CS249: ADVANCED DATA MINING

Size: px
Start display at page:

Download "CS249: ADVANCED DATA MINING"

Transcription

1 CS249: ADVANCED DATA MINING Clustering Evaluation and Practical Issues Instructor: Yizhou Sun May 2, 2017

2 Announcements Homework 2 due later today Due May 3 rd (11:59pm) Course project proposal Due May 8 th (11:59pm) Homework 3 out Due May 10 th (11:59pm) 2

3 Learnt Clustering Methods Classification Clustering Vector Data Tet Data Recommender System Decision Tree; Naïve Bayes; Logistic Regression SVM; NN K-means; hierarchical clustering; DBSCAN; Miture Models; kernel k-means PLSA; LDA Matri Factorization Graph & Network Label Propagation SCAN; Spectral Clustering Prediction Ranking Linear Regression GLM Collaborative Filtering PageRank Feature Representation Word embedding Network embedding 3

4 Evaluation and Other Practical Issues Evaluation of Clustering Similarity and Dissimilarity Summary 4

5 Measuring Clustering Quality Two methods: etrinsic vs. intrinsic Etrinsic: supervised, i.e., the ground truth is available Compare a clustering against the ground truth using certain clustering quality measure E. Purity, precision and recall metrics, normalized mutual information Intrinsic: unsupervised, i.e., the ground truth is unavailable Evaluate the goodness of a clustering by considering how well the clusters are separated, and how compact the clusters are E. Silhouette coefficient 5

6 Purity Let CC = cc 1,, cc KK be the output clustering result, ΩΩ = ωω 1,, ωω JJ be the ground truth clustering result (ground truth class) cc kk aaaaaa ww kk are sets of data points pppppppppppp CC, Ω = 1 NN kk ma jj cc kk ωω jj 6

7 Eample Clustering output: cluster 1, cluster 2, and cluster 3 Ground truth clustering result: s, s, and s. cluster 1 vs. s, cluster 2 vs. s, and cluster 3 vs. s 7

8 Normalized Mutual Information NNNNNN CC, Ω = II(CC,Ω) HH CC HH(Ω) II Ω, CC = kk jj PP(cc kk ωω jj ) llllll PP(cc kk ww jj ) PP cc kk PP(ww jj ) = kk jj cc kk ωω jj NN llllll NN cc kk ωω jj cc kk ww jj HH Ω = jj PP ww jj llllllll ww jj ωω jj = NN llllll ωω jj NN jj 8

9 Eample NMI=0.36 ωω kk cc jj ωω kk Cluster 1 Cluster 2 Cluster 3 sum crosses circles diamonds sum N=17 cc jj 9

10 Precision and Recall Random Inde (RI) = (TP+TN)/(TP+FP+FN+TN) F-measure: 2P*R/(P+R) P = TP/(TP+FP) R = TP/(TP+FN) Consider pairs of data points: hopefully, two data points that are in the same cluster will be clustered into the same cluster (TP), and two data points that are in different clusters will be clustered into different clusters (TN). Same cluster Different clusters Same class TP FN Different classes FP TN 10

11 Eample Data points Output clustering Ground truth clustering (class) a 1 2 b 1 2 c 2 2 d 2 1 # pairs of data points: 6 (a, b): same class, same cluster (a, c): same class, different cluster (a, d): different class, different cluster (b, c): same class, different cluster (b, d): different class, different cluster (c, d): different class, same cluster TP = 1 FP = 1 FN = 2 TN = 2 RI = 0.5 P= ½, R= 1/3, F =

12 Question If we flip the ground truth cluster labels (2->1 and 1->2), will the evaluation results be the same? Data points Output clustering Ground truth clustering (class) a 1 2 b 1 2 c 2 2 d

13 Evaluation and Other Practical Issues Evaluation of Clustering Similarity and Dissimilarity Summary 13

14 Similarity and Dissimilarity Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1] Dissimilarity (e.g., distance) Numerical measure of how different two data objects are Lower when objects are more alike Minimum dissimilarity is often 0 Upper limit varies Proimity refers to a similarity or dissimilarity 14

15 Data Matri and Dissimilarity Matri Data matri n data points with p dimensions Two modes Dissimilarity matri n data points, but registers only the distance A triangular matri Single mode 11 i1 n1 0 d(2,1) d(3,1) : d( n,1) 1f if nf 0 d(3,2) : d( n,2) 0 : 1p ip np 0 15

16 Eample: Data Matri and Dissimilarity Matri 2 4 Data Matri point attribute1 attribute Dissimilarity Matri (with Euclidean Distance)

17 Proimity Measure for Nominal Attributes Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute) Method 1: Simple matching m: # of matches, p: total # of variables d( i, j) = p p m Method 2: Use a large number of binary attributes creating a new binary attribute for each of the M nominal states 17

18 Proimity Measure for Binary Attributes A contingency table for binary data Object i Object j Distance measure for symmetric binary variables: Distance measure for asymmetric binary variables: Jaccard coefficient (similarity measure for asymmetric binary variables): 18

19 Dissimilarity between Binary Variables Eample Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4 Jack M Y N P N N N Mary F Y N P N P N Jim M Y P N N N N Gender is a symmetric attribute The remaining attributes are asymmetric binary Let the values Y and P be 1, and the value N be 0 d( d( d( jack, mary) = = jack, jim) = = jim, mary) = =

20 Standardizing Numeric Data Z-score: z = σ µ X: raw score to be standardized, μ: mean of the population, σ: standard deviation the distance between the raw score and the population mean in units of the standard deviation negative when the raw score is below the mean, + when above An alternative way: Calculate the mean absolute deviation where f 1 f f 2 f f nf f m = 1( ). f 1 f 2 f nf standardized measure (z-score): n s = 1( n m + m + + m Using mean absolute deviation is more robust than using standard deviation z if = if m s f f ) 20

21 Distance on Numeric Data: Minkowski Distance Minkowski distance: A popular distance measure where i = ( i1, i2,, ip ) and j = ( j1, j2,, jp ) are two p- dimensional data objects, and h is the order (the distance so defined is also called L-h norm) Properties d(i, j) > 0 if i j, and d(i, i) = 0 (Positive definiteness) d(i, j) = d(j, i) (Symmetry) d(i, j) d(i, k) + d(k, j) (Triangle Inequality) A distance that satisfies these properties is a metric 21

22 Special Cases of Minkowski Distance h = 1: Manhattan (city block, L 1 norm) distance E.g., the Hamming distance: the number of bits that are different between two binary vectors h = 2: (L 2 norm) Euclidean distance h. supremum (L ma norm, L norm) distance. This is the maimum difference between any component (attribute) of the vectors ), ( p p j i j i j i j i d = 22 ) ( ), ( p p j i j i j i j i d =

23 Eample: Minkowski Distance 4 2 point attribute 1 attribute Manhattan (L 1 ) Dissimilarity Matrices L Euclidean (L 2 ) L Supremum L

24 Ordinal Variables Order is important, e.g., rank Can be treated like interval-scaled replace if by their rank map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by z if = r { 1,, M if f r M 1 1 compute the dissimilarity using methods for interval-scaled variables if f } 24

25 Attributes of Mied Type A database may contain all attribute types Nominal, symmetric binary, asymmetric binary, numeric, ordinal One may use a weighted formula to combine their effects d( i, Σ j) = p f Σ δ d ( f ) ( f ) = 1 ij ij p ( f ) δ f = 1 ij f is binary or nominal: d (f) ij = 0 if if = jf, or d (f) ij = 1 otherwise f is numeric: use the normalized distance f is ordinal Compute ranks r if and Treat z if as interval-scaled z if = r if M 1 f 1 Clustering algorithm: K-prototypes 25

26 Cosine Similarity A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document. Other vector objects: gene features in micro-arrays, Applications: information retrieval, biologic taonomy, gene feature mapping, Cosine measure: If d 1 and d 2 are two vectors (e.g., term-frequency vectors), then cos(d 1, d 2 ) = (d 1 d 2 ) / d 1 d 2, where indicates vector dot product, d : the length of vector d Clustering algorithm: Spherical k-means 26

27 Eample: Cosine Similarity cos(d 1, d 2 ) = (d 1 d 2 ) / d 1 d 2, where indicates vector dot product, d : the length of vector d E: Find the similarity between documents 1 and 2. d 1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d 2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) d 1 d 2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 d 1 = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0) 0.5 =(42) 0.5 = d 2 = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1) 0.5 =(17) 0.5 = 4.12 cos(d 1, d 2 ) =

28 Evaluation and Other Practical Issues Evaluation of Clustering Similarity and Dissimilarity Summary 28

29 Summary Evaluation of Clustering Purity, NMI, RI, F-measure Similarity and Dissimilarity Nominal attributes Numerical attributes Combine attributes High dimensional feature vector 29

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques Data Mining: Concepts and Techniques Chapter 2 1 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University 2011 Han, Kamber, and Pei. All rights reserved.

More information

Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1]

Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1] Similarity and Dissimilarity Similarity Numerical measure of how alike two data objects are Value is higher when objects are more alike Often falls in the range [0,1] Dissimilarity (e.g., distance) Numerical

More information

ANÁLISE DOS DADOS. Daniela Barreiro Claro

ANÁLISE DOS DADOS. Daniela Barreiro Claro ANÁLISE DOS DADOS Daniela Barreiro Claro Outline Data types Graphical Analysis Proimity measures Prof. Daniela Barreiro Claro Types of Data Sets Record Ordered Relational records Video data: sequence of

More information

Similarity and Dissimilarity

Similarity and Dissimilarity 1//015 Similarity and Dissimilarity COMP 465 Data Mining Similarity of Data Data Preprocessing Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed.

More information

Chapter I: Introduction & Foundations

Chapter I: Introduction & Foundations Chapter I: Introduction & Foundations } 1.1 Introduction 1.1.1 Definitions & Motivations 1.1.2 Data to be Mined 1.1.3 Knowledge to be discovered 1.1.4 Techniques Utilized 1.1.5 Applications Adapted 1.1.6

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Vector Data: Clustering: Part II Instructor: Yizhou Sun yzsun@cs.ucla.edu May 3, 2017 Methods to Learn: Last Lecture Classification Clustering Vector Data Text Data Recommender

More information

Data Mining 4. Cluster Analysis

Data Mining 4. Cluster Analysis Data Mining 4. Cluster Analysis 4.2 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Data Structures Interval-Valued (Numeric) Variables Binary Variables Categorical Variables Ordinal Variables Variables

More information

University of Florida CISE department Gator Engineering. Clustering Part 1

University of Florida CISE department Gator Engineering. Clustering Part 1 Clustering Part 1 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville What is Cluster Analysis? Finding groups of objects such that the objects

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Graph and Network Instructor: Yizhou Sun yzsun@cs.ucla.edu May 31, 2017 Methods Learnt Classification Clustering Vector Data Text Data Recommender System Decision Tree; Naïve

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

Type of data Interval-scaled variables: Binary variables: Nominal, ordinal, and ratio variables: Variables of mixed types: Attribute Types Nominal: Pr

Type of data Interval-scaled variables: Binary variables: Nominal, ordinal, and ratio variables: Variables of mixed types: Attribute Types Nominal: Pr Foundation of Data Mining i Topic: Data CMSC 49D/69D CSEE Department, e t, UMBC Some of the slides used in this presentation are prepared by Jiawei Han and Micheline Kamber Data Data types Quality of data

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 5, 2015 Announcements Homework 2 will be out tomorrow No class next week Course project

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Similarity and Dissimilarity Similarity Numerical measure of how alike two data objects are. Is higher

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Clustering Lecture 1: Basics. Jing Gao SUNY Buffalo

Clustering Lecture 1: Basics. Jing Gao SUNY Buffalo Clustering Lecture 1: Basics Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics Clustering

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu October 19, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Getting To Know Your Data

Getting To Know Your Data Getting To Know Your Data Road Map 1. Data Objects and Attribute Types 2. Descriptive Data Summarization 3. Measuring Data Similarity and Dissimilarity Data Objects and Attribute Types Types of data sets

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Clustering: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu November 3, 2015 Methods to Learn Matrix Data Text Data Set Data Sequence Data Time Series Graph

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Support Vector Machine and Neural Network Instructor: Yizhou Sun yzsun@cs.ucla.edu April 24, 2017 Homework 1 Announcements Due end of the day of this Friday (11:59pm) Reminder

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Text Data: Topic Model Instructor: Yizhou Sun yzsun@cs.ucla.edu December 4, 2017 Methods to be Learnt Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Descriptive Data Summarization

Descriptive Data Summarization Descriptive Data Summarization Descriptive data summarization gives the general characteristics of the data and identify the presence of noise or outliers, which is useful for successful data cleaning

More information

MSCBD 5002/IT5210: Knowledge Discovery and Data Minig

MSCBD 5002/IT5210: Knowledge Discovery and Data Minig MSCBD 5002/IT5210: Knowledge Discovery and Data Minig Instructor: Lei Chen Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Jiawei Han, Micheline Kamber, and Jian Pei and

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu March 16, 2016 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

proximity similarity dissimilarity distance Proximity Measures:

proximity similarity dissimilarity distance Proximity Measures: Similarity Measures Similarity and dissimilarity are important because they are used by a number of data mining techniques, such as clustering nearest neighbor classification and anomaly detection. The

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems Instructor: Yizhou Sun yzsun@cs.ucla.edu May 17, 2017 Methods Learnt: Last Lecture Classification Clustering Vector Data Text Data Recommender System Decision

More information

Machine Learning Concepts in Chemoinformatics

Machine Learning Concepts in Chemoinformatics Machine Learning Concepts in Chemoinformatics Martin Vogt B-IT Life Science Informatics Rheinische Friedrich-Wilhelms-Universität Bonn BigChem Winter School 2017 25. October Data Mining in Chemoinformatics

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 2: Vector Data: Prediction Instructor: Yizhou Sun yzsun@cs.ucla.edu October 8, 2018 TA Office Hour Time Change Junheng Hao: Tuesday 1-3pm Yunsheng Bai: Thursday 1-3pm

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Chapter DM:II (continued)

Chapter DM:II (continued) Chapter DM:II (continued) II. Cluster Analysis Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster Analysis

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 2: Linear Algebra Review Instructor: Daniel L. Pimentel-Alarcón Scribed by: Anh Nguyen and Kira Jordan This is preliminary work and has

More information

Measurement and Data

Measurement and Data Measurement and Data Data describes the real world Data maps entities in the domain of interest to symbolic representation by means of a measurement procedure Numerical relationships between variables

More information

Notion of Distance. Metric Distance Binary Vector Distances Tangent Distance

Notion of Distance. Metric Distance Binary Vector Distances Tangent Distance Notion of Distance Metric Distance Binary Vector Distances Tangent Distance Distance Measures Many pattern recognition/data mining techniques are based on similarity measures between objects e.g., nearest-neighbor

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Distances and similarities Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining

Distances and similarities Based in part on slides from textbook, slides of Susan Holmes. October 3, Statistics 202: Data Mining Distances and similarities Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Similarities Start with X which we assume is centered and standardized. The PCA loadings were

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 10 What is Data? Collection of data objects

More information

Data Mining algorithms

Data Mining algorithms Data Mining algorithms 2017-2018 spring 02.07-09.2018 Overview Classification vs. Regression Evaluation I Basics Bálint Daróczy daroczyb@ilab.sztaki.hu Basic reachability: MTA SZTAKI, Lágymányosi str.

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar 1 Types of data sets Record Tables Document Data Transaction Data Graph World Wide Web Molecular Structures

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Classification: Part 2 Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2014 Methods to Learn Matrix Data Set Data Sequence Data Time Series Graph & Network

More information

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis Week 5 Based in part on slides from textbook, slides of Susan Holmes Part I Linear Discriminant Analysis October 29, 2012 1 / 1 2 / 1 Nearest centroid rule Suppose we break down our data matrix as by the

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Data preprocessing. DataBase and Data Mining Group 1. Data set types. Tabular Data. Document Data. Transaction Data. Ordered Data

Data preprocessing. DataBase and Data Mining Group 1. Data set types. Tabular Data. Document Data. Transaction Data. Ordered Data Elena Baralis and Tania Cerquitelli Politecnico di Torino Data set types Record Tables Document Data Transaction Data Graph World Wide Web Molecular Structures Ordered Spatial Data Temporal Data Sequential

More information

CSC 411: Lecture 03: Linear Classification

CSC 411: Lecture 03: Linear Classification CSC 411: Lecture 03: Linear Classification Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 1 / 24 Examples of Problems What

More information

Distances & Similarities

Distances & Similarities Introduction to Data Mining Distances & Similarities CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 1 / 22 Outline

More information

Measurement and Data. Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality

Measurement and Data. Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality Measurement and Data Topics: Types of Data Distance Measurement Data Transformation Forms of Data Data Quality Importance of Measurement Aim of mining structured data is to discover relationships that

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

Data Exploration Slides by: Shree Jaswal

Data Exploration Slides by: Shree Jaswal Data Exploration Slides by: Shree Jaswal Topics to be covered Types of Attributes; Statistical Description of Data; Data Visualization; Measuring similarity and dissimilarity. Chp2 Slides by: Shree Jaswal

More information

Generative Models. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University

Generative Models. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University Generative Models CS4780/5780 Machine Learning Fall 2012 Thorsten Joachims Cornell University Reading: Mitchell, Chapter 6.9-6.10 Duda, Hart & Stork, Pages 20-39 Bayes decision rule Bayes theorem Generative

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 8. Chapter 8. Classification: Basic Concepts Data Mining: Concepts and Techniques (3 rd ed.) Chapter 8 1 Chapter 8. Classification: Basic Concepts Classification: Basic Concepts Decision Tree Induction Bayes Classification Methods Rule-Based Classification

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 5: Multi-class and preference learning Juho Rousu 11. October, 2017 Juho Rousu 11. October, 2017 1 / 37 Agenda from now on: This week s theme: going

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

CS626 Data Analysis and Simulation

CS626 Data Analysis and Simulation CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone 221-3462, email:kemper@cs.wm.edu Today: Data Analysis: A Summary Reference: Berthold, Borgelt, Hoeppner, Klawonn: Guide to Intelligent

More information

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012 Revision: Chapter 1-6 Applied Multivariate Statistics Spring 2012 Overview Cov, Cor, Mahalanobis, MV normal distribution Visualization: Stars plot, mosaic plot with shading Outlier: chisq.plot Missing

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Performance Evaluation

Performance Evaluation Performance Evaluation David S. Rosenberg Bloomberg ML EDU October 26, 2017 David S. Rosenberg (Bloomberg ML EDU) October 26, 2017 1 / 36 Baseline Models David S. Rosenberg (Bloomberg ML EDU) October 26,

More information

Social Data Mining Trainer: Enrico De Santis, PhD

Social Data Mining Trainer: Enrico De Santis, PhD Social Data Mining Trainer: Enrico De Santis, PhD enrico.desantis@uniroma1.it CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Outlines Vector Semantics From plain text to

More information

Metric-based classifiers. Nuno Vasconcelos UCSD

Metric-based classifiers. Nuno Vasconcelos UCSD Metric-based classifiers Nuno Vasconcelos UCSD Statistical learning goal: given a function f. y f and a collection of eample data-points, learn what the function f. is. this is called training. two major

More information

Semi Supervised Distance Metric Learning

Semi Supervised Distance Metric Learning Semi Supervised Distance Metric Learning wliu@ee.columbia.edu Outline Background Related Work Learning Framework Collaborative Image Retrieval Future Research Background Euclidean distance d( x, x ) =

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

Kernel Learning with Bregman Matrix Divergences

Kernel Learning with Bregman Matrix Divergences Kernel Learning with Bregman Matrix Divergences Inderjit S. Dhillon The University of Texas at Austin Workshop on Algorithms for Modern Massive Data Sets Stanford University and Yahoo! Research June 22,

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2016 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE JOHN P DICKERSON Lecture #13 3/9/2017 CMSC320 Tuesdays & Thursdays 3:30pm 4:45pm ANNOUNCEMENTS Mini-Project #1 is due Saturday night (3/11): Seems like people are able to do

More information

Unsupervised machine learning

Unsupervised machine learning Chapter 9 Unsupervised machine learning Unsupervised machine learning (a.k.a. cluster analysis) is a set of methods to assign objects into clusters under a predefined distance measure when class labels

More information

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric Axioms of a Metric Picture analysis always assumes that pictures are defined in coordinates, and we apply the Euclidean metric as the golden standard for distance (or derived, such as area) measurements.

More information

Generative Models for Classification

Generative Models for Classification Generative Models for Classification CS4780/5780 Machine Learning Fall 2014 Thorsten Joachims Cornell University Reading: Mitchell, Chapter 6.9-6.10 Duda, Hart & Stork, Pages 20-39 Generative vs. Discriminative

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces Linear Algebra Josh Engwer TTU 28 October 2015 Josh Engwer (TTU) Inner Product Spaces 28 October 2015 1 / 15 Inner Product Space (Definition) An inner product is the notion of a dot

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar 10 What is Data? Collection of data objects and their attributes Attributes An attribute is a property

More information

BANA 7046 Data Mining I Lecture 4. Logistic Regression and Classications 1

BANA 7046 Data Mining I Lecture 4. Logistic Regression and Classications 1 BANA 7046 Data Mining I Lecture 4. Logistic Regression and Classications 1 Shaobo Li University of Cincinnati 1 Partially based on Hastie, et al. (2009) ESL, and James, et al. (2013) ISLR Data Mining I

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 10 What is Data? Collection of data objects

More information

Multivariate Statistics: Hierarchical and k-means cluster analysis

Multivariate Statistics: Hierarchical and k-means cluster analysis Multivariate Statistics: Hierarchical and k-means cluster analysis Steffen Unkel Department of Medical Statistics University Medical Center Goettingen, Germany Summer term 217 1/43 What is a cluster? Proximity

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Multimedia Retrieval Distance. Egon L. van den Broek

Multimedia Retrieval Distance. Egon L. van den Broek Multimedia Retrieval 2018-1019 Distance Egon L. van den Broek 1 The project: Two perspectives Man Machine or? Objective Subjective 2 The default Default: distance = Euclidean distance This is how it is

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 8 Text Classification Introduction A Characterization of Text Classification Unsupervised Algorithms Supervised Algorithms Feature Selection or Dimensionality Reduction

More information

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides

CSE 494/598 Lecture-4: Correlation Analysis. **Content adapted from last year s slides CSE 494/598 Lecture-4: Correlation Analysis LYDIA MANIKONDA HT TP://WWW.PUBLIC.ASU.EDU/~LMANIKON / **Content adapted from last year s slides Announcements Project-1 Due: February 12 th 2016 Analysis report:

More information

Prediction of Citations for Academic Papers

Prediction of Citations for Academic Papers 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2017 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Clustering. Stephen Scott. CSCE 478/878 Lecture 8: Clustering. Stephen Scott. Introduction. Outline. Clustering.

Clustering. Stephen Scott. CSCE 478/878 Lecture 8: Clustering. Stephen Scott. Introduction. Outline. Clustering. 1 / 19 sscott@cse.unl.edu x1 If no label information is available, can still perform unsupervised learning Looking for structural information about instance space instead of label prediction function Approaches:

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

LEC 5: Two Dimensional Linear Discriminant Analysis

LEC 5: Two Dimensional Linear Discriminant Analysis LEC 5: Two Dimensional Linear Discriminant Analysis Dr. Guangliang Chen March 8, 2016 Outline Last time: LDA/QDA (classification) Today: 2DLDA (dimensionality reduction) HW3b and Midterm Project 3 What

More information

Anomaly Detection. Jing Gao. SUNY Buffalo

Anomaly Detection. Jing Gao. SUNY Buffalo Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection Anomalies the set of objects are considerably dissimilar from the remainder of the data occur relatively infrequently when they do occur, their

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

Classifier Evaluation. Learning Curve cleval testc. The Apparent Classification Error. Error Estimation by Test Set. Classifier

Classifier Evaluation. Learning Curve cleval testc. The Apparent Classification Error. Error Estimation by Test Set. Classifier Classifier Learning Curve How to estimate classifier performance. Learning curves Feature curves Rejects and ROC curves True classification error ε Bayes error ε* Sub-optimal classifier Bayes consistent

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Sample Examination Questions Denis Helic KTI, TU Graz Jan 16, 2014 Denis Helic (KTI, TU Graz) KDDM1 Jan 16, 2014 1 / 22 Exercise Suppose we have a utility

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein. Some slides adapted from Jacques van Helden

Clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein. Some slides adapted from Jacques van Helden Clustering Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Some slides adapted from Jacques van Helden Gene expression profiling A quick review Which molecular processes/functions

More information

CISC 4631 Data Mining

CISC 4631 Data Mining CISC 4631 Data Mining Lecture 02: Data Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook authors) 1 10 What is Data? Collection of data objects and their attributes An attribute

More information

CSE5243 INTRO. TO DATA MINING

CSE5243 INTRO. TO DATA MINING CSE5243 INTRO. TO DATA MINING Data & Data Preprocessing Huan Sun, CSE@The Ohio State University Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Data & Data Preprocessing What is Data:

More information