On the estimation of the heavy tail exponent in time series using the max spectrum. Stilian A. Stoev

Size: px
Start display at page:

Download "On the estimation of the heavy tail exponent in time series using the max spectrum. Stilian A. Stoev"

Transcription

1 On the estimation of the heavy tail exponent in time series using the max spectrum Stilian A. Stoev University of Michigan, Ann Arbor, U.S.A. JSM, Salt Lake City, 007 joint work with: George Michailidis and Murad Taqqu

2 Outline Heavy tails are ubiquitous An old problem Max spectrum The estimator Asymptotic properties Data examples

3 Heavy tails A random variable X is said to be heavy tailed if P{ X x} L(x)x α, as x, for some α > 0 and a slowly varying function L. Here we focus on the simpler but important context: X 0, a.s. and P{X > x} Cx α, as x. X (infinite moments) For p > 0, In particular, and EX p < if and only if p < α. 0 < α Var(X) = 0 < α E X =. The estimation of the heavy tail exponent α is an important problem with rich history. 3

4 Heavy tails everywhere: Traded volumes 0 x Traded Volumes No. Stocks, INTC, Nov, x x

5 Heavy tails everywhere: TCP durations x 0 4 TCP Flow Sizes (packets): UNC link 00 (~ 36 min) time x 0 4 The first minute

6 Heavy tails everywhere: Insurance claims 50 Danish Fire Loss Data: Hill plot: α (k) =.394 H order statistics Max Spectrum H= ( ), α = Scales j 6

7 Tail exponent estimation: an old problem Hill (975) the MLE in the Pareto model P{X > x} = x α, x and introduced the Hill plot: α H (k) := ( k k log(x i,n ) log(x k+,n )), i= where X,n X,n X k,n are the top k order statistics of the sample. A lot of work for iid data less for dependent: Resnick and Stǎricǎ (995) consistency of Hill type estimators. J. Hill (006) asymptotic normality of Hill type estimators under NED (near epoch dependence) conditions.... Even for iid data, Hill plots are: volatile & hard to interpret: Hill horror plot 7

8 Another approach: max self similarity For iid (X k ) with tail exponent α n d Z, as n, n /α i= X i where P{Z x} = exp{ Cx α }, x > 0. The above continues to hold for many dependent stationary (X k )! Given X,..., X n, set D(j, k) := j i= X j (k )+i, to be block maxima of dyadic sizes. Observe that Y j := n j n j k= k n j := [n/ j ], j log (n). log D(j, k) Elog j/α Z = j/α + Elog Z, as j. 8

9 The max spectrum: iid asymptotics The Y j s, j log n is the max spectrum of the data set (X k, k n). An estimator of α is then derived from Y j via regression: α = α[j, j ] := j j=j w j Y j, with w j = 0, j jw j =. j For iid data: The estimator α[j, j ] is consistent and asymptotically normal, as j, j but so that n/ j, n/j. Thm [S., Michailidis & Taqqu (006)] For iid data under second order tail regularity conditions. Let r(n) log n be such that n/ r(n)(/+β/α) + r(n) r(n)/ / n 0, as n, then sup x R P{ n j +r(n)( θ, Y θ, µ r ) x} Φ(x/σ θ ) 0, n. 9

10 The max spectrum: iid asymptotics (cont d) Here Y = (Y j+r(n) ) j j=j, θ = (θ j ) j j=j, and µ r = ((j + r(n))/α + C, j j j ), and σ θ = α θ t Σ θ. Remarks: The β > 0 governs the second order tail behavior. Roughly: P{X > x} Cx α ( + Dx β ), as x. The asymptotic cov matrix Σ is the same as for Fréchet data. It does not depend on α and C = Elog Z. Consistency and asymptotic normality for α[r(n) + j, r(n) + j ] follow. The rates are the same as for the Hill estimator Hall (98). The explicit asymptotic cov α Σ of the max spectrum Y yields the optimal linear GLS estimators important in practice. 0

11 The max spectrum: dependent data Let (X k ) k Z be stationary, with tail exponent α and extremal index θ > 0. Then, n /α k n X k d θ /α Z where n /α k n X k d Z, (n ) where (X k ) are iid copies of X. Since θ > 0, the max spectrum (Y j ) for time series scales as for iid data: Y j j/α + C, as j and n j = n/ j. The same, regression based, estimators α = j j=j w j Y j work! The asymptotics for α are harder (than for iid data)! Intuition: the block maxima D(j, k), k n j are asymptotically iid, as j.

12 Max spectrum illustration: TCP durations TCP Flow Sizes (bytes): Max self similarity H= 0.94 ( ), α = Max Spectrum Scales j

13 Two asymptotic regimes Intermediate scales: Fix j < j integer and let α n = α[r(n)+j, r(n)+j ], where r(n) and r(n) /n 0, as n. We expect to get consistency and asymptotic normality for α n. Large scales: Fix l N and focus on the largest l + scales: α n = α[log n l,log n]. We can only get distributional consistency : with α Z a random variable. α n d αz, as n, Both regimes are useful/interesting in practice. More details... 3

14 Intermediate scales asymptotics The regularity conditions: for M n := max k n X k P{n /α M n x} = exp{ c(n, x)x α }, x > 0, where c(n, x) c X c (x)n β, x > 0, with c (x) = O(x R ), x 0. () (Plus a technicality at x 0.) Intuition: β controls the second order tail behavior of M n. Caveat: Relation () may be hard to verify! We have it for moving maxima. We get rates on moments of f(m n /n /α ), in particular: Thm [S. & Michailidis (006)] Under the above conditions, for all k N, E log k (M n /n /α ) Elog k (Z) = O(n β ), as n, provided c (x)x α +δ dx, for δ > 0. 4

15 Intermediate scales: asymptotic normality Let (X k ) be stationary with tail exponent α > 0. Thm [S. & Michailidis (006)] Under the above conditions, and if (X k ) is m dependent, we have nr(n) ( α n α) d N(0, α c w ), where c w = w t Σ w, and α n = α[r(n) + j, r(n) + j ], provided r(n) /n + n/ r(n)(+min{,β}) 0, as n. Remarks: The same asymptotic variance as in the iid case. Intuition: The block maxima D(j, k), k n j asymptotically iid! β captures: second order tails PLUS dependence. Asymptotic confidence intervals available! Optimal linear GLS estimators available! 5

16 Large scales: distributional consistency The regularity conditions and m dependence are restrictive. As in Davis & Resnick (985), let X k = i=0 c i ξ k i, where i c i δ <, 0 < δ < min{, α}. Here (ξ k ) are iid and P{ ξ > x} Cx α, x, with P{ξ > x}/p{ ξ > x} p [0,], as x. Lemma For X k (m) := max i m X m(k )+i, k =,,..., we get {m /α X k (m)} k N fdd {Z k } k N, as m, where (Z k ) are iid α Fréchet. Provided pmax i c i > 0 or ( p)max i ( c i ) > 0. This justifies the asymptotic independence phenomenon for the block maxima (D(j, k)) k as j! Thm [S. & Michailidis (006)] Under the above conditions, with fixed l d α n α Z,l, as n, where α n = α[ top l scales] and α Z is based on iid α Fréchet data Z,..., Z l+. 6

17 Distributional consistency: implications No consistency but confidence intervals! Covers more processes! The approximation is often valid for small n. 7

18 AR() with Pareto (α =.5) innovations AR() with Pareto innovations: φ = 0.9, α = α x 0 4 Hill plot Hill plot.5 α Order statistics k x Order statistics k 8

19 The max spectrum... Max self similarity: α = Max Spectrum Scales j 9

20 ata examples: the advantage of time scales 0

21 Google: traded volume x 0 5 Transaction volumes for GOOG in November 005 Number of shares Day of the month Confidence intervals for α per day 4 3 α Day of the month

22 Google: traded volume the time series Number of shares x Transaction volumes for GOOG: Nov 7, 005 α x 0 4 Hill plot α = Max Spectrum Order statistics k Scales j

23 Intel: traded volume Number of shares x Transaction volumes for INTC in November Day of the month Confidence intervals for α per day 5 4 α Day of the month 3

24 Intel: strange time series Number of shares x Transaction volumes for INTC: Nov 3, x 0 4 Hill plot α(7,) =.0578, α(,6) = 5.8 α Order statistics k Max Spectrum Scales j 4

25 Intel: typical time series 3 x 05 Transaction volumes for INTC: Nov, 005 Number of shares x 0 4 Hill plot α = α Order statistics k Max Spectrum Scales j 5

26 References: Davis, R. A. and Resnick, S.I.(985) Limit theory for moving averages of random variables with regularly varying tail probabilities. The Annals of Probability 3(), Hall, P. (98) On some simple estimates of an exponent of regular variation, J. Roy. Stat. Assoc. (Ser B), 44, Hill, B. M. (975) A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3, Resnick, S. and Stǎricǎ, C. (995) Consistency of Hill s estimator for dependent data. Journal of Applied Probability 3, Stoev, S. and Michailidis, G. (006) On the estimation of the heavy tail exponent in time series using the max spectrum, Technical Report, University of Michigan. Stoev, S., Michailidis, G., and Taqqu, M.S. (006) Estimating heavy tail exponents through max self similarity, Technical Report, University of Michigan. WRDS Wharton School of Management, Universty of Pennsylvania. 6

Two applications of max stable distributions: Random sketches and Heavy tail exponent estimation

Two applications of max stable distributions: Random sketches and Heavy tail exponent estimation Two applications of max stable distributions: Random sketches and Heavy tail exponent estimation Stilian Stoev (sstoev@umich.edu) Department of Statistics University of Michigan Boston University Probability

More information

arxiv:math/ v1 [math.st] 6 Sep 2006

arxiv:math/ v1 [math.st] 6 Sep 2006 Estimating heavy tail exponents through max self similarity arxiv:math/69163v1 [math.st] 6 Sep 26 1. Introduction Stilian A. Stoev University of Michigan, Ann Arbor George Michailidis University of Michigan,

More information

Max stable Processes & Random Fields: Representations, Models, and Prediction

Max stable Processes & Random Fields: Representations, Models, and Prediction Max stable Processes & Random Fields: Representations, Models, and Prediction Stilian Stoev University of Michigan, Ann Arbor March 2, 2011 Based on joint works with Yizao Wang and Murad S. Taqqu. 1 Preliminaries

More information

Max stable processes: representations, ergodic properties and some statistical applications

Max stable processes: representations, ergodic properties and some statistical applications Max stable processes: representations, ergodic properties and some statistical applications Stilian Stoev University of Michigan, Ann Arbor Oberwolfach March 21, 2008 The focus Let X = {X t } t R be a

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Does k-th Moment Exist?

Does k-th Moment Exist? Does k-th Moment Exist? Hitomi, K. 1 and Y. Nishiyama 2 1 Kyoto Institute of Technology, Japan 2 Institute of Economic Research, Kyoto University, Japan Email: hitomi@kit.ac.jp Keywords: Existence of moments,

More information

Extremogram and Ex-Periodogram for heavy-tailed time series

Extremogram and Ex-Periodogram for heavy-tailed time series Extremogram and Ex-Periodogram for heavy-tailed time series 1 Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia) and Yuwei Zhao (Ulm) 1 Jussieu, April 9, 2014 1 2 Extremal

More information

Extremogram and ex-periodogram for heavy-tailed time series

Extremogram and ex-periodogram for heavy-tailed time series Extremogram and ex-periodogram for heavy-tailed time series 1 Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia) and Yuwei Zhao (Ulm) 1 Zagreb, June 6, 2014 1 2 Extremal

More information

Practical conditions on Markov chains for weak convergence of tail empirical processes

Practical conditions on Markov chains for weak convergence of tail empirical processes Practical conditions on Markov chains for weak convergence of tail empirical processes Olivier Wintenberger University of Copenhagen and Paris VI Joint work with Rafa l Kulik and Philippe Soulier Toronto,

More information

Heavy Tailed Time Series with Extremal Independence

Heavy Tailed Time Series with Extremal Independence Heavy Tailed Time Series with Extremal Independence Rafa l Kulik and Philippe Soulier Conference in honour of Prof. Herold Dehling Bochum January 16, 2015 Rafa l Kulik and Philippe Soulier Regular variation

More information

Nonlinear Time Series Modeling

Nonlinear Time Series Modeling Nonlinear Time Series Modeling Part II: Time Series Models in Finance Richard A. Davis Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures) MaPhySto Workshop Copenhagen September

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 11 Haijun Li Math 576: Quantitative Risk Management Week 11 1 / 21 Outline 1

More information

18.175: Lecture 13 Infinite divisibility and Lévy processes

18.175: Lecture 13 Infinite divisibility and Lévy processes 18.175 Lecture 13 18.175: Lecture 13 Infinite divisibility and Lévy processes Scott Sheffield MIT Outline Poisson random variable convergence Extend CLT idea to stable random variables Infinite divisibility

More information

Large deviations for random walks under subexponentiality: the big-jump domain

Large deviations for random walks under subexponentiality: the big-jump domain Large deviations under subexponentiality p. Large deviations for random walks under subexponentiality: the big-jump domain Ton Dieker, IBM Watson Research Center joint work with D. Denisov (Heriot-Watt,

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

ON THE ESTIMATION OF EXTREME TAIL PROBABILITIES. By Peter Hall and Ishay Weissman Australian National University and Technion

ON THE ESTIMATION OF EXTREME TAIL PROBABILITIES. By Peter Hall and Ishay Weissman Australian National University and Technion The Annals of Statistics 1997, Vol. 25, No. 3, 1311 1326 ON THE ESTIMATION OF EXTREME TAIL PROBABILITIES By Peter Hall and Ishay Weissman Australian National University and Technion Applications of extreme

More information

Analysis methods of heavy-tailed data

Analysis methods of heavy-tailed data Institute of Control Sciences Russian Academy of Sciences, Moscow, Russia February, 13-18, 2006, Bamberg, Germany June, 19-23, 2006, Brest, France May, 14-19, 2007, Trondheim, Norway PhD course Chapter

More information

Stochastic volatility models: tails and memory

Stochastic volatility models: tails and memory : tails and memory Rafa l Kulik and Philippe Soulier Conference in honour of Prof. Murad Taqqu 19 April 2012 Rafa l Kulik and Philippe Soulier Plan Model assumptions; Limit theorems for partial sums and

More information

The Fundamentals of Heavy Tails Properties, Emergence, & Identification. Jayakrishnan Nair, Adam Wierman, Bert Zwart

The Fundamentals of Heavy Tails Properties, Emergence, & Identification. Jayakrishnan Nair, Adam Wierman, Bert Zwart The Fundamentals of Heavy Tails Properties, Emergence, & Identification Jayakrishnan Nair, Adam Wierman, Bert Zwart Why am I doing a tutorial on heavy tails? Because we re writing a book on the topic Why

More information

FRACTIONAL BROWNIAN MOTION WITH H < 1/2 AS A LIMIT OF SCHEDULED TRAFFIC

FRACTIONAL BROWNIAN MOTION WITH H < 1/2 AS A LIMIT OF SCHEDULED TRAFFIC Applied Probability Trust ( April 20) FRACTIONAL BROWNIAN MOTION WITH H < /2 AS A LIMIT OF SCHEDULED TRAFFIC VICTOR F. ARAMAN, American University of Beirut PETER W. GLYNN, Stanford University Keywords:

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

The autocorrelation and autocovariance functions - helpful tools in the modelling problem

The autocorrelation and autocovariance functions - helpful tools in the modelling problem The autocorrelation and autocovariance functions - helpful tools in the modelling problem J. Nowicka-Zagrajek A. Wy lomańska Institute of Mathematics and Computer Science Wroc law University of Technology,

More information

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS EVA IV, CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS Jose Olmo Department of Economics City University, London (joint work with Jesús Gonzalo, Universidad Carlos III de Madrid) 4th Conference

More information

Severity Models - Special Families of Distributions

Severity Models - Special Families of Distributions Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that

More information

Poisson Cluster process as a model for teletraffic arrivals and its extremes

Poisson Cluster process as a model for teletraffic arrivals and its extremes Poisson Cluster process as a model for teletraffic arrivals and its extremes Barbara González-Arévalo, University of Louisiana Thomas Mikosch, University of Copenhagen Gennady Samorodnitsky, Cornell University

More information

Long-range dependence

Long-range dependence Long-range dependence Kechagias Stefanos University of North Carolina at Chapel Hill May 23, 2013 Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 1 / 45 Outline 1 Introduction to time series

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

Network Traffic Characteristic

Network Traffic Characteristic Network Traffic Characteristic Hojun Lee hlee02@purros.poly.edu 5/24/2002 EL938-Project 1 Outline Motivation What is self-similarity? Behavior of Ethernet traffic Behavior of WAN traffic Behavior of WWW

More information

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Johannes Heiny University of Aarhus Joint work with Thomas Mikosch (Copenhagen), Richard Davis (Columbia),

More information

The Convergence Rate for the Normal Approximation of Extreme Sums

The Convergence Rate for the Normal Approximation of Extreme Sums The Convergence Rate for the Normal Approximation of Extreme Sums Yongcheng Qi University of Minnesota Duluth WCNA 2008, Orlando, July 2-9, 2008 This talk is based on a joint work with Professor Shihong

More information

A MODIFICATION OF HILL S TAIL INDEX ESTIMATOR

A MODIFICATION OF HILL S TAIL INDEX ESTIMATOR L. GLAVAŠ 1 J. JOCKOVIĆ 2 A MODIFICATION OF HILL S TAIL INDEX ESTIMATOR P. MLADENOVIĆ 3 1, 2, 3 University of Belgrade, Faculty of Mathematics, Belgrade, Serbia Abstract: In this paper, we study a class

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Estimation of the long Memory parameter using an Infinite Source Poisson model applied to transmission rate measurements

Estimation of the long Memory parameter using an Infinite Source Poisson model applied to transmission rate measurements of the long Memory parameter using an Infinite Source Poisson model applied to transmission rate measurements François Roueff Ecole Nat. Sup. des Télécommunications 46 rue Barrault, 75634 Paris cedex 13,

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

Financial Econometrics and Volatility Models Extreme Value Theory

Financial Econometrics and Volatility Models Extreme Value Theory Financial Econometrics and Volatility Models Extreme Value Theory Eric Zivot May 3, 2010 1 Lecture Outline Modeling Maxima and Worst Cases The Generalized Extreme Value Distribution Modeling Extremes Over

More information

Assessing Dependence in Extreme Values

Assessing Dependence in Extreme Values 02/09/2016 1 Motivation Motivation 2 Comparison 3 Asymptotic Independence Component-wise Maxima Measures Estimation Limitations 4 Idea Results Motivation Given historical flood levels, how high should

More information

Emma Simpson. 6 September 2013

Emma Simpson. 6 September 2013 6 September 2013 Test What is? Beijing during periods of low and high air pollution Air pollution is composed of sulphur oxides, nitrogen oxides, carbon monoxide and particulates. Particulates are small

More information

Some functional (Hölderian) limit theorems and their applications (II)

Some functional (Hölderian) limit theorems and their applications (II) Some functional (Hölderian) limit theorems and their applications (II) Alfredas Račkauskas Vilnius University Outils Statistiques et Probabilistes pour la Finance Université de Rouen June 1 5, Rouen (Rouen

More information

Conditional Sampling for Max Stable Random Fields

Conditional Sampling for Max Stable Random Fields Conditional Sampling for Max Stable Random Fields Yizao Wang Department of Statistics, the University of Michigan April 30th, 0 th GSPC at Duke University, Durham, North Carolina Joint work with Stilian

More information

Regular Variation and Extreme Events for Stochastic Processes

Regular Variation and Extreme Events for Stochastic Processes 1 Regular Variation and Extreme Events for Stochastic Processes FILIP LINDSKOG Royal Institute of Technology, Stockholm 2005 based on joint work with Henrik Hult www.math.kth.se/ lindskog 2 Extremes for

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

arxiv: v6 [math.pr] 31 Jan 2014

arxiv: v6 [math.pr] 31 Jan 2014 Degree-degree dependencies in random graphs with heavy-tailed degrees Remco van der Hofstad and Nelly Litvak November, 208 arxiv:202.307v6 [math.r] 3 Jan 204 Abstract Mixing patterns in large self-organizing

More information

1. Point Estimators, Review

1. Point Estimators, Review AMS571 Prof. Wei Zhu 1. Point Estimators, Review Example 1. Let be a random sample from. Please find a good point estimator for Solutions. There are the typical estimators for and. Both are unbiased estimators.

More information

Tail Index Estimation of Heavy-tailed Distributions

Tail Index Estimation of Heavy-tailed Distributions CHAPTER 2 Tail Index Estimation of Heavy-tailed Distributions 2.1 Introduction In many diverse fields such as meteriology, finance, hydrology, climatology, environmental sciences, telecommunication, insurance

More information

Location Multiplicative Error Model. Asymptotic Inference and Empirical Analysis

Location Multiplicative Error Model. Asymptotic Inference and Empirical Analysis : Asymptotic Inference and Empirical Analysis Qian Li Department of Mathematics and Statistics University of Missouri-Kansas City ql35d@mail.umkc.edu October 29, 2015 Outline of Topics Introduction GARCH

More information

Multivariate Normal-Laplace Distribution and Processes

Multivariate Normal-Laplace Distribution and Processes CHAPTER 4 Multivariate Normal-Laplace Distribution and Processes The normal-laplace distribution, which results from the convolution of independent normal and Laplace random variables is introduced by

More information

The Behavior of Multivariate Maxima of Moving Maxima Processes

The Behavior of Multivariate Maxima of Moving Maxima Processes The Behavior of Multivariate Maxima of Moving Maxima Processes Zhengjun Zhang Department of Mathematics Washington University Saint Louis, MO 6313-4899 USA Richard L. Smith Department of Statistics University

More information

Limit theorems for dependent regularly varying functions of Markov chains

Limit theorems for dependent regularly varying functions of Markov chains Limit theorems for functions of with extremal linear behavior Limit theorems for dependent regularly varying functions of In collaboration with T. Mikosch Olivier Wintenberger wintenberger@ceremade.dauphine.fr

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 9 - Heteroskedasticity Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 43 Agenda 1 Introduction 2 AutoRegressive Conditional Heteroskedastic Model (ARCH)

More information

Research Article Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

Research Article Strong Convergence Bound of the Pareto Index Estimator under Right Censoring Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 200, Article ID 20956, 8 pages doi:0.55/200/20956 Research Article Strong Convergence Bound of the Pareto Index Estimator

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

Asymptotics and Simulation of Heavy-Tailed Processes

Asymptotics and Simulation of Heavy-Tailed Processes Asymptotics and Simulation of Heavy-Tailed Processes Department of Mathematics Stockholm, Sweden Workshop on Heavy-tailed Distributions and Extreme Value Theory ISI Kolkata January 14-17, 2013 Outline

More information

Department of Econometrics and Business Statistics

Department of Econometrics and Business Statistics Australia Department of Econometrics and Business Statistics http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Minimum Variance Unbiased Maximum Lielihood Estimation of the Extreme Value Index Roger

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

A New Estimator for a Tail Index

A New Estimator for a Tail Index Acta Applicandae Mathematicae 00: 3, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. A New Estimator for a Tail Index V. PAULAUSKAS Department of Mathematics and Informatics, Vilnius

More information

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability and Statistics FS 2017 Session Exam 22.08.2017 Time Limit: 180 Minutes Name: Student ID: This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided

More information

Thomas J. Fisher. Research Statement. Preliminary Results

Thomas J. Fisher. Research Statement. Preliminary Results Thomas J. Fisher Research Statement Preliminary Results Many applications of modern statistics involve a large number of measurements and can be considered in a linear algebra framework. In many of these

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Reliable Inference in Conditions of Extreme Events. Adriana Cornea

Reliable Inference in Conditions of Extreme Events. Adriana Cornea Reliable Inference in Conditions of Extreme Events by Adriana Cornea University of Exeter Business School Department of Economics ExISta Early Career Event October 17, 2012 Outline of the talk Extreme

More information

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Generalized Logistic Distribution in Extreme Value Modeling

Generalized Logistic Distribution in Extreme Value Modeling Chapter 3 Generalized Logistic Distribution in Extreme Value Modeling 3. Introduction In Chapters and 2, we saw that asymptotic or approximated model for large values is the GEV distribution or GP distribution.

More information

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization ProbStat Forum, Volume 03, January 2010, Pages 01-10 ISSN 0974-3235 A Note on Tail Behaviour of Distributions in the Max Domain of Attraction of the Frechét/ Weibull Law under Power Normalization S.Ravi

More information

Pareto approximation of the tail by local exponential modeling

Pareto approximation of the tail by local exponential modeling Pareto approximation of the tail by local exponential modeling Ion Grama Université de Bretagne Sud rue Yves Mainguy, Tohannic 56000 Vannes, France email: ion.grama@univ-ubs.fr Vladimir Spokoiny Weierstrass

More information

Thomas Mikosch and Daniel Straumann: Stable Limits of Martingale Transforms with Application to the Estimation of Garch Parameters

Thomas Mikosch and Daniel Straumann: Stable Limits of Martingale Transforms with Application to the Estimation of Garch Parameters MaPhySto The Danish National Research Foundation: Network in Mathematical Physics and Stochastics Research Report no. 11 March 2004 Thomas Mikosch and Daniel Straumann: Stable Limits of Martingale Transforms

More information

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS*

LARGE DEVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILED DEPENDENT RANDOM VECTORS* LARGE EVIATION PROBABILITIES FOR SUMS OF HEAVY-TAILE EPENENT RANOM VECTORS* Adam Jakubowski Alexander V. Nagaev Alexander Zaigraev Nicholas Copernicus University Faculty of Mathematics and Computer Science

More information

Simulation of Max Stable Processes

Simulation of Max Stable Processes Simulation of Max Stable Processes Whitney Huang Department of Statistics Purdue University November 6, 2013 1 / 30 Outline 1 Max-Stable Processes 2 Unconditional Simulations 3 Conditional Simulations

More information

Model Fitting. Jean Yves Le Boudec

Model Fitting. Jean Yves Le Boudec Model Fitting Jean Yves Le Boudec 0 Contents 1. What is model fitting? 2. Linear Regression 3. Linear regression with norm minimization 4. Choosing a distribution 5. Heavy Tail 1 Virus Infection Data We

More information

STA 6857 Estimation ( 3.6)

STA 6857 Estimation ( 3.6) STA 6857 Estimation ( 3.6) Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg STA 6857 Estimation ( 3.6) 2/ 19 Outline 1 Yule-Walker 2 Least Squares 3 Maximum Likelihood Arthur Berg

More information

Quantile-quantile plots and the method of peaksover-threshold

Quantile-quantile plots and the method of peaksover-threshold Problems in SF2980 2009-11-09 12 6 4 2 0 2 4 6 0.15 0.10 0.05 0.00 0.05 0.10 0.15 Figure 2: qqplot of log-returns (x-axis) against quantiles of a standard t-distribution with 4 degrees of freedom (y-axis).

More information

Rare event simulation for the ruin problem with investments via importance sampling and duality

Rare event simulation for the ruin problem with investments via importance sampling and duality Rare event simulation for the ruin problem with investments via importance sampling and duality Jerey Collamore University of Copenhagen Joint work with Anand Vidyashankar (GMU) and Guoqing Diao (GMU).

More information

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables Jaap Geluk 1 and Qihe Tang 2 1 Department of Mathematics The Petroleum Institute P.O. Box 2533, Abu Dhabi, United Arab

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Generalized least-squares estimators for the thickness of heavy tails

Generalized least-squares estimators for the thickness of heavy tails Journal of Statistical Planning and Inference 119 (2004) 341 352 www.elsevier.com/locate/jspi Generalized least-squares estimators for the thickness of heavy tails Inmaculada B. Aban ;1, Mark M. Meerschaert

More information

QED. Queen s Economics Department Working Paper No. 1244

QED. Queen s Economics Department Working Paper No. 1244 QED Queen s Economics Department Working Paper No. 1244 A necessary moment condition for the fractional functional central limit theorem Søren Johansen University of Copenhagen and CREATES Morten Ørregaard

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

On heavy tailed time series and functional limit theorems Bojan Basrak, University of Zagreb

On heavy tailed time series and functional limit theorems Bojan Basrak, University of Zagreb On heavy tailed time series and functional limit theorems Bojan Basrak, University of Zagreb Recent Advances and Trends in Time Series Analysis Nonlinear Time Series, High Dimensional Inference and Beyond

More information

Portfolio Allocation using High Frequency Data. Jianqing Fan

Portfolio Allocation using High Frequency Data. Jianqing Fan Portfolio Allocation using High Frequency Data Princeton University With Yingying Li and Ke Yu http://www.princeton.edu/ jqfan September 10, 2010 About this talk How to select sparsely optimal portfolio?

More information

HIERARCHICAL MODELS IN EXTREME VALUE THEORY

HIERARCHICAL MODELS IN EXTREME VALUE THEORY HIERARCHICAL MODELS IN EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research, University of North Carolina, Chapel Hill and Statistical and Applied Mathematical Sciences

More information

Tail process and its role in limit theorems Bojan Basrak, University of Zagreb

Tail process and its role in limit theorems Bojan Basrak, University of Zagreb Tail process and its role in limit theorems Bojan Basrak, University of Zagreb The Fields Institute Toronto, May 2016 based on the joint work (in progress) with Philippe Soulier, Azra Tafro, Hrvoje Planinić

More information

Introduction to Simple Linear Regression

Introduction to Simple Linear Regression Introduction to Simple Linear Regression Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Introduction to Simple Linear Regression 1 / 68 About me Faculty in the Department

More information

Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes

Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes Anton Schick Binghamton University Wolfgang Wefelmeyer Universität zu Köln Abstract Convergence

More information

Optimal Estimation of a Nonsmooth Functional

Optimal Estimation of a Nonsmooth Functional Optimal Estimation of a Nonsmooth Functional T. Tony Cai Department of Statistics The Wharton School University of Pennsylvania http://stat.wharton.upenn.edu/ tcai Joint work with Mark Low 1 Question Suppose

More information

Inference and Regression

Inference and Regression Inference and Regression Assignment 3 Department of IOMS Professor William Greene Phone:.998.0876 Office: KMC 7-90 Home page:www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu Course web page: www.stern.nyu.edu/~wgreene/econometrics/econometrics.htm.

More information

Nonparametric regression with martingale increment errors

Nonparametric regression with martingale increment errors S. Gaïffas (LSTA - Paris 6) joint work with S. Delattre (LPMA - Paris 7) work in progress Motivations Some facts: Theoretical study of statistical algorithms requires stationary and ergodicity. Concentration

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications Fumiya Akashi Research Associate Department of Applied Mathematics Waseda University

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012

Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012 Spatial extreme value theory and properties of max-stable processes Poitiers, November 8-10, 2012 November 8, 2012 15:00 Clement Dombry Habilitation thesis defense (in french) 17:00 Snack buet November

More information

Optimal global rates of convergence for interpolation problems with random design

Optimal global rates of convergence for interpolation problems with random design Optimal global rates of convergence for interpolation problems with random design Michael Kohler 1 and Adam Krzyżak 2, 1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

Estimating GARCH models: when to use what?

Estimating GARCH models: when to use what? Econometrics Journal (2008), volume, pp. 27 38. doi: 0./j.368-423X.2008.00229.x Estimating GARCH models: when to use what? DA HUANG, HANSHENG WANG AND QIWEI YAO, Guanghua School of Management, Peking University,

More information

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018

Mathematics Ph.D. Qualifying Examination Stat Probability, January 2018 Mathematics Ph.D. Qualifying Examination Stat 52800 Probability, January 2018 NOTE: Answers all questions completely. Justify every step. Time allowed: 3 hours. 1. Let X 1,..., X n be a random sample from

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information