morley Experiment Postulates of the Special Theory of Relativity Simultaneity Time Dilation and

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Consequences of Einstein s Postulates Lorentz Transformations Albert Einstein 1879-1955 Einstein s Postulates: 1. The laws of physics are invariant to observers

More information

RELATIVITY. Special Relativity

RELATIVITY. Special Relativity RELATIVITY Special Relativity FROM WARMUP It was all interesting! How important is it for us to know the Galilean transformation equations and the math of the Michelson-Morley experiment? Know the Galilean

More information

2.1 The Ether and the Michelson-Morley Experiment

2.1 The Ether and the Michelson-Morley Experiment Chapter. Special Relativity Notes: Some material presented in this chapter is taken The Feynman Lectures on Physics, Vol. I by R. P. Feynman, R. B. Leighton, and M. Sands, Chap. 15 (1963, Addison-Wesley)..1

More information

Module 2: Special Theory of Relativity - Basics

Module 2: Special Theory of Relativity - Basics Lecture 01 PH101: Physics 1 Module 2: Special Theory of Relativity - Basics Girish Setlur & Poulose Poulose gsetlur@iitg.ac.in Department of Physics, IIT Guwahati poulose@iitg.ac.in ( 22 October 2018 )

More information

Relativity and Modern Physics. From Last Time. Preferred reference frame. Relativity and frames of reference. Galilean relativity. Relative velocities

Relativity and Modern Physics. From Last Time. Preferred reference frame. Relativity and frames of reference. Galilean relativity. Relative velocities HW#6 Chapter 0 Concept: 9, 6, 20, 28, 34 Problems: 4, 6 From Last Time Range of visible light from 400 nm to 700 nm Eye interprets different wavelengths as different colors but has only three sensors,

More information

Galilean velocity transformation

Galilean velocity transformation Galilean velocity transformation... -3-2 -1 0 1 2 3... u... -3-2 -1 0 1 2 3... If an object has velocity u in frame S (note: velocities have a direction!), and if frame S is moving with velocity v along

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT

Announcements. Muon Lifetime. Lecture 4 Chapter. 2 Special Relativity. SUMMARY Einstein s Postulates of Relativity: EXPERIMENT Announcements HW1: Ch.2-20, 26, 36, 41, 46, 50, 51, 55, 58, 63, 65 Lab start-up meeting with TA tomorrow (1/26) at 2:00pm at room 301 Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/

More information

2.1 Einstein s postulates of Special Relativity. (i) There is no ether (there is no absolute system of reference).

2.1 Einstein s postulates of Special Relativity. (i) There is no ether (there is no absolute system of reference). Chapter 2 Special Relativity The contradiction brought about by the development of Electromagnetism gave rise to a crisis in the 19th century that Special Relativity resolved. 2.1 Einstein s postulates

More information

The Constancy of the Speed of Light

The Constancy of the Speed of Light The Constancy of the Speed of Light Also, recall the Michelson-Morley experiment: c-u c+u u Presumed ether wind direction u is the relative speed between the frames (water & shore) Result: Similar There

More information

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Sept 29. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Sept 29 Vivek Sharma UCSD Physics Galilean Relativity Describing a Physical Phenomenon Event ( and a series of them) Observer (and many of them) Frame of reference (& an Observer

More information

Kinematics of special relativity

Kinematics of special relativity Chapter 2 Kinematics of special relativity 2.1 Special Relativity 2.1.1 Principles of Relativity Einstein postulated that there was still Galilean invariance, i. e. all uniformly moving observers had the

More information

Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2

Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2 Lorentz Transformation x = γ (x vt) y = y z = z t = γ (t vx/c 2 ) where γ 1/(1 - v 2 /c 2 ) 1/2 Problem: A rocket is traveling in the positive x-direction away from earth at speed 0.3c; it leaves earth

More information

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special Relativity 11/10/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. College - PHY2054C 11/10/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline 1 2 3 1 The speed of light is the maximum possible speed, and it is always measured to have the same value

More information

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics

Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Two postulates Relativity of simultaneity Time dilation; length contraction Lorentz transformations Doppler effect Relativistic kinematics Phys 2435: Chap. 37, Pg 1 Two postulates New Topic Phys 2435:

More information

Special Theory of Relativity. A Brief introduction

Special Theory of Relativity. A Brief introduction Special Theory of Relativity A Brief introduction Classical Physics At the end of the 19th century it looked as if Physics was pretty well wrapped up. Newtonian mechanics and the law of Gravitation had

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of special relativity Announcements: Homework 1s due at 1:00pm on Friday in the wood cabinet just inside the physics help room (G2B90) Last year s Nobel Prize winner David Wineland (CU

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Introduction to Relative Motion Relativity has as its basis the observation of the motion of a body by two different observers in relative motion to each other. This observation,

More information

Chapter 1. Relativity 1

Chapter 1. Relativity 1 Chapter 1 Relativity 1 Classical Relativity inertial vs noninertial reference frames Inertial Reference Frames Galilean transformation: x = x vt; y = y; z = z; t = t u x = u x v; u y = u y ; u z = u z

More information

Chapter 33 Special Relativity

Chapter 33 Special Relativity And now in our time, there has been unloosed a cataclysm which has swept away space, time, and matter hitherto regarded as the firmest pillars of natural science, but only to make place for a view of things

More information

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building.

College Physics B - PHY2054C. Special & General Relativity 11/12/2014. My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building. Special College - PHY2054C Special & 11/12/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Special 1 Special 2 3 4 Special Galilean and Light Galilean and electromagnetism do predict

More information

Tuesday, February 15, Ice Cube Neutrino Facility

Tuesday, February 15, Ice Cube Neutrino Facility Ice Cube Neutrino Facility Semester Report This Thursday, Feb 17th, due in class: a list of resources (books, websites, articles, etc.), along with title. 1% will be deducted from your paper grade for

More information

Unit- 1 Theory of Relativity

Unit- 1 Theory of Relativity Unit- 1 Theory of Relativity Frame of Reference The Michelson-Morley Experiment Einstein s Postulates The Lorentz Transformation Time Dilation and Length Contraction Addition of Velocities Experimental

More information

Test 3 results B A. Grades posted in Learn

Test 3 results B A. Grades posted in Learn Test 3 results Grades posted in Learn D C B A End of the Semester approaches - make sure that your test, clicker and homework grades are what you think they should be on Learn F Clicker Question: What

More information

Space, Time and Simultaneity

Space, Time and Simultaneity PHYS419 Lecture 11: Space, Time & Simultaneity 1 Space, Time and Simultaneity Recall that (a) in Newtonian mechanics ( Galilean space-time ): time is universal and is agreed upon by all observers; spatial

More information

The Lorentz Transformation

The Lorentz Transformation The Lorentz Transformation During the fourth week of the course, we spent some time discussing how the coordinates of two different reference frames were related to each other. Now that we know about the

More information

Midterm Solutions. 1 1 = 0.999c (0.2)

Midterm Solutions. 1 1 = 0.999c (0.2) Midterm Solutions 1. (0) The detected muon is seen km away from the beam dump. It carries a kinetic energy of 4 GeV. Here we neglect the energy loss and angular scattering of the muon for simplicity. a.

More information

The Theory of Relativity

The Theory of Relativity At end of 20th century, scientists knew from Maxwell s E/M equations that light traveled as a wave. What medium does light travel through? There can be no doubt that the interplanetary and interstellar

More information

Lecture 13 Notes: 07 / 20. Invariance of the speed of light

Lecture 13 Notes: 07 / 20. Invariance of the speed of light Lecture 13 Notes: 07 / 20 Invariance of the speed of light The Michelson-Morley experiment, among other experiments, showed that the speed of light in vacuum is a universal constant, as predicted by Maxwell's

More information

Relativity. April 16, 2014 Chapter 35 1

Relativity. April 16, 2014 Chapter 35 1 Relativity April 16, 2014 Chapter 35 1 Announcements! Next week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: BPS 1410 (this room) Comprehensive, covers material

More information

Modern Physics. t the end of the nineteenth century, many scientists believed that they had

Modern Physics. t the end of the nineteenth century, many scientists believed that they had Modern Physics PART 6 t the end of the nineteenth century, many scientists believed that they had A learned most of what there was to know about physics. Newton s laws of motion and his theory of universal

More information

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances

Introduction. Classical vs Modern Physics. Classical Physics: High speeds Small (or very large) distances Introduction Classical vs Modern Physics High speeds Small (or very large) distances Classical Physics: Conservation laws: energy, momentum (linear & angular), charge Mechanics Newton s laws Electromagnetism

More information

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements

Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements Chapter 37. Relativity Topics: Relativity: What s It All About? Galilean Relativity Einstein s s Principle of Relativity Events and Measurements The Relativity of Simultaneity Time Dilation Length g Contraction

More information

The Foundations of Special Relativity

The Foundations of Special Relativity The Foundations of Special Relativity 1 Einstein's postulates of SR: 1. The laws of physics are identical in all inertial reference frames (IFs). 2. The speed of light in vacuum, c, is the same in all

More information

dt = p m, (2.1.1) dt = p

dt = p m, (2.1.1) dt = p Chapter 2 Special relativity 2.1 Galilean relativity We start our discussion of symmetries by considering an important example of an invariance, i.e. an invariance of the equations of motion under a change

More information

Simultaneity, Time Dilation, and Length Contraction Using Minkowski Diagrams and Lorentz Transformations

Simultaneity, Time Dilation, and Length Contraction Using Minkowski Diagrams and Lorentz Transformations Simultaneity, Time Dilation, and Length Contraction Using Minkowski Diagrams and Lorentz Transformations Dr. Russell L. Herman January 25, 2008 (modified: January 17, 2018) Abstract In these notes we present

More information

Relating measurements in one reference frame to those in a different reference frame moving relative to the first

Relating measurements in one reference frame to those in a different reference frame moving relative to the first What is Relativity? Relating measurements in one reference frame to those in a different reference frame moving relative to the first 1905 - Einstein s first paper on relativity, dealt with inertial reference

More information

Extra notes on rela,vity. Wade Naylor

Extra notes on rela,vity. Wade Naylor Extra notes on rela,vity Wade Naylor Over 105 years since Einstein s Special theory of relativity A. Einstein, 1879-1955 The postulates of special relativity 1. The principle of relativity (Galileo) states

More information

Name the object labelled B and explain its purpose.

Name the object labelled B and explain its purpose. PhysicsAndMathsTutor.com 1 1. The diagram represents the Michelson-Morley interferometer. surface-silvered mirror M 1 l 1 extended source of monochromatic light B surface-silvered mirror M 2 A l 2 viewing

More information

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5

RELATIVITY. The End of Physics? A. Special Relativity. 3. Einstein. 2. Michelson-Morley Experiment 5 1 The End of Physics? RELATIVITY Updated 01Aug30 Dr. Bill Pezzaglia The following statement made by a Nobel prize winning physicist: The most important fundamental laws and facts of physical science have

More information

Unit 10: Relativity Hewitt Chapters Brent Royuk Phys-109 Concordia University

Unit 10: Relativity Hewitt Chapters Brent Royuk Phys-109 Concordia University Unit 10: Relativity Hewitt Chapters 35-36 Brent Royuk Phys-109 Concordia University The Correspondence Principle 2 Relativity What s relative about relativity? 3 Relativity Billy-Bob s Pickup Truck Galilean

More information

Physics 2D Lecture Slides Lecture 4. April 3, 2009

Physics 2D Lecture Slides Lecture 4. April 3, 2009 Physics 2D Lecture Slides Lecture 4 April 3, 2009 Synchronizing Clocks Sam v Sally After coincidence of their origins at t=0, t = 0 Sam and Sally agree to send light signals to each other after time t

More information

Lecture 2 - Length Contraction

Lecture 2 - Length Contraction Lecture 2 - Length Contraction A Puzzle We are all aware that if you jump to the right, your reflection in the mirror will jump left. But if you raise your hand up, your reflection will also raise its

More information

Elements of Physics II

Elements of Physics II Physics 132: Lecture 21 Elements of Physics II Agenda for Today Special Theory of relativity Inertial vs. non-inertial reference frames Postulates of SR Consequences of SR Simultaneity Time dilation Physics

More information

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63.

E = mc 2. Inertial Reference Frames. Inertial Reference Frames. The Special Theory of Relativity. Slide 1 / 63. Slide 2 / 63. Slide 1 / 63 The Special Theory of Relativity E = mc 2 Inertial Reference Frames Slide 2 / 63 Newton's laws are only valid in inertial reference frames: n inertial reference frame is one which is not accelerating

More information

Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity

Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Introduction to Special Relativity Problem Set 1 1. Speeds What fraction of the speed of light does each of the following

More information

Notes - Special Relativity

Notes - Special Relativity Notes - Special Relativity 1.) The problem that needs to be solved. - Special relativity is an interesting branch of physics. It often deals with looking at how the laws of physics pan out with regards

More information

Gravitation and Cosmology

Gravitation and Cosmology Lecture : Reading: Ohanian, Ch. ---- all!, Ch 2., 2.2 The principle of relativity The principle of relativity was discovered by Galileo. It states that the laws of nature do not permit experimental measurement

More information

Albert Einstein ( )

Albert Einstein ( ) Einstein s Special Theory of Relativity Imagination is more important than knowledge Albert Einstein (1879-1955) Contributions: The man who rewrote physics Photoelectric Effect major importance to Quantum

More information

Physics 2D Lecture Slides Lecture 2. March 31, 2009

Physics 2D Lecture Slides Lecture 2. March 31, 2009 Physics 2D Lecture Slides Lecture 2 March 31, 2009 Newton s Laws and Galilean Transformation! But Newton s Laws of Mechanics remain the same in All frames of references!! 2 2 d x' d x' dv = " dt 2 dt 2

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Michelson-Morley Experiment Simultaneity Albert A. Michelson 1852-1931 -Dr. Cooley s Office hours will be Mondays 10-11 am and Tuesdays 6-7 pm in FOSC 151 or by

More information

Einstein for Everyone Lecture 2: Background to Special Relativity

Einstein for Everyone Lecture 2: Background to Special Relativity Einstein for Everyone Lecture 2: Background to Special Relativity Dr. Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität 1 Special Relativity 2 Principle of Relativity

More information

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk

The True Nature of the Special Relativity Light Clock. Copyright 2012 Joseph A. Rybczyk The True Nature of the Special Relativity Light Clock Copyright 2012 Joseph A. Rybczyk Abstract It is generally believed that the light clock typically associated with special relativity correlates the

More information

The Special Theory of relativity

The Special Theory of relativity Chapter 1 The Special Theory of relativity 1.1 Pre - relativistic physics The starting point for our work are Newtons laws of motion. These can be stated as follows: Free particles move with constant velocity.

More information

Aristotle: If a man on top of a mast in a moving ship drops an object, it would fall toward the back of the ship.

Aristotle: If a man on top of a mast in a moving ship drops an object, it would fall toward the back of the ship. Aristotle: If a man on top of a mast in a moving ship drops an object, it would fall toward the back of the ship. Aristotle Galileo v Galileo: The object would land at the base of the mast. Therefore,

More information

Physics 2D Lecture Slides Lecture 3. January 8, 2010

Physics 2D Lecture Slides Lecture 3. January 8, 2010 Physics 2D Lecture Slides Lecture 3 January 8, 2010 Immediate Consequences of Einstein s Postulates: Recap Events that are simultaneous for one Observer are not simultaneous for another Observer in relative

More information

Clock synchronization, a universal light speed, and the terrestrial redshift experiment

Clock synchronization, a universal light speed, and the terrestrial redshift experiment Clock synchronization, a universal light speed, and the terrestrial redshift experiment Alan Macdonald Department of Mathematics Luther College, Decorah, IA 52101, U.S.A. macdonal@luther.edu Am. J. Phys.

More information

Physics 2203, Fall 2012 Modern Physics

Physics 2203, Fall 2012 Modern Physics Physics 2203, Fall 2012 Modern Physics. Wednesday, Aug. 22, 2012: Ch. 1: Time dila?on, length contrac?on, and transforma?ons. Lorentz Transforma?on In Class exercise Announcements:. Monday s notes posted.

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2003 Introduction to Special Relativity January 6, 2003 Assignment 1 Corrected version Due January 13, 2003 Announcements Please

More information

Lesson 12 Relativity

Lesson 12 Relativity Lesson 12 Relativity Introduction: Connecting Your Learning Relative motion was studied at the beginning of the course when the simple notion of adding or subtracting velocities made perfect sense. If

More information

0 : Einstein s postulates of Special Relativity

0 : Einstein s postulates of Special Relativity Class 2 : The Special Theory of Relativity Recap of Einstein s postulates Time dilation Length contraction Energy and momentum Causality 0 : Einstein s postulates of Special Relativity Consider a group

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS REVOLUTIONS IN MODERN PHYSICS:... L (P.580-587) Thought Experiments Einstein s two postulates seem straightforward and do not seem to lead to anything new for mechanics. However,

More information

Class 1: Special Relativity

Class 1: Special Relativity Class 1: Special Relativity In this class we will review some important concepts in Special Relativity, that will help us build up to the General theory Class 1: Special Relativity At the end of this session

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Einstein for Everyone Lecture 3: Special Relativity

Einstein for Everyone Lecture 3: Special Relativity Einstein for Everyone Lecture 3: Special Relativity Dr. Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität 1 Summary of Historical Background 2 Emission Theories Introduction

More information

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame.

Chapter 2: The Special Theory of Relativity. A reference fram is inertial if Newton s laws are valid in that frame. Chapter 2: The Special Theory of Relativity What is a reference frame? A reference fram is inertial if Newton s laws are valid in that frame. If Newton s laws are valid in one reference frame, they are

More information

CHAPTER 2 Special Theory of Relativity

CHAPTER 2 Special Theory of Relativity CHAPTER 2 Special Theory of Relativity 2.1 The Apparent Need for Ether 2.2 The Michelson-Morley Experiment 2.3 Einstein s Postulates 2.4 The Lorentz Transformation 2.5 Time Dilation and Length Contraction

More information

Lecture 3 and 4. Relativity of simultaneity. Lorentz-Einstein transformations

Lecture 3 and 4. Relativity of simultaneity. Lorentz-Einstein transformations Lecture 3 and 4 Relativity of simultaneity Lorentz-Einstein transformations Relativity of Simultaneity If we use this method of synchronising clocks, we find that simultaneity is relative, not absolute.

More information

Lecture Presentation Chapter 27 Relativity

Lecture Presentation Chapter 27 Relativity Lecture Presentation Chapter 27 Relativity Chapter 27 Relativity Chapter Goal: To understand how Einstein s theory of relativity changes our concepts of time and space. Slide 27-2 Chapter 27 Preview Looking

More information

Rotational Mechanics and Relativity --- Summary sheet 1

Rotational Mechanics and Relativity --- Summary sheet 1 Rotational Mechanics and Relativity --- Summary sheet 1 Centre of Mass 1 1 For discrete masses: R m r For continuous bodies: R dm i i M M r body i Static equilibrium: the two conditions for a body in static

More information

Recall from last time

Recall from last time Welcome back to Physics 215 Today s agenda: Relative Motion Special relativity Forces Physics 215 Spring 2017 Lecture 05-1 1 Recall from last time If we want to use (inertial) moving frames of reference,

More information

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies

Relativity Albert Einstein: Brownian motion. fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies Relativity 1905 - Albert Einstein: Brownian motion fi atoms. Photoelectric effect. fi Quantum Theory On the Electrodynamics of Moving Bodies fi The Special Theory of Relativity The Luminiferous Ether Hypothesis:

More information

The special theory of relativity

The special theory of relativity Chapter 1 The special theory of relativity 1.1 Historical background 1905 is often described as Einstein s annus mirabilis: a wonderful year in which he came up with three remarkable ideas. These were

More information

Our Dynamic Universe

Our Dynamic Universe North Berwick High School Higher Physics Department of Physics Unit 1 Our Dynamic Universe Section 5 Special Relativity Section 5 Special Relativity Note Making Make a dictionary with the meanings of any

More information

Chapter 28: Relativity

Chapter 28: Relativity Chapter 28: Relativity Brent Royuk Phys-111 Concordia University Classical Mechanics Translational Rotational s = r x = vt = t vt = r v = vo + at = o + t at = r x = v ot + 1 2 at 2 θ = ω ot + 1 2 αt 2

More information

Did you read chapter 7? Housekeeping. Special Relativity Postulates. Famous quotes from Einstein. Symmetry. (Special Principle of Relativity) 5/9/2007

Did you read chapter 7? Housekeeping. Special Relativity Postulates. Famous quotes from Einstein. Symmetry. (Special Principle of Relativity) 5/9/2007 Housekeeping Vocab quiz: Do Due Exam versus Vocab Quiz Did you read chapter 7? a) Yes b) No c) We have a book? 1 2 Famous quotes from Einstein "Everything should be made as simple as possible, but not

More information

Lecture 7: Special Relativity I

Lecture 7: Special Relativity I Lecture 7: Special Relativity I ª Einstein s postulates ª Time dilation ª Length contraction ª New velocity addition law Sidney Harris Please read Chapter 7 of the text 2/19/15 1 Albert Einstein ª Over

More information

Pass the (A)Ether, Albert?

Pass the (A)Ether, Albert? PH0008 Quantum Mechanics and Special Relativity Lecture 1 (Special Relativity) Pass the (A)Ether, Albert? Galilean & Einstein Relativity Michelson-Morley Experiment Prof Rick Gaitskell Department of Physics

More information

Inconsistencies in Special Relativity? Sagnac Effect and Twin Paradox

Inconsistencies in Special Relativity? Sagnac Effect and Twin Paradox Inconsistencies in Special Relativity? Sagnac Effect and Twin Paradox Olaf Wucknitz Astrophysics Seminar Potsdam University, Germany 7 July 2003 And now for something completely different... Special relativity

More information

Introduction. Abstract

Introduction. Abstract The Michelson-Morley Experiment and Classical nalysis of Reflection of Light From a Moving Mirror - Implications for the Lorentz Transformation Equations bstract HenokTadesse, Electrical Engineer, Sc.

More information

Special. Relativity. Todd Huffman. Steve

Special. Relativity. Todd Huffman. Steve Special Steve Relativity Todd Huffman Einstein s Two Postulates of Special Relativity: I. The laws of physics are identical in all inertial frames II. Light propagates in vacuum rectilinearly, with the

More information

Chapter 26. Relativity

Chapter 26. Relativity Chapter 26 Relativity Time Dilation The vehicle is moving to the right with speed v A mirror is fixed to the ceiling of the vehicle An observer, O, at rest in this system holds a laser a distance d below

More information