Unsteady State Heat Conduction in a Bounded Solid How Does a Solid Sphere Cool?

Size: px
Start display at page:

Download "Unsteady State Heat Conduction in a Bounded Solid How Does a Solid Sphere Cool?"

Transcription

1 Unstead State Heat Conduction in a Bounded Solid How Does a Solid Sphere Cool? We examined the cooling a sphere of radius R. Initiall the sphere is at a uniform temperature T 0. It is cooled b convection to an air stream at temperature T a. How long does it take to cool to T a? The answer is and was simple... an infinitel long time. In a sense because it is the answer equivalent to the solution of the Archimedean Paradox. If I walk half the distance to a wall, how man steps will I have to take to reach the wall? The answer is an infinite number! However, if I get within a millimeter of the wall, for intents and purposes, I am there. So if the temperature is within 1 % of the final temperature, it will have reached the final temperature. What temperature am I taking about...the center line temperature, the surface temperature, the average temperature??? We will choose the average temperature, θ. The first model we looked at should be valid for small Biot numbers θ = T T a T 0 T a = e ha ρc p V t = e 3Bix Fo To get this form we had to recognize that for spheres, A/V = 3/R. If θ = 0.01, then 3 Bi x Fo = ln (0.01), so that x Fo = 1.535/Bi At large Biot numbers, the suitable model was θ sph = e 9.87x Fo ChE 333 1

2 Now for this case the value of x Fo it takes to reach Θ = 0.01 is x Fo = A plot of the response is shown below 100 Time for a temperature drop of 99% 10 XFo Bi Some Dimensional Arguments At large Biot numbers, the dimensionless time is constant, that is, x Fo = 0.415, but x Fo = αt R 2 so that for two spheres one of size R 1 and another R 2, the ratio of the cooling times is t 1 t 2 = R 2 R 1 2 ChE 333 2

3 Heat Transfer in a Semi-Infinite region The questions we have posed thus far and the solutions have been reall onl applicable for Long times. That is, when the temperature field in the sphere, for example, has developed to the center of the sphere. But what happens at Short times? Consider a large planar solid whose extent (-direction) is ver large. What is the temperature histor of the slab if it is suddenl brought into contact with a fluid at temperature T a? The transient conduction equation is T t = α 2 T at t = 0, T = T 0 at = 0, T = T a as, T = T 0 Let s make the problem dimensionless. The temperature can be expressed as θ = T T a T 0 T a so that the problem reposed is θ t = α 2 θ θ = 1 at t = 0 θ = 0 at = 0 θ = 1 as ChE 333 3

4 Solution Let Θ = f(η(,t)) where η = c m t n, then we can introduce that into the differential equation. θ = dθ η t dη t = dη dθ η t = dθ dη cnm t n 1 θ = dθ η dη = dη dθ η = dη dθ cmm 1 t n 2 θ = dθ dη 2 η + d 2 θ dη 2 η 2 2 θ = dθ dη cm m 1 m 2 t n + d2 θ dη 2c2 m 2 2m 2 t 2n putting these derivatives into an equation we get dθ cn dη m t n 1 m 2 2m 2 t 2n We can divide b c m t n so that we obtain dθ nt 1 dη = α dθ dη cmm 1 t n + α dθ dη cm m 1 m 2 t n + d2 θ dη 2c2 = α dθ dη m 1 + α dθ dη m m d2 θ dη 2cm 2 2 Grouping we obtain a more compact form dθ nt 1 αm dη 1 α m m 1 2 = d2 θ dη 2 2cm2 Note that things simplif if we pick m = 1. A bit of exercise will show that the appropriate choice for η is η = 4αt ChE 333 4

5 Solution of the Differential Equation The equation becomes and ordinar differential equation The boundar conditions are 2η dθ dη + d2 θ dη 2 = 0 θ = 1 for η θ = 0 for η = 0 The solution we have seen is related to an error function defined as erf (x) = 1 π e t 2 dt 0 This solution affords us the opportunit to talk of an effective penetration depth, δ T, that is, the distance at which the dimensionless temperature goes from 0 to The solution for Θ is Θ = erf(η), so that for the penetration depth η θ = 0.99 = erf δ T 4αt It follows that δ T 4αt = 2 This means that if δ T is less than the thickness of the slab, it behaves as a semi-infinite region. ChE 333 5

6 Heat Conduction with a Convective Boundar Condition The boundar condition at the cooling surface can have a major effect on the process. The problem in this instance is posed as T t = α 2 T at t = 0, T = T 0 at = 0, T = h T T a as, T = T 0 The problem can again be solved using combination of variables and the same transformation as above to ield θ = erf 4t + exp + t erfc 4t + t where = h and t = h 2 αt ChE 333 6

7 Surface temperature of a Cooling Sheet Polethlene is extruded and coated onto an insulated substrate, moving at 20 cm/sec. The molten polmer is coated at a uniform temperature T 0 of 400 F. Cooling is achieved b blowing air at a temperature T a of 80 F. Earlier heat transfer studies determined that the heat transfer coefficient, h, is 0.08 cal/cm-sec- F. The coating thickness B is 0.1 cm. At what point downstream does the surface temperature, T(0) fall to 144 F? Data T 0 = 400 F h = 3.35 kw/m 2 - K B = 0.1 cm. T a = 80 F = 0.33 W/m- K α = m 2 /sec The Biot number can be estimated as: Bi = hb = = The dimensionless surface temperature ratiois θ s = T 0 T a T 0 T a = = 0.2 The Gurne-Lurie Chart 11.4c ields for Bi 10, the ratio of the surface temperature to the mid-plane temperature However, since θ θ = we can calculate the mid-plane temperature 1, 0 from the relation for θ s which is θ s = θ θ 1 0 = 0.2 θ 1 This gives a midplane-temperature of θ 0 1 = 0.2/0.15 > 1...Nonsense What s wrong??? We did a lot of things wrong. ChE 333 7

8 First of all the solution we used involved onl 1 term of an infinite series... θ 1 = A 1 e β 1 2 x Fo sin β 1 ξ = θ 1 0 sin β 1 ξ We also get into trouble if we use such an equation for a short time solution. Therefore avoid the charts for small x Fo and large Biot numbers. The short time solution we presented in the last lecture had the form. θ = erf 4t + exp + t erfc 4t + t where = hb B and t = hb 2 αt B 2 Now for this case, = 0 and we can use figure We can determine that the value of t at which Θ = 0.2. We observe that t 1/2 = 2.65 and consequentl t = 7.65 Recall that ρc p = k/α = 2.5 MJ/m 2 - K. This leads to t = hb 2 αt B 2 = 7.65 = h 2 αt We calculate that the time passed is t = 0.52 seconds and since d = Vt, the distance is d = (20 cm/s) 0.52 sec = 10.4 cm. ChE 333 8

9 An alternative method We can use the complete Fourier expansion, not just one term. θ = Σn =1 4 sin λ n cos λ 2λ n + sin 2λ n ξ e λ 2 nx Fo n λ n tan λ n = Bi The first set of eigenvalues are n ln If we calculate the first three terms of the Fourier expansion, we obtain θ(1) = 0.178e 2.04x Fo e 18.5x Fo For Θ = 0.2, b trial and error, we obtain x Fo = If we calculate the time, we get 0.52 sec. The same as the short time solution. This allows us a measure of short time. as for a slab 4 αt B 2 1 or x Fo 1 16 ChE 333 9

Heat Transfer in a Slab

Heat Transfer in a Slab Heat Transfer in a Slab Consider a large planar solid whose thickness (y-direction) is L. What is the temperature history of the slab if it is suddenly brought into contact with a fluid at temperature

More information

Heat Conduction in semi-infinite Slab

Heat Conduction in semi-infinite Slab 1 Module : Diffusive heat and mass transfer Lecture 11: Heat Conduction in semi-infinite Slab with Constant wall Temperature Semi-infinite Solid Semi-infinite solids can be visualized as ver thick walls

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

3.3 Unsteady State Heat Conduction

3.3 Unsteady State Heat Conduction 3.3 Unsteady State Heat Conduction For many applications, it is necessary to consider the variation of temperature with time. In this case, the energy equation for classical heat conduction, eq. (3.8),

More information

Parallel Plate Heat Exchanger

Parallel Plate Heat Exchanger Parallel Plate Heat Exchanger Parallel Plate Heat Exchangers are use in a number of thermal processing applications. The characteristics are that the fluids flow in the narrow gap, between two parallel

More information

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 4: Transient Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Assess when the spatial

More information

QUESTION ANSWER. . e. Fourier number:

QUESTION ANSWER. . e. Fourier number: QUESTION 1. (0 pts) The Lumped Capacitance Method (a) List and describe the implications of the two major assumptions of the lumped capacitance method. (6 pts) (b) Define the Biot number by equations and

More information

Chapter 5 Time-Dependent Conduction

Chapter 5 Time-Dependent Conduction Chapter 5 Time-Dependent Conduction 5.1 The Lumped Capacitance Method This method assumes spatially uniform solid temperature at any instant during the transient process. It is valid if the temperature

More information

Chapter 3: Transient Heat Conduction

Chapter 3: Transient Heat Conduction 3-1 Lumped System Analysis 3- Nondimensional Heat Conduction Equation 3-3 Transient Heat Conduction in Semi-Infinite Solids 3-4 Periodic Heating Y.C. Shih Spring 009 3-1 Lumped System Analysis (1) In heat

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx.

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx. Conduction Heat Transfer Reading Problems 17-1 17-6 17-35, 17-57, 17-68, 17-81, 17-88, 17-110 18-1 18-2 18-14, 18-20, 18-34, 18-52, 18-80, 18-104 Fourier Law of Heat Conduction insulated x+ Dx x=l Q x+

More information

Unsteady State Heat Conduction in a Bounded Solid

Unsteady State Heat Conduction in a Bounded Solid Unsteady State Heat Conduction in a Bounded Solid Consider a sphere of radius R. Initially the sphere is at a uniform temperature T. It is cooled by convection to an air stream at temperature T a. What

More information

Elementary Non-Steady Phenomena

Elementary Non-Steady Phenomena Elementary Non-Steady (Transient) Phenomena (T) Elementary Non-Steady Phenomena Because Transport deals with rates it is often the case that we must consider non-steady (or transient) operation (when the

More information

Time-Dependent Conduction :

Time-Dependent Conduction : Time-Dependent Conduction : The Lumped Capacitance Method Chapter Five Sections 5.1 thru 5.3 Transient Conduction A heat transfer process for which the temperature varies with time, as well as location

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A Conduction Heat Transfer Reading Problems 10-1 10-6 10-20, 10-48, 10-59, 10-70, 10-75, 10-92 10-117, 10-123, 10-151, 10-156, 10-162 11-1 11-2 11-14, 11-20, 11-36, 11-41, 11-46, 11-53, 11-104 Fourier Law

More information

TRANSIENT HEAT CONDUCTION

TRANSIENT HEAT CONDUCTION TRANSIENT HEAT CONDUCTION Many heat conduction problems encountered in engineering applications involve time as in independent variable. This is transient or Unsteady State Heat Conduction. The goal of

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

Session 5 Heat Conduction in Cylindrical and Spherical Coordinates I

Session 5 Heat Conduction in Cylindrical and Spherical Coordinates I Session 5 Heat Conduction in Cylindrical and Spherical Coordinates I 1 Introduction The method of separation of variables is also useful in the determination of solutions to heat conduction problems in

More information

Review: Conduction. Breaking News

Review: Conduction. Breaking News CH EN 3453 Heat Transfer Review: Conduction Breaking News No more homework (yay!) Final project reports due today by 8:00 PM Email PDF version to report@chen3453.com Review grading rubric on Project page

More information

Introduction to Heat and Mass Transfer. Week 8

Introduction to Heat and Mass Transfer. Week 8 Introduction to Heat and Mass Transfer Week 8 Next Topic Transient Conduction» Analytical Method Plane Wall Radial Systems Semi-infinite Solid Multidimensional Effects Analytical Method Lumped system analysis

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is The Energy Balance Consider a volume enclosing a mass M and bounded by a surface δ. δ At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Introduction to Heat and Mass Transfer. Week 7

Introduction to Heat and Mass Transfer. Week 7 Introduction to Heat and Mass Transfer Week 7 Example Solution Technique Using either finite difference method or finite volume method, we end up with a set of simultaneous algebraic equations in terms

More information

Chapter 4 TRANSIENT HEAT CONDUCTION

Chapter 4 TRANSIENT HEAT CONDUCTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 4 TRANSIENT HEAT CONDUCTION LUMPED SYSTEM ANALYSIS Interior temperature of

More information

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties. PROBLEM 5.5 KNOWN: Diameter and radial temperature of AISI 00 carbon steel shaft. Convection coefficient and temperature of furnace gases. FIND: me required for shaft centerline to reach a prescribed temperature.

More information

Introduction to Heat and Mass Transfer. Week 9

Introduction to Heat and Mass Transfer. Week 9 Introduction to Heat and Mass Transfer Week 9 補充! Multidimensional Effects Transient problems with heat transfer in two or three dimensions can be considered using the solutions obtained for one dimensional

More information

The temperature of a body, in general, varies with time as well

The temperature of a body, in general, varies with time as well cen58933_ch04.qd 9/10/2002 9:12 AM Page 209 TRANSIENT HEAT CONDUCTION CHAPTER 4 The temperature of a body, in general, varies with time as well as position. In rectangular coordinates, this variation is

More information

1 R-value = 1 h ft2 F. = m2 K btu. W 1 kw = tons of refrigeration. solar = 1370 W/m2 solar temperature

1 R-value = 1 h ft2 F. = m2 K btu. W 1 kw = tons of refrigeration. solar = 1370 W/m2 solar temperature Quick Reference for Heat Transfer Analysis compiled by Jason Valentine and Greg Walker Please contact greg.alker@vanderbilt.edu ith corrections and suggestions copyleft 28: You may copy, distribute, and

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is. The Energy Balance Consider a volume Ω enclosing a mass M and bounded by a surface δω. δω At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID  TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill M 792: IUO: M D. MZL BDUL WID http://www.fkm.utm.my/~mazlan X: eat ransfer ractical pproach by Yunus. engel Mc Graw ill hapter ransient eat onduction ssoc rof Dr. Mazlan bdul Wahid aculty of Mechanical

More information

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March 2008 7:00 to 8:00 PM Instructions: This is an open-book eam. You may refer to your course tetbook, your class notes and your graded

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree in Mechanical Engineering Numerical Heat and Mass Transfer 02-Transient Conduction Fausto Arpino f.arpino@unicas.it Outline Introduction Conduction ü Heat conduction equation ü Boundary conditions

More information

Principles of Food and Bioprocess Engineering (FS 231) Exam 2 Part A -- Closed Book (50 points)

Principles of Food and Bioprocess Engineering (FS 231) Exam 2 Part A -- Closed Book (50 points) Principles of Food and Bioprocess Engineering (FS 231) Exam 2 Part A -- Closed Book (50 points) 1. Are the following statements true or false? (20 points) a. Thermal conductivity of a substance is a measure

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

3.6 Applications of Poisson s equation

3.6 Applications of Poisson s equation William J. Parnell: MT3432. Section 3: Green s functions in 2 and 3D 69 3.6 Applications of Poisson s equation The beaut of Green s functions is that the are useful! Let us consider an example here where

More information

ENSC 388. Assignment #8

ENSC 388. Assignment #8 ENSC 388 Assignment #8 Assignment date: Wednesday Nov. 11, 2009 Due date: Wednesday Nov. 18, 2009 Problem 1 A 3-mm-thick panel of aluminum alloy (k = 177 W/m K, c = 875 J/kg K, and ρ = 2770 kg/m³) is finished

More information

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time.

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time. PROBLEM 5.1 NOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 7 Heat Conduction 4 Today we are going to look at some one dimensional

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

INDIAN INSTITUTE OF TECHNOOGY, KHARAGPUR Date: -- AN No. of Students: 5 Sub. No.: ME64/ME64 Time: Hours Full Marks: 6 Mid Autumn Semester Examination Sub. Name: Convective Heat and Mass Transfer Instructions:

More information

1 Solutions in cylindrical coordinates: Bessel functions

1 Solutions in cylindrical coordinates: Bessel functions 1 Solutions in cylindrical coordinates: Bessel functions 1.1 Bessel functions Bessel functions arise as solutions of potential problems in cylindrical coordinates. Laplace s equation in cylindrical coordinates

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

1. The accumulated net change function or area-so-far function

1. The accumulated net change function or area-so-far function Name: Section: Names of collaborators: Main Points: 1. The accumulated net change function ( area-so-far function) 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus 3. Evaluating

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

Physics Sep Example A Spin System

Physics Sep Example A Spin System Physics 30 7-Sep-004 4- Example A Spin System In the last lecture, we discussed the binomial distribution. Now, I would like to add a little physical content by considering a spin system. Actually this

More information

1 Conduction Heat Transfer

1 Conduction Heat Transfer Eng690 - Formula Sheet 2 Conduction Heat Transfer. Cartesian Co-ordinates q x xa x A x dt dx R th A 2 T x 2 + 2 T y 2 + 2 T z 2 + q T T x) plane wall of thicness 2, x 0 at centerline, T s, at x, T s,2

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Solution of Partial Differential Equations

Solution of Partial Differential Equations Solution of Partial Differential Equations Introduction and Problem Statement Combination of Variables R. Shankar Subramanian We encounter partial differential equations routinely in transport phenomena.

More information

Total energy in volume

Total energy in volume General Heat Transfer Equations (Set #3) ChE 1B Fundamental Energy Postulate time rate of change of internal +kinetic energy = rate of heat transfer + surface work transfer (viscous & other deformations)

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 46 Outline 1 Lecture 6: Electromechanical Systems

More information

Lecture notes for , Theoretical Environmental Analysis. D. H. Rothman, MIT February 4, 2015

Lecture notes for , Theoretical Environmental Analysis. D. H. Rothman, MIT February 4, 2015 Lecture notes for 12.009, Theoretical Environmental Analysis D. H. Rothman, MIT February 4, 2015 Contents 1 Plate tectonics: the volcanic source 1 1.1 Thermal convection and plate tectonics.............

More information

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible radiation effects.

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible radiation effects. PROBEM 5.88 KNOWN: Initial temperature of fire clay bric which is cooled by convection. FIND: Center and corner temperatures after 50 minutes of cooling. ASSUMPTIONS: () Homogeneous medium with constant

More information

[Yadav*, 4.(5): May, 2015] ISSN: (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114

[Yadav*, 4.(5): May, 2015] ISSN: (I2OR), Publication Impact Factor: (ISRA), Journal Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IMPROVEMENT OF CLASSICAL LUMPED MODEL FOR TRANSIENT HEAT CONDUCTION IN SLAB USING HERMITE APROXIMATION Rakesh Krishna Yadav*,

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3 Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: x 3 + 3 x + x + 3x 7 () x 3 3x + x 3 From the standpoint of integration, the left side of Equation

More information

UNSTEADY LOW REYNOLDS NUMBER FLOW PAST TWO ROTATING CIRCULAR CYLINDERS BY A VORTEX METHOD

UNSTEADY LOW REYNOLDS NUMBER FLOW PAST TWO ROTATING CIRCULAR CYLINDERS BY A VORTEX METHOD Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference Jul 8-23, 999, San Francisco, California FEDSM99-8 UNSTEADY LOW REYNOLDS NUMBER FLOW PAST TWO ROTATING CIRCULAR CYLINDERS BY A VORTEX

More information

4. Analysis of heat conduction

4. Analysis of heat conduction 4. Analysis of heat conduction John Richard Thome 11 mars 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Conduction 11 mars 2008 1 / 47 4.1 The well-posed problem Before we go further with

More information

7.2 Sublimation. The following assumptions are made in order to solve the problem: Sublimation Over a Flat Plate in a Parallel Flow

7.2 Sublimation. The following assumptions are made in order to solve the problem: Sublimation Over a Flat Plate in a Parallel Flow 7..1 Sublimation Over a Flat Plate in a Parallel Flow The following assumptions are made in order to solve the problem: 1.. 3. The flat plate is very thin and so the thermal resistance along the flat plate

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit

the first derivative with respect to time is obtained by carefully applying the chain rule ( surf init ) T Tinit .005 ermal Fluids Engineering I Fall`08 roblem Set 8 Solutions roblem ( ( a e -D eat equation is α t x d erfc( u du π x, 4αt te first derivative wit respect to time is obtained by carefully applying te

More information

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013 () Solution : MATH Calculus II Solution to Supplementary Eercises on Improper Integrals Ale Fok November, 3 b ( + )( + tan ) ( + )( + tan ) +tan b du u ln + tan b ( = ln + π ) (Let u = + tan. Then du =

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Professor Faith Morrison

Professor Faith Morrison CM3215 Fundamentals of Chemical Engineering Laboratory Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Objective: Measure the heat-transfer coefficient to

More information

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017 Transient Heat Transfer Experiment ME 331 Introduction to Heat Transfer June 1 st, 2017 Abstract The lumped capacitance assumption for transient conduction was tested for three heated spheres; a gold plated

More information

UNIVERSITY OF SOUTH CAROLINA

UNIVERSITY OF SOUTH CAROLINA UNIVERSITY OF SOUTH CAROLINA ECHE 460 CHEMICAL ENGINEERING LABORATORY I Heat Transfer Analysis in Solids Prepared by: M. L. Price, and Professors M. A. Matthews and T. Papathansiou Department of Chemical

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Chapter 18. Remarks on partial differential equations

Chapter 18. Remarks on partial differential equations Chapter 8. Remarks on partial differential equations If we try to analyze heat flow or vibration in a continuous system such as a building or an airplane, we arrive at a kind of infinite system of ordinary

More information

Solving the Heat Equation (Sect. 10.5).

Solving the Heat Equation (Sect. 10.5). Solving the Heat Equation Sect. 1.5. Review: The Stationary Heat Equation. The Heat Equation. The Initial-Boundary Value Problem. The separation of variables method. An example of separation of variables.

More information

Method of Images

Method of Images . - Marine Hdrodnamics, Spring 5 Lecture 11. - Marine Hdrodnamics Lecture 11 3.11 - Method of Images m Potential for single source: φ = ln + π m ( ) Potential for source near a wall: φ = m ln +( ) +ln

More information

Assignment 13 Assigned Mon Oct 4

Assignment 13 Assigned Mon Oct 4 Assignment 3 Assigned Mon Oct 4 We refer to the integral table in the back of the book. Section 7.5, Problem 3. I don t see this one in the table in the back of the book! But it s a very easy substitution

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 3 August 2004

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 3 August 2004 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 3 August 004 Final Examination R. Culham This is a 3 hour, closed-book examination. You are permitted to use one 8.5 in. in. crib sheet (both sides),

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used? 1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?. During unsteady state heat transfer, can the temperature

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

One dimensional steady state diffusion, with and without source. Effective transfer coefficients

One dimensional steady state diffusion, with and without source. Effective transfer coefficients One dimensional steady state diffusion, with and without source. Effective transfer coefficients 2 mars 207 For steady state situations t = 0) and if convection is not present or negligible the transport

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Final exam for MATH 1272: Calculus II, Spring 2015

Final exam for MATH 1272: Calculus II, Spring 2015 Final exam for MATH 1272: Calculus II, Spring 2015 Name: ID #: Signature: Section Number: Teaching Assistant: General Instructions: Please don t turn over this page until you are directed to begin. There

More information

Ch 4 Differentiation

Ch 4 Differentiation Ch 1 Partial fractions Ch 6 Integration Ch 2 Coordinate geometry C4 Ch 5 Vectors Ch 3 The binomial expansion Ch 4 Differentiation Chapter 1 Partial fractions We can add (or take away) two fractions only

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

Water Flow in Open Channels

Water Flow in Open Channels The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics - ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows

More information

3 Green s functions in 2 and 3D

3 Green s functions in 2 and 3D William J. Parnell: MT34032. Section 3: Green s functions in 2 and 3 57 3 Green s functions in 2 and 3 Unlike the one dimensional case where Green s functions can be found explicitly for a number of different

More information

University of New Mexico Mechanical Engineering Spring 2012 PhD qualifying examination Heat Transfer

University of New Mexico Mechanical Engineering Spring 2012 PhD qualifying examination Heat Transfer University of New Mexico Mechanical Engineering Spring 2012 PhD qualifying examination Heat Transfer Closed book. Formula sheet and calculator are allowed, but not cell phones, computers or any other wireless

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

A basic trigonometric equation asks what values of the trig function have a specific value.

A basic trigonometric equation asks what values of the trig function have a specific value. Lecture 3A: Solving Basic Trig Equations A basic trigonometric equation asks what values of the trig function have a specific value. The equation sinθ = 1 asks for what vales of θ is the equation true.

More information

Lecture 17 - The Secrets we have Swept Under the Rug

Lecture 17 - The Secrets we have Swept Under the Rug 1.0 0.5 0.0-0.5-0.5 0.0 0.5 1.0 Lecture 17 - The Secrets we have Swept Under the Rug A Puzzle... What makes 3D Special? Example (1D charge distribution) A stick with uniform charge density λ lies between

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1)

Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Math 20C Multivariable Calculus Lecture 1 1 Coordinates in space Slide 1 Overview of vector calculus. Coordinate systems in space. Distance formula. (Sec. 12.1) Vector calculus studies derivatives and

More information

Chapter 6 Laminar External Flow

Chapter 6 Laminar External Flow Chapter 6 aminar Eternal Flow Contents 1 Thermal Boundary ayer 1 2 Scale analysis 2 2.1 Case 1: δ t > δ (Thermal B.. is larger than the velocity B..) 3 2.2 Case 2: δ t < δ (Thermal B.. is smaller than

More information

z = 1 2 x 3 4 y + 3 y dt

z = 1 2 x 3 4 y + 3 y dt Exact First Order Differential Equations This Lecture covers material in Section 2.6. A first order differential equations is exact if it can be written in the form M(x, ) + N(x, ) d dx = 0, where M =

More information

3 Hydrostatic Equilibrium

3 Hydrostatic Equilibrium 3 Hydrostatic Equilibrium Reading: Shu, ch 5, ch 8 31 Timescales and Quasi-Hydrostatic Equilibrium Consider a gas obeying the Euler equations: Dρ Dt = ρ u, D u Dt = g 1 ρ P, Dɛ Dt = P ρ u + Γ Λ ρ Suppose

More information