arxiv:math/ v1 [math.rt] 17 Jul 2006

Size: px
Start display at page:

Download "arxiv:math/ v1 [math.rt] 17 Jul 2006"

Transcription

1 ON THE STRUCTURE OF CALABI-YAU CATEGORIES WITH A CLUSTER TILTING SUBCATEGORY arxv:math/ v1 [math.rt] 17 Jul 2006 GONÇALO TABUADA Abstract. We prove that for d 2, a algebrac d-calab-yau tragulated category edowed wth a d-cluster tltg subcategory s the stable category of a DG category whch s perfectly (d + 1)-Calab-Yau ad carres a o degeerate t-structure whose heart has eough projectves. Cotets 1. Itroducto 1 2. Ackowledgmets 2 3. Prelmares 2 4. Embeddg 3 5. Determato of the mage of G 6 6. Alteratve descrpto The ma theorem 12 Appedx A. Exteso of t-structures 14 Refereces Itroducto I ths artcle, we propose a descrpto of a class of Calab-Yau categores usg the formalsm of DG-categores ad the oto of stablzato, as used for the descrpto of tragulated orbt categores secto 7 of [16]. For d 2, let C be a algebrac d-calab-yau tragulated category edowed wth a d-cluster tltg subcategory T, cf. [18] [13] [14]. Such categores occur for example, - the represetato-theoretc approach to Fom-Zelevsky s cluster algebras [9], cf. [5] [6] [10] ad the refereces gve there, - the study of Cohe-Macaulay modules over certa solated sgulartes, cf. [12] [18] [11], ad the study of o commutatve crepat resolutos [28], cf. [12]. From C ad T we costruct a exact dg category B, whch s perfectly (d + 1)- Calab-Yau, ad ao-degeerateasleu, cf. [20], H 0 (B) whoseheart haseough projectves. We prove, theorem 7.1, how to recover the category C from B ad U usg a geeral procedure of stablzato defed secto 7. Ths exteds prevous results of [19] to a more geeral framework. It follows from [24] that for d = 2, up Key words ad phrases. Tragulated category, Calab-Yau property, t-structure, DG-category, Brow represetablty theorem. Supported by FCT-Portugal, scholarshp SFRH/BD/14035/

2 2 GONÇALO TABUADA to derved equvalece, the category B oly depeds o C (wth ts ehacemet) ad ot o the choce of T. I the appedx, we show how to aturally exted a t-structure, cf. [2], o the compact objects of a tragulated category to the whole category. 2. Ackowledgmets Ths artcle s part of my Ph. D. thess uder the supervso of Prof. B. Keller. I deeply thak hm for coutless useful dscussos ad for hs perfect gudace ad geerous patece. 3. Prelmares Let k be a feld. Let E be a k-lear Frobeus category wth splt dempotets. Suppose that ts stable category C = E, wth suspeso fuctor S, has ftedmesoal Hom-spaces ad admts a Serre fuctor Σ, see [3]. Let d 2 be a teger. We suppose that C s Calab-Yau of CY-dmeso d,.e. [22] there s a somorphsm of tragle fuctors S d Σ. We fx such a somorphsm oce ad for all. See secto 4 of [18] for several examples of the above stuato. For X,Y C ad Z, we put Ext (X,Y) = Hom C (X,S Y). We suppose that C s edowed wth a d-cluster tltg subcategory T C,.e. a) T s a k-lear subcategory, b) T sfuctorallyftec,.e. thefuctorshom C (?,X) T adhom C (X,?) T are ftely geerated for all X C, c) we have Ext (T,T ) = 0 for all T,T T ad all 0 < < d ad d) f X C satsfes Ext (T,X) = 0 for all 0 < < d ad all T T, the T belogs to T. Let M E be the premage of T uder the projecto fuctor. I partcular, M cotas the subcategory P of the projectve-jectve objects M. Note that T equals the quotet M of M by the deal of morphsms factorg through a projectve-jectve. We dspose of the followg commutatve square: M E T E = C. We use the otatos of [15]. I partcular, for a addtve category A, we deote by C(A) (resp. C (A), C b (A),...) the categoryof ubouded (resp. rght bouded, resp. bouded,...) complexes over A ad by H(A) (resp. H (A), H b (A),...) ts quotet modulo the deal of ullhomotopc morphsms. By [21], cf. also [25], the projectofuctore E extedstoacaocaltraglefuctorh b (E)/H b (P) E. Ths duces a tragle fuctor H b (M)/H b (P) E. It s show [24] that ths fuctor s a localzato fuctor. Moreover, the projecto fuctor H b (M)

3 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 3 H b (M)/H b (P) duces a equvalece from the subcategory HE-ac b (M) of bouded E-acyclc complexes wth compoets M oto ts kerel. Thus, we have a short exact sequece of tragulated categores 0 H b E-ac (M) Hb (M)/H b (P) C 0. Let B be the dg (=dfferetal graded) subcategory of the category C b (M) dg of bouded complexes over M whose objets are the E-acyclc complexes. We deote by G : H (M) D(B op ) op the fuctor whch takes a rght bouded complex X over M to the dg module where B s B. B Hom M(X,B), Remark 3.1. By costructo, the fuctor G restrcted to HE-ac b (M) establshes a equvalece G : H b E-ac(M) per(b op ) op. Recall that f P s a rght bouded complex of projectves ad A s a acyclc complex, the each morphsm from P to A s ullhomotopc. I partcular, the complex Hom M(P,A) s ullhomotopc for each P H (P). Thus G takes H (P) to zero, ad duces a well defed fuctor (stll deoted by G) G : H b (M)/H b (P) D(B op ) op. 4. Embeddg Proposto 4.1. The fuctor G s fully fathful. For the proof, we eed a umber of lemmas. It s well-kow that the category H (E) admts a semorthogoal decomposto, cf. [4], formed by H (P) ad ts rght orthogoal H E-ac (E), the full subcategory of the rght bouded E-acyclc complexes. For X H (E), we wrte px X a p X SpX for the correspodg tragle, where px s H (P) ad a p X s H E-ac (E). If X les H (M), the clearly a p X les H E-ac (M) so that we have a duced semorthogoal decomposto of H (M). Lemma 4.1. The fuctor Υ : H b (M)/H b (P) H E-ac (M) whch takes X to a p X s fully fathful. Proof. By the semorthogoal decomposto of H (M), the fuctor X a p X duces a rght adjot of the localzato fuctor H (M) H (M)/H (P)

4 4 GONÇALO TABUADA ad a equvalece of the quotet category wth the rght orthogoal H E-ac (M). H (P) H b (M)/H b (P) H (M) H (M)/H (P) H E-ac (M) = H(P). Moreover, t s easy to see that the caocal fuctor H b (M)/H b (P) H (M)/H (P) s fully fathful so that we obta a fully fathful fuctor takg X to a p X. H b (M)/H b (P) H E-ac (M) Remark 4.1. Sce the fuctor G s tragulated ad takes H (P) to zero, for X H b (M), the adjucto morphsm X a p X yelds a somorphsm G(X) G(a p X) = G(ΥX). Let D M (M) be the full subcategoryofthe dervedcategoryd(m) formedbythe rght bouded complexes whose homology modules le the subcategory Mod M ofmodm. The Yoeda fuctor M ModM, M M, duces a full mbeddg Ψ : H E-ac (M) D M (M). We wrte V for ts essetal mage. Uder Ψ, the category HE-ac b (M) s detfed wth per M (M). Let Φ : D M (M) D(Bop ) op be the fuctor whch takes X to the dg module B Hom (X c,ψ(b)), where B s H b E-ac (M) ad X c s a cofbrat replacemet of X for the projectve model structure o C(M). Sce for each rght bouded complex M wth compoets M, the complex M s cofbrat C(M), t s clear that the fuctor G : H b (M)/H b (P) D(B op ) op s somorphc to the composto Φ Ψ Υ. We dspose of the followg commutatve dagram H b (M)/H b (P) Υ H E-ac (M) Ψ D M (M) Φ D(B op ) op V HE-ac b (M) HE-ac b (M) per M (M) per(b op ) op Lemma 4.2. Let Y be a object of D M (M).

5 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 5 a) Y les per M (M) ff H p (Y) s a ftely preseted M-module for all p Z ad vashes for all but ftely may p. b) Y les V ff H p (Y) s a ftely preseted M-module for all p Z ad vashes for all p 0. Proof. a) Clearly the codto s ecessary. For the coverse, suppose frst that Y s a ftely preseted M-module. The, as a M-module, Y admts a resoluto of legth d+1 by ftely geerated projectve modules by theorem 5.4 b) of [18]. It follows that Y belogs to per M (M). Sce per M (M) s tragulated, t also cotas all shfts of ftely preseted M-modules ad all extesos of shfts. Ths proves the coverse. b) Clearly the codto s ecessary. For the coverse, we ca suppose wthout loss of geeralty that Y = 0, for all 1 ad that Y belogs to projm, for 0. We ow costruct a sequece P P 1 P 0 of complexes of ftely geerated projectve M-modules such that P s quassomorphc to τ Y for each ad that, for each p Z, the sequece of M- modules P p becomes statoary. By our assumptos, we have τ 0 Y H 0 (Y). Sce H 0 (Y) belogs to modm, we kow by theorem 5.4 c) of [18] that t belogs to per(m) as a M-module. We defe P 0 to be a fte resoluto of H 0 (Y) by ftely geerated M-modules. For the ducto step, cosder the followg trucato tragle assocated wth Y S +1 H 1 (Y) τ 1 Y τ Y S +2 H 1 (Y), for 0. By the ducto hypothess, we have costructed P 0,...,P ad we dspose of a quas-somorphsm P τ Y. Let Q +1 be a fte resoluto of S +2 H 1 (Y) by ftely preseted projectve M-modules. We dspose of a morphsm f : P Q +1 ad we defe P +1 as the cylder of f. We defe P as the lmt of the P the category of complexes. We remark that Y s quas-somorphc to P ad that P belogs to V. Ths proves the coverse. Let X be H E-ac (M). Remark 4.2. Lemma 4.2 shows that the atural t-structure of D(M) restrcts to a t-structure o V. Ths allows us to express Ψ(X) as where τ Ψ(X) s per M (M). Ψ(X) holmτ Ψ(X), Lemma 4.3. We dspose of the followg somorphsm Φ(Ψ(X)) = Φ(holmτ Ψ(X)) holmφ(τ Ψ(X)). Proof. It s eough to show that the caocal morphsm duces a quas-somorphsm whe evaluated at ay object B of B. We have Φ(holm τ Ψ(X))(B) = Hom (holmτ Ψ(X),B), but sce B s a bouded complex, for each Z, the sequece Hom (τ Ψ(X),B)

6 6 GONÇALO TABUADA stablzes as goes to fty. Ths mples that Hom (holm τ Ψ(X),B) holmφ(τ Ψ(X))(B). Lemma 4.4. The fuctor Φ restrcted to the category V s fully fathful. Proof. Let X,Y be H E-ac (M). The followg are caocally somorphc : (4.1) (4.2) (4.3) Hom D(B op ) op(φψx,φψy) Hom D(B op )(ΦΨY,ΦΨX) Hom D(B op )(hocolm holm holm holm holm Φτ ΨY,hocolmΦτ j ΨX) j Hom D(B op )(Φτ ΨY,hocolmΦτ j ΨX) j hocolmhom D(B j op )(Φτ ΨY,Φτ j ΨX) hocolmhom perm (M)(τ j ΨX,τ ΨY) j Hom V (holmτ j ΨX,τ ΨY) j Hom V (Ψ(X),Ψ(Y)). Here (4.1) s by the lemma 4.3 see D(B op ), (4.2) s by the fact that Φτ ΨY s compact ad (4.3) s by the fact that τ ΨY s bouded. It s clear ow that lemmas 4.1, 4.3 ad 4.4 mply the proposto Determato of the mage of G Let L ρ : D (M) D M (M) be the restrcto fuctor duced by the projecto fuctor M M. L ρ admts a left adjot L : D M (M) D (M) whch takes Y to Y L M M. Let B be the dg subcategory of C (ModM) dg formed by the objects of D M (M) that are the essetal mage of the restrcto of Ψ to Hb E-ac (M). Let B be the DG quotet, cf. [8], of B by ts quas-somorphsms. It s clear that the dg categores B ad B are quas-equvalet, cf. [17], ad that the atural dg fuctor M C (ModM) dg factors through B. Let R : D(B op ) op D(M op ) op be the restrcto fuctor duced by the dg fuctor M B. Let Φ : D M (M) D(B op ) op be the fuctor whch takes X to the dg module B Hom (X c,b ), where B s B ad X c s a cofbrat replacemet of X for the projectve model structure o C(ModM). Fally let Γ : D(M) D(M op ) op be the fuctor that seds Y to M Hom (Y c,m(?,m)), where Y c s a cofbrat replacemet of Y for the projectve model structure o C(ModM) ad M s M.

7 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 7 We dspose of the followg dagram : D(B op ) op Φ H b (M)/H b (P) Υ H E-ac (M) Ψ D M (M) Φ D(B op ) op B B L D (M) Γ R D(M op ) op M Lemma 5.1. The followg square D M (M) Φ D(B op ) op B s commutatve. L D (M) Γ R D(M op ) op Proof. By defto (R Φ )(X)(M) equals Hom (X c,m(?,m)). Sce M(?,M) detfes wth L ρ M ad by adjucto, we have Hom (X c,m(?,m)) Hom (X c,l ρ M ) Hom ((LX) c,m(?,m)), where the last member equals (Γ L)(X)(M). Lemma 5.2. The fuctor L reflects somorphsms. Proof. Sce L s a tragulated fuctor, t s eough to show that f L(Y) = 0, the Y = 0. Let Y be D M (M) such that L(Y) = 0. We ca suppose, wthout loss of geeralty, that H p (Y) = 0 for all p > 0. Let us show that H 0 (Y) = 0. Ideed, sce H 0 (Y) s a M-module, we have H 0 (Y) = L 0 H 0 (Y), where L 0 : ModM ModM s the left adjot of the cluso ModM ModM. Sce H p (Y) vashes degrees p > 0, we have L 0 H 0 (Y) = H 0 (LY). By ducto, oe cocludes that H p (Y) = 0 for all p 0. Proposto 5.1. A objet Y of D M (M) les the essetal mage of the fuctor Ψ Υ : H b (M)/H b (P) D M (M) ff τ Y s per M (M), for all Z ad L(Y) belogs to per(m). Proof. Let X be H b (M)/H b (P). By lemma 4.2 a), τ ΨΥ(X) s per M (M), for all Z. Sce X s a bouded complex, there exsts a s 0 such that for all m < s the m-compoets of Υ(X) are P, whch mples that LΨΥ(X) belogs to per(m). Coversely, suppose that Y s a object of D M (M) whch satsfes the codtos. By lemma 4.2, Y belogs to V. Thus we have Y = Ψ(Y ) for some Y H E-ac (M). We ow cosder Y as a object of H (M) ad also wrte Ψ for the fuctor H (M) D (M) duced by the Yoeda fuctor. We ca express Y as Y hocolm σ Y, M

8 8 GONÇALO TABUADA where the σ are the ave trucatos. By our assumptos o Y, σ Y belogs to H b (M)/H b (P), for all Z. The fuctors Ψ ad L clearly commute wth the ave trucatos σ ad so we have L(Y) = L(ΨY ) hocolm L(σ ΨY ) hocolm σ L(ΨY ). By our hypotheses, L(Y) belogs to per(m) ad so there exsts a m 0 such that By lemma 5.2, the cluso L(Y) = L(ΨY ) σ m L(ΨY ) = L(σ m ΨY ). Ψ(σ m Y) = σ m ΨY Ψ(Y ) = Y s a somorphsm. But sce σ m Y belogs to H b (M)/H b (P), Y detfes wth Ψ(σ m Y ). Remark 5.1. ItsclearthatfX belogstoper(m), theγ(x)belogstoper(m op ) op. We also have the followg partal coverse. Lemma 5.3. Let X be D modm (M) such that Γ(X) belogs to per(mop ) op. The X s per(m). Proof. By lemma 4.2 b) we ca suppose, wthout loss of geeralty, that X s a rght bouded complex wth ftely geerated projectve compoets. Applyg Γ, we get a perfect complex Γ(X). I partcular Γ(X) s homotopc to zero hgh degrees. But sce Γ s a equvalece projm (projm op ) op, t follows that X s already homotopc to zero hgh degrees. Lemma 5.4. The atural left asle o per M (M) op per(b op ) satsfes the codtos of proposto A.1 b). Proof. Clearlythe aturalleft asleu per M (M) op s o-degeerate. We eed to showthatforeachc per M (M) op, theresategern suchthathom(c,s N U) = 0 for each U U. We dspose of the followg somorphsm Hom perm (M) op(c,sn U) Hom perm (M)(S N U op,c), where U op deotes the atural rght asle o per M (M). Sce by theorem 5.4 c) of [18] a M-module admts a projectve resoluto of legth d+1 as a M-module ad C s a bouded complex, we coclude that for N 0 Ths proves the lemma. Hom perm (M)(S N U op,c) = 0. We deote by τ ad τ, Z, the assocated trucato fuctors o D(B op ) op. Lemma 5.5. The fuctor Φ : D M (M) D(Bop ) op restrcted to the category V s exact wth respect to the gve t-structures.

9 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 9 Proof. We frst prove that Φ(V 0 ) D(B op ) op 0. Let X be V 0. We eed to show that Φ(X) belogs to D(B op ) op 0. The followg have the same classes of objects : (5.1) (5.2) D(B op ) op 0 D(B op ) >0 (per(b op ) 0 ) (per(b op ) op ) >0, where (5.1) we cosder the rght orthogoal D(B op ) ad (5.2) we cosder the left orthogoal D(B op ) op. These somorphsms show us that Φ(X) belogs to D(B op ) op 0 ff Hom D(B op) op(φ(x),φ(p)) = 0, for all P per M (M) >0. Now, by lemma 4.4 the fuctor Φ s fully fathful ad so Hom D(B op ) op(φ(x),φ(p)) Hom perm (M)(X,P). Sce X belogs to V 0 ad P belogs to per M (M) >0, we coclude that Hom perm (M)(X,P) = 0, whch mples that Φ(X) D(B op ) op 0. Let us ow cosder X V. We dspose of the trucato tragle τ 0 X X τ >0 X Sτ 0 X. The fuctor Φ s tragulated ad so we dspose of the tragle Φτ 0 X X Φτ >0 X SΦτ 0 X, where Φτ 0 X beloges to D(B op ) op 0. Sce Φ duces a equvalece betwee per M (M) ad per(b op ) op ad Hom(P,τ >0 X) = 0, for all P V 0, we coclude that Φτ >0 X belogs to D(B op ) op >0. Ths mples the lemma. Defto 5.1. Let D(B op ) op f deote the full tragulated subcategory of D(B op ) op formed by the objects Y such that τ Y s per(b op ) op, for all Z, ad R(Y) belogs to per(m op ) op. Proposto 5.2. A objet Y of D(B op ) op les the essetal mage of the fuctor G : H b (M)/H b (P) D(B op ) op ff t belogs to D(B op ) op f. Proof. Let X be H b (M)/H b (P). It s clear that the τ G(X) are per(b op ) op for all Z. By proposto 5.1 we kow that LΨΥ(X) belogs to per(m). By lemma 5.1 ad remark 5.1 we coclude that RG(X) belogs to per(m op ) op. Let owy bed(b op ) op f. Wecaexpresst, bythedualoflemmaa.2asthehomotopy lmt of the followg dagram τ 1 Y τ Y τ +1 Y, where τ Y belogs to per(b op ) op, for all Z. But sce Φ duces a equvalecebetweeper M (M)adper(B op ) op, thslastdagramcorrespodstoadagram M 1 M M +1

10 10 GONÇALO TABUADA per M (M). Let p Z. The relatos amog the trucato fuctors mply that the mage of the above dagram uder each homology fuctor H p, p Z, s statoary as goes to +. Ths mples that H p holmm lm H p M = H p M j, for all j < p. We dspose of the followg commutatve dagram whch mples that holm M τ holm for all Z. Sce holm that Φ(holm M holmτ M = M τ holmm M, M belogs to V, lemma 4.3 allows us to coclude M ) = Y. We ow show that holm M satsfes the codtos of proposto 5.1. We kow that τ holmm belogs to per M (M), for all Z. By lemma 5.1 (Γ L)(holmM ) detfes wth R(Y), whch s per(m op ) op. Sce holm M belogs to V, ts homologes le modm ad so we are the codtos of lemma 5.1, whch mples that L(holm Ths fshes the proof. 6. Alteratve descrpto M ) belogs to per M (M). I ths secto, we preset aother characterzato of the mage of G, whch was detfed as D(B op ) op f proposto 5.2. Let M deote a object of M ad also the aturally assocated complex H b (M). Sce the category H b (M)/H b (P) s geerated by the objects M M ad the fuctor G s fully fathful, we remark that D(B op ) op f equals the tragulated subcategory of D(B op ) op geerated by the objects G(M), M M. The rest of ths secto s cocered wth the problem of caracterzg the objects G(M), M M. We deote by P M the projectve M-module M(?,M) assocated wth M M ad by X M the mage of M uder Ψ Υ. Lemma 6.1. We dspose of the followg somorphsm for all Y D M (M). Hom D M (M)(X M,Y) Hom modm (P M,H 0 (Y)), Proof. Clearly X M belogs to D M (M) 0 ad s of the form P P 1 P 0 M 0, where P P, 0. Now Yoeda s lemma ad the fact that H m (Y)(P ) = 0, for all m Z, 0, mply the lemma. Remark 6.1. Sce the fuctor Φ restrcted to V s fully fathful ad exact, we have for all Y V. Hom D(B op ) op(g(m),φ(y)) Hom per(b op ) op(φ(p M),H 0 (Φ(Y))),

11 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 11 We ow characterze the objects G(M) = Φ(X M ), M M, the tragulated category D(B op ). More precsely, we gve a descrpto of the fuctor R M := Hom D(B op )(?,Φ(X M )) : D(B op ) op Modk usg a dea of M. Va de Bergh, cf. lemma 2.13 of [7]. Cosder the followg fuctor F M := Hom per(b op )(H 0 (?),Φ(P M )) : per(b op ) op modk. Remark 6.2. Remark 6.1 shows that the fuctor R M whe restrcted to per(b op ) cocdes wth F M. Let DF M be the composto of F M wth the dualty fuctor D = Hom(?,k). Note that DF M s homologcal. Lemma 6.2. We dspose of the followg somorphsm of fuctors o per(b op ) DF M HomD(B op )(Φ(X M ),?[d+1]). Proof. The followg fuctors are caocally somorphc to DF Φ : (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) DHom per(b op )(H 0 Φ(?),Φ(P M )) DHom per(b op )(ΦH 0 (?),Φ(P M )) DHom perm (M)(P M,H 0 (?)) DHom D M (M)(X M,?) Hom D (M)(?[ d 1],X M) M Hom D(B op ) op(φ(?)[ d 1],Φ(X M)) Hom D(B op ) op(φ(x M),Φ(?)[d+1]) Step (6.1) follows from the fact that Φ s exact. Step (6.2) follows from the fact that Φ s fully fathful ad we are cosderg the opposte category. Step (6.3) s a cosequece of lemma 6.1. Step (6.4) follows from the (d + 1)-Calab-Yau property adremark4.2. Step (6.5)sacosequeceofΦbeg fully fathful ad step(6.6) s a cosequece of workg the opposte category. Sce the fuctor Φ op establsh a equvalece betwee per M (M) op ad per(b op ) the lemma s prove. Now,wecosdertheleftKaextesoE M ofdf M alogtheclusoper(b op ) D(B op ). We dspose of the followg commutatve tragle : per(b op ) D(B op ) DF M modk The fuctor E M s homologcal ad preserves coproducts ad so DE M s cohomologcal ad trasforms coproducts to products. Sce D(B op ) s a compactly geerated tragulated category, the Brow represetablty theorem, cf. [23], mples that there s a Z M D(B op ) such that E M DE M HomD(B op )(?,Z M ). Remark 6.3. Sce the dualty fuctor D establshes ad at-equvalece mod k, the fuctor DE M restrcted to per(b op ) s somorphc to F M..

12 12 GONÇALO TABUADA Theorem 6.1. We dspose of a somorphsm G(M) Z M. Proof. We ow costruct a morphsm of fuctors from R M to DE M. Sce R M s represetable,byyoeda slemmatseoughtocostructaelemetde M (Φ(X M )). Let C be the category per(b op ) Φ(X M ), whose objects are the morphsms Y Φ(X M ) ad let C be the category X M per M (M), whose objects are the morphsms X M X. The followg are caocally somorphc : (6.7) (6.8) (6.9) (6.10) DE M (Φ(X M )) DcolmHom D(B op C )(Φ(X M ),Y [d+1]) DcolmHom C D M (M)(X [ d 1],X M ) DcolmHom D (M)((τ X M )[ d 1],X M ) M lmdhom D (M)((τ X M )[ d 1],X M ) M lmhom D (M)(X M,τ X M ) M Step(6.7)sacosequeceofthedeftooftheleftKaextesoadlemma6.2. Step (6.8) s obtaed by cosderg the opposte category. Step (6.9) follows from the fact that the system (τ X M ) Z forms a cofal system for the dex system of the colmt. Step (6.10) follows from the (d + 1)-Calab-Yau property. Now, the mage of the detty by the caocal morphsm Hom D M (M)(X M,X M ) lm Hom D M (M)(X M,τ X M ), gve us a elemet of (DE M )(Φ(X M )) ad so a morphsm of fuctors from R M to DE M. We remark that ths morphsm s a somorphsm whe evaluated at the objects of per(b op ). Sce both fuctors R M ad DE M are cohomologcal, trasform coproducts to products ad D(B op ) s compactly geerated, we coclude that we dspose of a somorphsm G(M) Z M. 7. The ma theorem Cosder the followg commutatve square as secto 3: M E T E = C. I the prevous sectos we have costructed, from the above data, a dg category B ad a left asle U H 0 (B), see [20], satsfyg the followg codtos : - B s a exact dg category over k such that H 0 (B) has fte-dmesoal Hom-spaces ad s Calab-Yau of CY-dmeso d + 1, - U H 0 (B) s a o-degeerate left asle such that : - for all B B, there s a teger N such that Hom H 0 (B)(B,S N U) = 0 for each U U,

13 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 13 - the heart H of the t-structure o H 0 (B) assocated wth U has eough projectves. Let ow A be a dg category ad W H 0 (A) a left asle satsfyg the above codtos. We ca cosder the followg geeral costructo : Let Q deote the category of projectves of H. We clam that the followg cluso Q H H 0 (A), lfts to a morphsm Q j A the homotopy category of small dg categores, cf. [15] [26] [27]. Ideed, recall the followg argumet from secto 7 of [17]: Let Q be the full dg subcategory of A whose objects are the same as those of Q. Let τ 0 Q deote the dg category obtaed from Q by applyg the trucato fuctor τ 0 of complexes to each Hom-space. We dspose of the followg dagram the category of small dg categores Q A τ 0 Q Q H 0 ( Q). Let X, Y be objects of Q. Sce X ad Y belog to the heart of a t-structure H 0 (A), we have Hom H 0 (A)(X,Y[ ]) = 0, for 1. The dg category A s exact, whch mples that H Hom Q(X,Y) Hom H 0 (A)(X,Y[ ]) = 0, for 1. Ths shows that the dg fuctor τ 0 Q H 0 ( Q) s a quas-equvalece ad so we dspose of a morphsm Q j A the homotopy category of small dg categores. We dspose of a tragle fuctor j : D(A) D(Q) gve by restrcto. By proposto A.1, the left asle W H 0 (A) admts a smallest exteso to a left asled(a op ) op 0 od(aop ) op. LetD(A op ) op f deotethefulltragulatedsubcategory ofd(a op ) op formedbytheobjectsy suchthatτ Y sper(a op ) op, forall Z, ad j (Y) belogs to per(q op ) op. Defto 7.1. The stable category of A wth respect to W s the tragle quotet stab(a,w) = D(A op ) op f /per(aop ) op. We are ow able to formulate the ma theorem. Let B be the dg category ad U H 0 (B) the left asle costructed sectos 1 to 5. Theorem 7.1. The fuctor G duces a equvalece of categores G : C stab(b,u).

14 14 GONÇALO TABUADA Proof. We dspose of the followg commutatve dagram : C G stab(b,u) H b (M)/H b (P) G D(B op ) op f H b E-ac (M) per(b op ) op. ThefuctorGsaequvalecescets fullyfathful byproposto4.1adessetallysurjectvebyproposto5.2. ScewedsposeofaequvaleceHE-ac b (M) per(b op ) op by costructo of B ad the colums of the above dagram are short exact sequeces of tragulated categores, the theorem s proved. Appedx A. Exteso of t-structures Let T be a compactly geerated tragulated category wth suspeso fuctor S. We deote by T c the full tragulated sub-category of T formed by the compact objects, see [23]. We use the termology of [20]. Let U T c be a left asle. Proposto A.1. a) The left asle U admts a smallest exteso to a left asle T 0 o T. b) If U T c s o-degeerate (.e., f : X Y s vertble ff H p (f) s vertble for all p Z) ad for each X T c, there s a teger N such that Hom(X,S N U) = 0 for each U U, the T 0 s also o-degeerate. Proof. a) Let T 0 be the smallest full subcategory of T that cotas U ad s stable uder fte sums ad extesos. It s clear that T 0 s stable by S sce U s. We eed to show that the cluso fuctor T 0 T admts a rght adjot. For completeess, we clude the followg proof, whch s a varat of the small object argumet, cf. also [1]. We dspose of the followg recursve procedure. Let X = X 0 be a object T. For the tal step cosder all morphsms from ay object P U to X 0. Ths forms a set I 0 sce T s compactly geerated ad so we dspose of the followg tragle f I 0 P X 0 X 1 f I 0 P. For the ducto step cosder the above costructo wth X, 1, the place of X 1 ad I the place of I 1. We dspose of the followg dagram X = X 0 X 1 X 2 P P P f I 0 f I 1 f I 2 X 3 f I 3 P X where X deotes the homotopy colmt of the dagram (X ) Z. Cosder ow the followg tragle S 1 X X X X,,

15 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 15 where the morphsm X X s the trasfte composto our dagram. Let P be U. We remark that sce P s compact, Hom T (P,X ) = 0. Ths also mples, by costructo of T 0, that Hom T (R,X ) = 0, for all R T 0. The log exact sequece obtaed by applyg the fuctor Hom T (R,?) to the tragle above shows that Hom(R,X ) Hom(R,X). Let X 1, 1, be a object as the followg tragle X = X 0 X X 1 S(X). A recursve applcato of the octahedro axom mples that X 1 belogs to S(T 0 ), for all 1. We dspose of the somorphsm hocolmx 1 S(X ). Sce hocolmx 1 belogs to S(T 0), we coclude that X belogs to T 0. Ths shows that the fuctor that seds X to X s the rght adjot of the cluso fuctor T 0 T. Ths proves that T 0 s a left asle o T. We ow show that the t-structure assocated to T 0, cf. [20], exteds, from T c to T, the oe assocated wth U. Let X be T c. We dspose of the followg trucato tragle assocated wth U X U X X U SX U. Clearly X U belogs to T 0. We remark that U = T 0, ad so XU belogs to T >0 := T 0. We ow show that T 0 s the smallest exteso of the left asle U. Let V be a asle cotag U. The cluso fuctor V T commutes wth sums, because t admts a rght adjot. Sce V s stable uder extesos ad suspesos, t cotas T 0. b) Let X be T. We eed to show that X = 0 ff H p (X) = 0 for all p Z. Clearly the codto s ecessary. For the coverse, suppose that H p (X) = 0 for all p Z. Let be a teger. Cosder the followg trucato tragle Sce H +1 (X) = 0 we coclude that H +1 (X) τ > X τ >+1 X SH +1 (X). τ > X m ZT >m, for all Z. Now, let C be a compact object of T. We kow that there s a k Z such that C T k. Ths mples that Hom T (C,τ > X) = 0 forall Z, sceτ > X belogsto(t k ). ThecategoryT scompactlygeerated ad so we coclude that τ > X = 0, for all Z. The followg trucato tragle τ X X τ > X Sτ X, mples that τ X s somorphc to X for all Z. Ths ca be rephrased as sayg that X NT.

16 16 GONÇALO TABUADA Now by our hypothess there s a teger N such that Hom T (C,U N ) = 0. Sce C s compact ad by costructo of T N, we have Hom T (C,T N ) = 0. Ths mples that Hom T (C,X) = 0, for all compact objects C of T. Sce T s compactly geerated, we coclude that X = 0. Ths proves the coverse. Lemma A.1. Let (Y p ) p Z be T. We dspose of the followg somorphsm for all Z. H ( p Y p ) p H (Y p ), Proof. By defto H := τ τ, Z. Sce τ admts a rght adjot, t s eough to show that τ commute wth fte sums. We cosder the followg tragle τ Y p Y p τ > Y p S( τ Y p ). p p p p Here τ Y p belogs to T sce T s stable uder fte sums. Let P be a p object of S U. Sce P s compact, we have Hom T (P, p τ > Y p ) p Hom T (P,τ > Y p ) = 0. Sce T s geerated by S U, τ > Y p belogs to T >. Sce the trucato tragle of Y p s uque, ths mples the followg somorphsm p Ths proves the lemma. p τ Y p τ ( p Y p ). Proposto A.2. Let X be a object of T. Suppose that we are the codtos of proposto A.1 b). We dspose of the followg somorphsm Proof. We eed oly show that hocolmτ X X. H (hocolmτ X) H (X), for all Z. We dspose of the followg tragle, cf. [23], τ p X τ q X hocolmτ X S( τ p X). p q p Sce the fuctor H s homologcal, for all Z ad t commutes wth fte sums by lemma A.1, we obta a log exact sequece p H (τ p X) q H (τ q X) H (hocolmτ X) p H S(τ p X) q H S(τ q X)

17 ON THE STRUCTURE OF CALABI-YAU CATEGORIES 17 Weremarkthatthemorphsm H S(τ p X) H S(τ q X)saspltmoomor- p q phsm ad so we obta H (X) = colmh (τ X) H (hocolmτ X). Refereces [1] L. Aloso, A. Jeremas, M. Souto, Costructo of t-structures ad equvaleces of derved categores, preprt math. RT/ [2] A. Belso, J. Berste, P. Delge, Aalyse et topologe sur les espaces sgulers, Astérsque, vol. 100, Soc. Math. Frace, [3] A. Bodal, M. Kapraov, Represetable fuctors, Serre fuctors, ad recostructos (Russa), Izv. Akad. Nauk SSSR Ser. Math. 53 (1989), o. 6, , 1337; traslato Math. USSR-Izv. 35 (1990), o. 3, [4] A. Bodal, D. Orlov, Semorthogoal decomposto for algebrac varetes, preprt MPIM 95/15 (1995), preprt math. AG/ [5] A. Bua, R. Marsh, I. Rete, G. Todorov, Clusters ad seeds acyclc cluster algebras, preprt, math. RT/ [6] P. Caldero, B. Keller, From tragulated categores to cluster algebras II, preprt math. RT/ [7] D.Chrstese, B. Keller, A. Neema, Falure of Brow represetablty derved categores, Topology 40 (2001), o. 6, [8] V. Drfeld, DG quotets of DG categores, J. Alg. 272 (2004), [9] S. Fom, A. Zelevsky, Cluster algebras. I. Foudatos, J. Amer. Math. Soc. 15 (2002), o. 2, [10] C. Geß, B. Leclerc, J. Schröer, Rgd modules over preprojectve algebras, preprt, math. RT/ [11] O. Iyama, Y. Yosho, Mutatos tragulated categores ad rgd Cohe-Macaulay modules, preprt preparato. [12] O. Iyama, I. Rete, Fom-Zelevsky mutato ad tltg modules over Calab-Yau algebras, preprt, math. RT/ [13] O. Iyama, Hgher dmesoal Auslader-Rete theory o maxmal orthogoal subcategores, preprt, math. RT/ [14] O. Iyama, Maxmal orthogoal subcategores of tragulated categores satsfyg Serre dualty, Oberwolfach report 6, [15] B. Keller, O dfferetal graded categores, preprt math. KT/ [16] B. Keller, O tragulated orbt categores, Doc. Math. 10 (2005), [17] B. Keller, Dervg DG categores, A. Scet. Ec. Norm. Sup. 27 (1994), [18] B. Keller, I. Rete, Cluster-tlted algebras are Goreste ad stably Calab-Yau, preprt, math. RT/ [19] B. Keller, I. Rete, Acyclc Calab-Yau categores are cluster categores, Oberwolfach report 23, (2006), [20] B. Keller, D. Vosseck, Asles derved categores, Bull. Soc. Math. Belg. Ser. A 40 (1988), o. 2, [21] B. Keller, D. Vosseck, Sous les catégores dervées, C. R. Acad. Sc. Pars Ser. I Math 305 (1987) o. 6, [22] M. Kotsevch, Tragulated categores ad geometry, Course at the École Normale Supéreure, Pars, Notes take by J. Bellaïche, J.-F. Dat, I. Mar, G. Racet ad H. Radrambololoa, [23] A. Neema, Tragulated Categores, Aals of Mathematcs Studes, Vol. 148, Prceto Uversty Press, Prceto, NJ, [24] Y. Palu, O algebrac Calab-Yau categores, Ph. D. thess preparato. [25] J. Rckard, Derved equvaleces as derved fuctors, J. Lodo Math. Soc. (2) 43 (1991), o. 1, [26] G. Tabuada, Ivarats addtfs de dg-catégores, It. Math. Res. Notces 53 (2005),

18 18 GONÇALO TABUADA [27] G. Tabuada, Ue structure de catégore de modèles de Qulle sur la catégore des dgcatégores, C. R. Math. Acad. Sc. Pars 340 (2005), o. 1, [28] M. Va de Bergh, No-commutatve crepat resolutos, The Legacy of Nels Hedrk Abel, Sprger, (2002), Uversté Pars 7 - Des Dderot, UMR 7586 du CNRS, case 7012, 2 Place Jusseu, Pars cedex 05, Frace. E-mal address: tabuada@math.jusseu.fr

Derived Limits in Quasi-Abelian Categories

Derived Limits in Quasi-Abelian Categories Prépublcatos Mathématques de l Uversté Pars-Nord Derved Lmts Quas-Abela Categores by Fabee Prosmas 98-10 March 98 Laboratore Aalyse, Géométre et Applcatos, UMR 7539 sttut Gallée, Uversté Pars-Nord 93430

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia JKAU: Sc., O vol. the Prmtve, pp. 55-62 Classes (49 of A.H. K (BU) / 999 A.D.) * 55 O the Prmtve Classes of K * (BU) KHALED S. FELALI Departmet of Mathematcal Sceces, Umm Al-Qura Uversty, Makkah Al-Mukarramah,

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Notes on Generalizations of Local Ogus-Vologodsky Correspondence

Notes on Generalizations of Local Ogus-Vologodsky Correspondence J. Math. Sc. Uv. Tokyo 22 (2015), 793 875. Notes o Geeralzatos of Local Ogus-Vologodsky Correspodece By Atsush Shho Abstract. Gve a smooth scheme over Z/p Z wth a lft of relatve Frobeus to Z/p +1 Z, we

More information

Necessary and Sufficient Conditions for the Cohen Macaulayness of Form Rings

Necessary and Sufficient Conditions for the Cohen Macaulayness of Form Rings Joural of Algebra 212, 1727 1999 Artcle ID jabr.1998.7615, avalable ole at http:www.dealbrary.com o Necessary ad Suffcet Codtos for the CoheMacaulayess of Form Rgs Eero Hyry Natoal Defese College, Satahama,

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

E be a set of parameters. A pair FE, is called a soft. A and GB, over X is the soft set HC,, and GB, over X is the soft set HC,, where.

E be a set of parameters. A pair FE, is called a soft. A and GB, over X is the soft set HC,, and GB, over X is the soft set HC,, where. The Exteso of Sgular Homology o the Category of Soft Topologcal Spaces Sad Bayramov Leoard Mdzarshvl Cgdem Guduz (Aras) Departmet of Mathematcs Kafkas Uversty Kars 3600-Turkey Departmet of Mathematcs Georga

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

THE HOMOTOPY FIXED POINT SPECTRA OF PROFINITE GALOIS EXTENSIONS

THE HOMOTOPY FIXED POINT SPECTRA OF PROFINITE GALOIS EXTENSIONS THE HOMOTOPY FIXED POINT SPECTRA OF PROFINITE GALOIS EXTENSIONS MARK BEHRENS 1 AND DANIEL G. DAVIS 2 Abstract. Let E be a k-local profte G-Galos exteso of a E -rg spectrum A ( the sese of Roges). We show

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY ON THE DEFINITION OF KAC-MOODY 2-CATEGORY JONATHAN BRUNDAN Abstract. We show that the Kac-Moody 2-categores defed by Rouquer ad by Khovaov ad Lauda are the same. 1. Itroducto Assume that we are gve the

More information

Packing of graphs with small product of sizes

Packing of graphs with small product of sizes Joural of Combatoral Theory, Seres B 98 (008) 4 45 www.elsever.com/locate/jctb Note Packg of graphs wth small product of szes Alexadr V. Kostochka a,b,,gexyu c, a Departmet of Mathematcs, Uversty of Illos,

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE G. ANDROULAKIS, E. ODELL, TH. SCHLUMPRECHT, N. TOMCZAK-JAEGERMANN Abstract We study some questos cocerg the structure of the set of spreadg models

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje. Iteratoal Joural of Fuzzy Mathematcs ad Systems. ISSN 2248-9940 Volume 3, Number 5 (2013), pp. 375-379 Research Ida Publcatos http://www.rpublcato.com O L- Fuzzy Sets T. Rama Rao, Ch. Prabhakara Rao, Dawt

More information

Galois and Post Algebras of Compositions (Superpositions)

Galois and Post Algebras of Compositions (Superpositions) Pure ad Appled Mathematcs Joural 07; 6(): -9 http://www.scecepublshggroup.com/j/pamj do: 0.68/j.pamj.07060. IN: 6-9790 (Prt); IN: 6-98 (Ole) Galos ad Post Algebras of Compostos (uperpostos) Maydm Malkov

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form

Hypersurfaces with Constant Scalar Curvature in a Hyperbolic Space Form Hypersurfaces wth Costat Scalar Curvature a Hyperbolc Space Form Lu Xm ad Su Wehog Abstract Let M be a complete hypersurface wth costat ormalzed scalar curvature R a hyperbolc space form H +1. We prove

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

Lie Theory of Formal Groups over an Operad

Lie Theory of Formal Groups over an Operad JOURNAL OF ALGEBRA 202, 455511 1998 ARTICLE NO. JA977280 Le Theory of Formal Groups over a Operad Beot Fresse* Laboratore J. A. Deudoe, Uerste de Nce, arc Valrose, 06108 Nce Cedex 02, Frace Commucated

More information

arxiv:math/ v2 [math.gr] 26 Feb 2001

arxiv:math/ v2 [math.gr] 26 Feb 2001 arxv:math/0101070v2 [math.gr] 26 Feb 2001 O drft ad etropy growth for radom walks o groups Aa Erschler (Dyuba) e-mal: aad@math.tau.ac.l, erschler@pdm.ras.ru 1 Itroducto prelmary verso We cosder symmetrc

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS M.A./M.Sc. Mathematcs (Fal) MM-50 Drectorate of Dstace Educato Maharsh Dayaad Uversty ROHTAK 4 00 Copyrght 004, Maharsh Dayaad Uversty, ROHTAK All Rghts Reserved.

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Some properties of symmetry classes of tensors

Some properties of symmetry classes of tensors The d Aual Meetg Mathematcs (AMM 07) Departmet of Mathematcs, Faculty of Scece Chag Ma Uversty, Chag Ma Thalad Some propertes of symmetry classes of tesors Kulathda Chmla, ad Kjt Rodtes Departmet of Mathematcs,

More information

13. Dedekind Domains. 13. Dedekind Domains 117

13. Dedekind Domains. 13. Dedekind Domains 117 3. Dedekd Domas 7 3. Dedekd Domas I the last chapter we have maly studed -dmesoal regular local rgs,. e. geometrcally the local propertes of smooth pots o curves. We ow wat to patch these local results

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

arxiv: v2 [math.ag] 9 Jun 2015

arxiv: v2 [math.ag] 9 Jun 2015 THE EULER CHARATERISTIC OF THE GENERALIZED KUMMER SCHEME OF AN ABELIAN THREEFOLD Mart G. Gulbradse Adrea T. Rcolf arxv:1506.01229v2 [math.ag] 9 Ju 2015 Abstract Let X be a Abela threefold. We prove a formula,

More information

arxiv: v3 [math.ra] 17 May 2017

arxiv: v3 [math.ra] 17 May 2017 ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS A. S. GORDIENKO arxv:508.03764v3 [math.ra] 7 May 207 Abstract. At frst glace the oto of a algebra wth a geeralzed H-acto may appear too geeral, however

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras JOURNAL OF ALGEBRA 183, 898912 1996 ARTICLE NO. 0243 Irreducble Represetatos of Brad Groups va Quatzed Evelopg Algebras Oh Kag Kwo School of Mathematcs ad Statstcs, Uersty of Sydey, Sydey NSW 2006, Australa

More information

Journal of Algebra 323 (2010) Contents lists available at ScienceDirect. Journal of Algebra.

Journal of Algebra 323 (2010) Contents lists available at ScienceDirect. Journal of Algebra. Joural of Algebra 323 (2010) 2257 2269 Cotets lsts avalable at SceceDrect Joural of Algebra www.elsever.com/locate/jalgebra Fotae rgs ad local cohomology Paul C. Roberts Uversty of Utah, Departmet of Mathematcs,

More information

EXOTIC t-structures FOR TWO-BLOCK SPRINGER FIBRES. 1. Introduction

EXOTIC t-structures FOR TWO-BLOCK SPRINGER FIBRES. 1. Introduction EXOTIC t-structures FOR TWO-BLOCK SPRINGER FIBRES RINA ANNO, VINOTH NANDAKUMAR Abstract. We study the exotc t-structure o D, the derved category of coheret sheaves o two-block Sprger fbre (.e. for a lpotet

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

Large and Moderate Deviation Principles for Kernel Distribution Estimator

Large and Moderate Deviation Principles for Kernel Distribution Estimator Iteratoal Mathematcal Forum, Vol. 9, 2014, o. 18, 871-890 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/mf.2014.4488 Large ad Moderate Devato Prcples for Kerel Dstrbuto Estmator Yousr Slaou Uversté

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE Joural of Pure ad Appled Mathematcs: Advaces ad Applcatos Volume 4 Number 205 Pages 77-87 Avalable at http://scetfcadvaces.co. DOI: http://.do.org/0.8642/jpamaa_7002534 ONE GENERALIZED INEQUALITY FOR CONVEX

More information

On a-invariant Formulas

On a-invariant Formulas Joural of Algebra 227, 25267 2000 do:10.1006jabr.1999.8236, avalable ole at http:www.dealbrary.com o O a-ivarat Formulas Mafred Herrma 1 Mathematsches Isttut der Uerstat zu Kol, Weyertal 8690, 50931 Cologe,

More information

A Characterization of Jacobson Radical in Γ-Banach Algebras

A Characterization of Jacobson Radical in Γ-Banach Algebras Advaces Pure Matheatcs 43-48 http://dxdoorg/436/ap66 Publshed Ole Noveber (http://wwwscrporg/joural/ap) A Characterzato of Jacobso Radcal Γ-Baach Algebras Nlash Goswa Departet of Matheatcs Gauhat Uversty

More information

DECOMPOSITION OF SOME POINTED HOPF ALGEBRAS GIVEN BY THE CANONICAL NAKAYAMA AUTOMORPHISM

DECOMPOSITION OF SOME POINTED HOPF ALGEBRAS GIVEN BY THE CANONICAL NAKAYAMA AUTOMORPHISM DECOMPOSITION OF SOME POINTED HOPF ALGEBRAS GIVEN BY THE CANONICAL NAKAYAMA AUTOMORPHISM M. GRAÑA, J.A. GUCCIONE, AND J.J. GUCCIONE Abstract. Every fte dmesoal Hopf algebra s a Frobeus algebra, wth Frobeus

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

arxiv: v1 [math.dg] 8 Jun 2016

arxiv: v1 [math.dg] 8 Jun 2016 arxv:606.02539v [math.dg] 8 Ju 206 Ivarat Este metrcs o geeralzed flag mafolds of Sp) ad SO2) Lucaa Aparecda Alves ad Neto Perera da Slva September 24 208 Abstract It s well kow that the Este equato o

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING

0/1 INTEGER PROGRAMMING AND SEMIDEFINTE PROGRAMMING CONVEX OPIMIZAION AND INERIOR POIN MEHODS FINAL PROJEC / INEGER PROGRAMMING AND SEMIDEFINE PROGRAMMING b Luca Buch ad Natala Vktorova CONENS:.Itroducto.Formulato.Applcato to Kapsack Problem 4.Cuttg Plaes

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

WEAK CONTAINMENT RIGIDITY FOR DISTAL ACTIONS. 1. Introduction

WEAK CONTAINMENT RIGIDITY FOR DISTAL ACTIONS. 1. Introduction WEAK CONTAINMENT RIGIDITY FOR DISTAL ACTIONS ADRIAN IOANA AND ROBIN TUCKER-DROB Abstract. We prove that f a measure dstal acto α of a coutable group Γ s weakly cotaed a strogly ergodc probablty measure

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Department of Agricultural Economics. PhD Qualifier Examination. August 2011 Departmet of Agrcultural Ecoomcs PhD Qualfer Examato August 0 Istructos: The exam cossts of sx questos You must aswer all questos If you eed a assumpto to complete a questo, state the assumpto clearly

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE Statstca Sca 9(1999), 289-296 STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE J Mgzhog ad Che Xru GuZhou Natoal College ad Graduate School, Chese

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

arxiv: v2 [math.rt] 28 Jan 2013

arxiv: v2 [math.rt] 28 Jan 2013 Fuso procedure for wreath products of fte groups by the symmetrc group L. Poula d Adecy arxv:30.4399v2 [math.rt] 28 Ja 203 Mathematcs Laboratory of Versalles (CNRS UMR 800, Versalles-Sat-Quet Uversty,

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

TOPOLOGICALLY IRREDUCIBLE REPRESENTATIONS AND RADICALS IN BANACH ALGEBRAS

TOPOLOGICALLY IRREDUCIBLE REPRESENTATIONS AND RADICALS IN BANACH ALGEBRAS AND RADICALS IN BANACH ALGEBRAS P G DIXON [Receved 6 Jue 995 Revsed 7 August 995 ad 5 February 996] Itroducto The Jacobso radcal of a assocatve algebra s the tersecto of the kerels of the strctly rreducble

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information