Introduction to point and space group symmetry

Size: px
Start display at page:

Download "Introduction to point and space group symmetry"

Transcription

1 Workshop on Electron Crystallography, Nelson Mandela Metropolitan University, South Africa, October 14-16, 2013 Introduction to point and space group syetry Hol Kirse Huboldt-Universität zu Berlin, Institut für Physik, AG TEM Newtonstrasse 15, D Berlin E-ail: Web:

2 Ebedding Crystallography Cheistry Bonding Coposition Structure Cleavability Polarity CRYSTALLO- GRAPHY Physics Transparency Conductivity Birefringence Piezoelectricity Pyroelectricity Matheatics Lattice, Syetry operations, Group theory 2

3 Topics of Crystallography Geoetric Crystallography Structure analysis X ray and electron diffraction Crystal growth Crystal cheistry Crystal physics Crystal defects 3

4 Geoetrical Crystallography, e.g., Au Crystal syste Coordinate syste (111) facet of octahedron (100) view [100] Indices Crystal classes (cubooktahedral) Syetry Projection eleent Crystal shape 4

5 Road ap Introduction What is a crystal? Definition of the 7 crystal systes Indexing planes and directions Bravais lattices Stereographic projection Syetry operations of point groups The 32 point groups Fro point groups to layer groups Syetry operations of layer groups The 17 layer groups Transition to third diension: space groups Syetry operations of space groups Exaple for deterination of a space group Notations 5

6 What is a crystal? Characteristics of an ideal crystal: Flat regular surfaces/facets Characteristic syetry Cheically hoogeneous object Anisotropic properties Periodic arrangeent of constituents like atos or olecules along the three spatial directions Rock crystal, SiO 2 6

7 Definition of a crystal A crystal is a hoogeneous anisotropic solid with periodic arrangeent of constituents like atos or olecules in all three spatial diensions. Since 1991: A crystal is defined as a solid exhibiting discrete diffraction spots. This definition includes real crystals with defects, incoensurate crystals and quasicrystals. 7

8 Coordinate syste 3-diensional lattices are described by three not necessarily orthogonal directions x, y, z having lattice paraeters a, b, c. The angle between the three directions are denoted as a, b, g. As a convention a right-handed coordinate syste is used. z c b a b x a g y 9

9 The 7 crystal systes Crystal syste Lattice paraeters Triclinic a b c a b g 90 Monoclinic a b c a = g = 90 b 90 Orthorhobic a b c a = b = g = 90 Tetragonal a = b c a = b = g = 90 Trigonal a = b = c a = b = g 90 a = b c a = b = 90 g = 120 Hexagonal a = b c a = b = 90 g = 120 Cubic a = b = c a = b = g = 90 10

10 Indexing of crystallographic directions Two-diensional lattice b a Crystallographic direction: straight line crossing two arbitrary points of the lattice [010] [120] [110] [210] I uvw = 0 a + 1 b + 0 c Description analogous to vectors 12

11 Indexing of crystallographic directions Three-diensional lattice Infinite periodic arrangeent of points within the 3-d space c b a Triple product: (a b) c > 0, i.e. non-coplanar Point in space: I uvw = u a + v b + w c ; u,v,w Z 13

12 Indexing of crystallographic planes Derivation of MILLER indices: a A c C O B (6 3 4) plane WEISS indices: b OA a 0 : OB b 0 : OC c 0 :n:p : n : p = 2 : 4 : 3 1 : 1 n : 1 p 1 2 : 1 4 : 1 3 h : k : l = 6 : 3 : 4 MILLER indices 14

13 The 14 Bravais lattices (A. Bravais, 1850) Crystal syste Sybol Lattice Crystal syste Centering Centering Sybol Lattice Triclinic Pri. ap Pri. tp Monocl. Pri. Face cent. P A Tetrag. Trigonal Body cent. Rhobohedr. ti hr Pri. op Trig. + Hexag. Pri. hp Orthorh. Body cent. Basal-pl. cent. oi oc Cubic Pri. Body cent. cp ci Face cent. of Face cent. cf 20

14 Fro inner structure to orphology: description of crystals Correspondence between orphology and structure Any crystal face (orphology) is oriented parallel to a lattice plane (structure). The syetry of the outer shape of a crystal is higher or equal to the syetry of its inner structure. Exaple: Galenite (PbS): 22

15 Crystal projections: stereographic projection Projection ethod: North pole of pole sphere Pole sphere Pole of face Face noral Projection plane South pole of pole sphere Projected pole Observation spot 23

16 Crystal projections Projection onto pole sphere Stereographic projection Observation spot 24

17 Crystal projections: stereographic projection Exaples for stereogras: Polyhedron: Hexahedron Octahedron Rhobic dodecahedron ( 100) ( 1 1 1) ( 111) ( 101) ( 1 10) ( 110) Stereogra ( 010) ( 001) ( 001 )( 010 ) ( 11 1) ( 1 11) ( 111) ( 111) ( 01 1) ( 101) ( 011) ( 101) ( 011) ( 011) ( 100 ) ( 111) ( 111) ( 101 ) ( 110) ( 110 ) 25

18 Syetry of crystals Point syetry operations: Syetry operation with at least one point of the object reains at its original position. The corresponding syetry eleent is called point syetry eleent. Trivial point syetry operations : ROTATION, INVERSION, REFLECTION Cobined point syetry operations : ROTATION INVERSION, REFLECTION ROTATION Point syetry eleents in 3-d space: Rotation axis, inversion centre, irror plane, rotation inversion axis, reflection rotation plane 27

19 Point syetry operations Rotation: 4-fold rotation Rotation angle: 90 Sybol: 4 Graphic sybol: Ipact on structure otive: Shape: Stereogra: Tetragonal pyraid 28

20 Rotation Point syetry operations Nuber of positions Angle Sybol Stereogra Shape Pedion Sphenoid Trigonal pyraid Tetragonal pyraid Hexagonal pyraid 29

21 Inversion Point syetry operations Sybol: 1 Graphic sybol: Ipact on structure otiv: Inversion centre Shape: Stereogra: Pinakoid 30

22 Point syetry operations Reflection Sybol: (irror) = Graphic sybol: Ipact on structure otiv: Mirror plane Shape: Stereogra: Doa 31

23 Point syetry operations Rotation inversion 4-fold rotation inversion Syetry operation: 90 + Inversion Sybol: 4 Graphic sybol: Ipact on structure otiv: Shape: Stereogra: Tetragonal disphenoid 32

24 Point syetry operations Rotation inversion Nuber of positions Angle Sybol Stereogra Shape Pinakoid Doa Rhobohedron Tetragonal disphenoid Hexagonal dipyraid 33

25 cubic hexagonal tetragonal trigonal onoclinic orthorh. triclinic The 32 point syetry groups X X X X X X2 X

26 Notation of point syetry groups Notation following Herann-Maugin n: n-fold rotation axis, n: n-fold rotation inversion axis, n : irror plane, : n-fold rotation axis with irror plane Crystal syste 1 st position 2 nd position 3 rd position Triclinic x - - Monoclinic y - - Orthorhobic x y z Trigonal z (HA) x (NA) - Tetragonal z (HA) x (NA) xy (ZA) Hexagonal z (HA) x (NA) xy (ZA) Cubic [100] [111] [110] HA: ain axis, NA: inor axis, ZA: interediate axis 36

27 Exaple for the deterination of a point syetry group Morphology / shape of crystal Stereographic projection Syetry eleents Ditetragonal pyraid 8 (+1) facets Crystal syste: tetragonal Crystal class: ditetragonal-pyraidal Sybol following Herann-Maugin: 4 49

28 The two-diensional lattice Infinite periodic arrangeent of points (i.e. atos, ions, or olecules) at a plane b a a = a b = b a x b > 0 (i.e. non-collinear) Expression for a single point: I uv = u a + v b; u,v Z 51

29 Two-diensional patterns Black sea Europe Istanbul Asia Sea of Marara Topkapi palace

30 Syetry operation: Translation Shift of a otive (asyetric unit: atos, ions, olecules) by translation vector t t No longer pure point syetry only Space filling New syetry operations 54

31 Cobination of translation and reflection Translation t Reflection 55

32 New syetry operation: Glide reflection g Siultaneous application of translation and reflection: Step 1: Translation by t = ½ a 0 Step 2: Reflection 56

33 Syetry eleents of layer groups (wallpaper groups) Rotation Motive Angle Multiplicity Sybol Reflection Glide reflection g t Sybol Lattice types Glide coponent: t/2 Priitive: p Centered: c

34 The 17 layer groups (wallpaper groups) oblique p 1 p 211 quadratic p 4 p 4 rectangular p 11 p 1g1 p 4g c 11 p 2 hexagonal p 3 p 31 p 2g p 2gg c 2 p 31 p 6 p 6

35 The 17 layer groups (wallpaper groups) oblique p 1 p 211 quadratic p 4 p 4 rectangular p 11 p 1g1 p 4g c 11 p 2 hexagonal p 3 p 31 p 2g p 2gg c 2 p 31 p 6 p 6

36 Quadratic Syste: p 4g Topkapi palace p 4g

37 The three-diensional lattice Infinite periodic arrangeent of points within the 3-d space c b a 63

38 Space groups Space groups for describing syetry relations in 3-d space. Space groups include all syetry operations of a 3-diensional, infinitely extended, and perfect crystal structure. The notation of the space group is done after Herann- Mauguin. Nuber of Space groups in the 3-d space: 230 But! By definition there is an infinite nuber of space groups! There are 73 types of space groups coprising the identical (point) syetry eleents as the point syetry group but extended by the translation operation: These are the syorphic space groups. 65

39 Syetry operation: Glide reflection a, b c n e 67

40 Syetry operation: Glide reflection (a+b)/2, (a+c)/2, (b+c)/2, (a+b+c)/2 (a+b)/4, (a+c)/4, (b+c)/4, (a+b+c)/4 n d 68

41 Syetry operation: Screw rotation 2-fold rotation 2-fold screw rotation = ½ a o Translation period of a screw axis n p : = p/n 69

42 4-fold screw rotation: Syetry operation: Screw rotation = 1/4 = 2/4 = 3/4 4 1 and 4 3 are enantioorphous screw axis 4 1 dextrorotatory, 4 3 laevorotatory, 4 2 without rotary sense like

43 Sybols of rotation axes and screw rotation axes Sybols for orientation of rotation axis along the viewing direction Sybols for inclined rotation axis 71

44 Exaple for a space group Marcasite (FeS 2 ) Projection onto basal plane ½ - ½ ½ + - ½ - ½ + 73

45 Exaple for a space group Marcasite (FeS 2 ) Space group: 2 n 2 2 n 1 1 P ½ - ¼, ¾ ¼, ¾ ½ ½ + - ½ - ½ + ¼, ¾ ¼, ¾ ¼, ¾ 74

46 Notation of space groups Notation following Herann-Maugin n: n-fold rotation axis, n: n-fold rotation inversion axis, n p : n-fold screw axis, n : irror plane, : n-fold rotation axis with irror plane Crystal syste 1 st position 2 nd position 3 rd position 4 th position Triclinic Lattice type x - - Monoclinic Lattice type y - - Orthorhobic Lattice type x y z Trigonal Lattice type z (HA) x (NA) - Tetragonal Lattice type z (HA) x (NA) xy (ZA) Hexagonal Lattice type z (HA) x (NA) xy (ZA) Cubic Lattice type [100] [111] [110] HA: ain axis, NA: inor axis, ZA: interediate axis 76

47 Road ap Introduction What is a crystal? Definition of the 7 crystal systes Indexing planes and directions Bravais lattices Stereographic projection Syetry operations of point groups The 32 point groups Fro point groups to layer groups Syetry operations of layer groups The 17 layer groups Transition to third diension: space groups Syetry operations of space groups Exaple for deterination of a space group Notations 77

Symmetry Crystallography

Symmetry Crystallography Crystallography Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern In 3-D, translation defines operations which move the motif into infinitely repeating patterns

More information

Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts

Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts Fundamentals. Crystal patterns and crystal structures. Lattices, their symmetry and related basic concepts Didactic material for the MaThCryst schools, France massimo.nespolo@univ-lorraine.fr Ideal vs.

More information

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?

More information

Crystallographic Symmetry. Jeremy Karl Cockcroft

Crystallographic Symmetry. Jeremy Karl Cockcroft Crystallographic Symmetry Jeremy Karl Cockcroft Why bother? To describe crystal structures Simplifies the description, e.g. NaCl structure Requires coordinates for just 2 atoms + space group symmetry!

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination We have a crystal How do we get there? we want a structure! The Unit Cell Concept Ralph Krätzner Unit Cell Description

More information

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation.

Symmetry. 2-D Symmetry. 2-D Symmetry. Symmetry. EESC 2100: Mineralogy 1. Symmetry Elements 1. Rotation. Symmetry Elements 1. Rotation. Symmetry a. Two-fold rotation = 30 o /2 rotation a. Two-fold rotation = 30 o /2 rotation Operation Motif = the symbol for a two-fold rotation EESC 2100: Mineralogy 1 a. Two-fold rotation = 30 o /2 rotation

More information

n-dimensional, infinite, periodic array of points, each of which has identical surroundings.

n-dimensional, infinite, periodic array of points, each of which has identical surroundings. crystallography ll Lattice n-dimensional, infinite, periodic array of points, each of which has identical surroundings. use this as test for lattice points A2 ("bcc") structure lattice points Lattice n-dimensional,

More information

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography We divide materials into

More information

Neutron Powder Diffraction Theory and Instrumentation

Neutron Powder Diffraction Theory and Instrumentation NTC, Taiwen Aug. 31, 212 Neutron Powder Diffraction Theory and Instrumentation Qingzhen Huang (qing.huang@nist.gov) NIST Center for Neutron Research (www.ncnr.nist.gov) Definitions E: energy; k: wave vector;

More information

Overview - Macromolecular Crystallography

Overview - Macromolecular Crystallography Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous

More information

Translational symmetry, point and space groups in solids

Translational symmetry, point and space groups in solids Translational symmetry, point and space groups in solids Michele Catti Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano, Italy ASCS26 Spokane Michele Catti a = b = 4.594 Å; Å;

More information

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples:

Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Crystallography Reading: Warren, Chapters 2.1, 2.2, 2.6, 8 Surface symmetry: Can be a clue to underlying structure. Examples: Snow (SnowCrystals.com) Bismuth (Bao, Kavanagh, APL 98 66103 (2005) Hexagonal,

More information

Tables of crystallographic properties of double antisymmetry space groups

Tables of crystallographic properties of double antisymmetry space groups Tables of crystallographic properties of double antisymmetry space groups Mantao Huang a, Brian K. VanLeeuwen a, Daniel B. Litvin b and Venkatraman Gopalan a * a Department of Materials Science and Engineering,

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information

GEOL. 40 ELEMENTARY MINERALOGY

GEOL. 40 ELEMENTARY MINERALOGY CRYSTAL DESCRIPTION AND CALCULATION A. INTRODUCTION This exercise develops the framework necessary for describing a crystal. In essence we shall discuss how we fix the position of any crystallographic

More information

Crystallographic Point Groups and Space Groups

Crystallographic Point Groups and Space Groups Crystallographic Point Groups and Space Groups Physics 251 Spring 2011 Matt Wittmann University of California Santa Cruz June 8, 2011 Mathematical description of a crystal Definition A Bravais lattice

More information

PX-CBMSO Course (2) of Symmetry

PX-CBMSO Course (2) of Symmetry PX-CBMSO Course (2) The mathematical description of Symmetry y PX-CBMSO-June 2011 Cele Abad-Zapatero University of Illinois at Chicago Center for Pharmaceutical Biotechnology. Lecture no. 2 This material

More information

Lecture 2 Symmetry in the solid state -

Lecture 2 Symmetry in the solid state - Lecture 2 Symmetry in the solid state - Part II: Crystallographic coordinates and Space Groups. 1 Coordinate systems in crystallography and the mathematical form of the symmetry operators 1.1 Introduction

More information

Chapter 2 Introduction to Phenomenological Crystal Structure

Chapter 2 Introduction to Phenomenological Crystal Structure Chapter 2 Introduction to Phenomenological Crystal Structure 2.1 Crystal Structure An ideal crystal represents a periodic pattern generated by infinite, regular repetition of identical microphysical structural

More information

Chapter 4. Crystallography. 4.1 The crystalline state

Chapter 4. Crystallography. 4.1 The crystalline state Crystallography Atoms form bonds which attract them to one another. When you put many atoms together and they form bonds amongst themselves, are there any rules as to how they order themselves? Can we

More information

UNIT I SOLID STATE PHYSICS

UNIT I SOLID STATE PHYSICS UNIT I SOLID STATE PHYSICS CHAPTER 1 CRYSTAL STRUCTURE 1.1 INTRODUCTION When two atoms are brought together, two kinds of forces: attraction and repulsion come into play. The force of attraction increases

More information

We need to be able to describe planes and directions.

We need to be able to describe planes and directions. We need to be able to describe planes and directions. Miller Indices & XRD 1 2 Determining crystal structure and identifying materials (B) Plastic deformation Plastic deformation and mechanical properties

More information

Introduction to Materials Science Graduate students (Applied Physics)

Introduction to Materials Science Graduate students (Applied Physics) Introduction to Materials Science Graduate students (Applied Physics) Prof. Michael Roth Chapter 1 Crystallography Overview Performance in Engineering Components Properties Mechanical, Electrical, Thermal

More information

Lattices and Symmetry Scattering and Diffraction (Physics)

Lattices and Symmetry Scattering and Diffraction (Physics) Lattices and Symmetry Scattering and Diffraction (Physics) James A. Kaduk INEOS Technologies Analytical Science Research Services Naperville IL 60566 James.Kaduk@innovene.com 1 Harry Potter and the Sorcerer

More information

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK

Nove fizickohemijske metode. Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode Ivana Radosavljevic Evans Durham University, UK Nove fizickohemijske metode: Metode zasnovane na sinhrotronskom zracenju Plan predavanja: Difrakcione metode strukturne karakterizacije

More information

TILES, TILES, TILES, TILES, TILES, TILES

TILES, TILES, TILES, TILES, TILES, TILES 3.012 Fund of Mat Sci: Structure Lecture 15 TILES, TILES, TILES, TILES, TILES, TILES Photo courtesy of Chris Applegate. Homework for Fri Nov 4 Study: Allen and Thomas from 3.1.1 to 3.1.4 and 3.2.1, 3.2.4

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Crystal Structure. Dr Bindu Krishnan

Crystal Structure. Dr Bindu Krishnan Solid State Physics-1 Crystal Structure Dr Bindu Krishnan CRYSTAL LATTICE What is crystal (space) lattice? In crystallography, only the geometrical properties of the crystal are of interest, therefore

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

Crystal Chem Crystallography

Crystal Chem Crystallography Crystal Chem Crystallography Chemistry behind minerals and how they are assembled Bonding properties and ideas governing how atoms go together Mineral assembly precipitation/ crystallization and defects

More information

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods X-ray analysis 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods Introduction Noble prizes associated with X-ray diffraction 1901 W. C. Roentgen (Physics) for the discovery

More information

POINT SYMMETRY AND TYPES OF CRYSTAL LATTICE

POINT SYMMETRY AND TYPES OF CRYSTAL LATTICE POINT SYMMETRY AND TYPES OF CRYSTAL LATTICE Abdul Rashid Mirza Associate Professor of Physics. Govt. College of Science, wahdatroad, Lahore. 1 WHAT ARE CRYSTALS? The word crystal means icy or frozen water.

More information

Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012

Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012 Department of Drug Design and Pharmacology Applications of X-ray and Neutron Scattering in Biological Sciences: Symmetry in direct and reciprocal space 2012 Michael Gajhede Biostructural Research Copenhagen

More information

Mineralogy Problem Set Crystal Systems, Crystal Classes

Mineralogy Problem Set Crystal Systems, Crystal Classes Mineralogy Problem Set Crystal Systems, Crystal Classes (1) For each of the three accompanying plane patterns: (a) Use a ruler to draw solid lines to show where there are mirror planes on the pattern.

More information

Crystallography basics

Crystallography basics Crystallography basics 1 ? 2 Family of planes (hkl) - Family of plane: parallel planes and equally spaced. The indices correspond to the plane closer to the origin which intersects the cell at a/h, b/k

More information

Basics of crystallography

Basics of crystallography Basics of crystallography 1 Family of planes (hkl) - Family of plane: parallel planes and equally spaced. The indices correspond to the plane closer to the origin which intersects the cell at a/h, b/k

More information

Crystallographic structure Physical vs Chemical bonding in solids

Crystallographic structure Physical vs Chemical bonding in solids Crystallographic structure Physical vs Chemical bonding in solids Inert gas and molecular crystals: Van der Waals forces (physics) Water and organic chemistry H bonds (physics) Quartz crystal SiO 2 : covalent

More information

Axial Ratios, Parameters, Miller Indices

Axial Ratios, Parameters, Miller Indices Page 1 of 7 EENS 2110 Tulane University Mineralogy Prof. Stephen A. Nelson Axial Ratios, Parameters, Miller Indices This document last updated on 07-Sep-2016 We've now seen how crystallographic axes can

More information

5 Symmetries and point group in a nut shell

5 Symmetries and point group in a nut shell 30 Phys520.nb 5 Symmetries and point group in a nut shell 5.1. Basic ideas: 5.1.1. Symmetry operations Symmetry: A system remains invariant under certain operation. These operations are called symmetry

More information

Tim Hughbanks CHEMISTRY 634. Two Covers. Required Books, etc.

Tim Hughbanks CHEMISTRY 634. Two Covers. Required Books, etc. CHEMISTRY 634 This course is for 3 credits. Lecture: 2 75 min/week; TTh 11:10-12:25, Room 2122 Grades will be based on the homework (roughly 25%), term paper (15%), midterm and final exams Web site: http://www.chem.tamu.edu/rgroup/

More information

Resolution of Ambiguities and the Discovery of

Resolution of Ambiguities and the Discovery of ISST Journal of Applied hysics, Vol. 6 No. 1, (January - June), p.p. 1-10 ISSN No. 0976-90X Intellectuals Society for Socio-Techno Welfare Resolution of Ambiguities and the Discovery of Two New Space Lattices

More information

Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography

Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography Dr Semën Gorfman Department of Physics, University of SIegen Lecture course on crystallography, 2015 Lecture 9: Space groups and International Tables for Crystallography UNIT CELL and ATOMIC POSITIONS

More information

SPACE GROUPS AND SYMMETRY

SPACE GROUPS AND SYMMETRY SPACE GROUPS AND SYMMETRY Michael Landsberg Electron Crystallography Workshop C-CINA, Basel, 1-7 Aug 2010 m.landsberg@uq.edu.au Averaging Why single molecule EM techniques are far superior in resolution

More information

Bulk Structures of Crystals

Bulk Structures of Crystals Bulk Structures of Crystals 7 crystal systems can be further subdivided into 32 crystal classes... see Simon Garrett, "Introduction to Surface Analysis CEM924": http://www.cem.msu.edu/~cem924sg/lecturenotes.html

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 03 Symmetry in Perfect Solids Worked Examples Stated without prove to be in the lecture.

More information

A web based crystallographic tool for the construction of nanoparticles

A web based crystallographic tool for the construction of nanoparticles A web based crystallographic tool for the construction of nanoparticles Alexios Chatzigoulas 16/5/2018 + = 1 Outline Introduction Motivation Crystallography theory Creation of a web based crystallographic

More information

Inorganic materials chemistry and functional materials

Inorganic materials chemistry and functional materials Chemical bonding Inorganic materials chemistry and functional materials Helmer Fjellvåg and Anja Olafsen Sjåstad Lectures at CUTN spring 2016 CRYSTALLOGRAPHY - SYMMETRY Symmetry NATURE IS BEAUTIFUL The

More information

There are 230 spacespace-groups!

There are 230 spacespace-groups! Xefg Symmetry for characteristic directions (dependent on crystal system) Non-symmorfe space groups (157 groups) Symmetry operations with translation: Screw-axis nm, 21,63, etc. Glideplane a,b,c,n,d Symmorfe

More information

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Power Round-Poles and Polars

12 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Power Round-Poles and Polars 1 th Annual Johns Hopkins Math Tournaent Saturday, February 19, 011 Power Round-Poles and Polars 1. Definition and Basic Properties 1. Note that the unit circles are not necessary in the solutions. They

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 11 Crystallography and Crystal Structures, Part 3 Suggested Reading Chapter 6 in Waseda Chapter 1 in F.D. Bloss, Crystallography and Crystal Chemistry: An Introduction,

More information

Scattering and Diffraction

Scattering and Diffraction Scattering and Diffraction Andreas Kreyssig, Alan Goldman, Rob McQueeney Ames Laboratory Iowa State University All rights reserved, 2018. Atomic scale structure - crystals Crystalline materials... atoms

More information

1/2, 1/2,1/2, is the center of a cube. Induces of lattice directions and crystal planes (a) Directions in a crystal Directions in a crystal are

1/2, 1/2,1/2, is the center of a cube. Induces of lattice directions and crystal planes (a) Directions in a crystal Directions in a crystal are Crystallography Many materials in nature occur as crystals. Examples include the metallic elements gold, copper and silver, ionic compounds such as salt (e.s. NaCl); ceramics, rutile TiO2; and nonmetallic

More information

Chem 728 Introduction to Solid Surfaces

Chem 728 Introduction to Solid Surfaces Chem 728 Introduction to Solid Surfaces Solids: hard; fracture; not compressible; molecules close to each other Liquids: molecules mobile, but quite close to each other Gases: molecules very mobile; compressible

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 4_2

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 4_2 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 4_2 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics

More information

Chemical Crystallography

Chemical Crystallography Chemical Crystallography Prof Andrew Goodwin Michaelmas 2014 Recap: Lecture 1 Why does diffraction give a Fourier transform? k i = k s = 2π/λ k i k s k i k s r l 1 = (λ/2π) k i r l 2 = (λ/2π) k s r Total

More information

Earth Materials Lab 2 - Lattices and the Unit Cell

Earth Materials Lab 2 - Lattices and the Unit Cell Earth Materials Lab 2 - Lattices and the Unit Cell Unit Cell Minerals are crystallographic solids and therefore are made of atoms arranged into lattices. The average size hand specimen is made of more

More information

Physical Chemistry I. Crystal Structure

Physical Chemistry I. Crystal Structure Physical Chemistry I Crystal Structure Crystal Structure Introduction Crystal Lattice Bravis Lattices Crytal Planes, Miller indices Distances between planes Diffraction patters Bragg s law X-ray radiation

More information

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012)

Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) Lecture Note on Crystal structures Masatsugu Sei Suzuki and Itsuko S. Suzuki Department of Physics, SUNY at Binghamton (Date: February 03, 2012) This is a part of lecture note on solid state physics (Phys.472/572)

More information

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase

Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Introduction to Solid State Physics or the study of physical properties of matter in a solid phase Prof. Germar Hoffmann 1. Crystal Structures 2. Reciprocal Lattice 3. Crystal Binding and Elastic Constants

More information

CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS

CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS CHAPTER THE STRUCTURE OF CRYSTALLINE SOLIDS PROBLEM SOLUTIONS Fundamental Concepts.1 What is the difference between atomic structure and crystal structure? Atomic structure relates to the number of protons

More information

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7 MSE 21A Thermodynamics and Phase Transformations Fall, 28 Problem Set No. 7 Problem 1: (a) Show that if the point group of a material contains 2 perpendicular 2-fold axes then a second-order tensor property

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination Course Overview Basic Crystallography Part 1 n Introduction: Crystals and Crystallography n Crystal Lattices and

More information

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS International Tables for Crystallography, Volume A: Space-group Symmetry Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: Space group G: A model of the

More information

Lecture 1 Symmetry in the solid state -

Lecture 1 Symmetry in the solid state - Lecture 1 Symmetry in the solid state - Part I: Simple patterns and groups 1 Symmetry operators: key concepts Operators: transform (move) the whole pattern (i.e., the attributes, or content, of all points

More information

Introduction to. Crystallography

Introduction to. Crystallography M. MORALES Introuction to Crystallography magali.morales@ensicaen.fr Classification of the matter in 3 states : Crystallise soli liqui or amorphous gaz soli Crystallise soli : unique arrangement of atoms

More information

2. Surface geometric and electronic structure: a primer

2. Surface geometric and electronic structure: a primer 2. Surface geometric and electronic structure: a primer 2.1 Surface crystallography 2.1.1. Crystal structures - A crystal structure is made up of two basic elements: lattice + basis Basis: Lattice: simplest

More information

Symmetry in 2D. 4/24/2013 L. Viciu AC II Symmetry in 2D

Symmetry in 2D. 4/24/2013 L. Viciu AC II Symmetry in 2D Symmetry in 2D 1 Outlook Symmetry: definitions, unit cell choice Symmetry operations in 2D Symmetry combinations Plane Point groups Plane (space) groups Finding the plane group: examples 2 Symmetry Symmetry

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

Data-Driven Imaging in Anisotropic Media

Data-Driven Imaging in Anisotropic Media 18 th World Conference on Non destructive Testing, 16- April 1, Durban, South Africa Data-Driven Iaging in Anisotropic Media Arno VOLKER 1 and Alan HUNTER 1 TNO Stieltjesweg 1, 6 AD, Delft, The Netherlands

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 15 Reciprocal Lattices and Their Roles in Diffraction Studies Suggested Reading Chs. 2 and 6 in Tilley, Crystals and Crystal Structures, Wiley (2006) Ch. 6 M. DeGraef

More information

CHEM-E5225 :Electron Microscopy. Diffraction 1

CHEM-E5225 :Electron Microscopy. Diffraction 1 CHEM-E5225 :Electron Microscopy Diffraction 1 2018-10-15 Yanling Ge Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. 2009, Springer Outline Diffraction in TEM Thinking

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

II crystal structure

II crystal structure II crstal structure 2-1 basic concept > Crstal structure = lattice structure + basis > Lattice point: positions (points) in the structure which are identical. > Lattice translation vector > Lattice plane

More information

Homework 4 Due 25 October 2018 The numbers following each question give the approximate percentage of marks allocated to that question.

Homework 4 Due 25 October 2018 The numbers following each question give the approximate percentage of marks allocated to that question. Name: Homework 4 Due 25 October 218 The numbers following each question give the approximate percentage of marks allocated to that question. 1. Use the reciprocal metric tensor again to calculate the angle

More information

REVIEW: CHAPTERS 1 TO 5. Sarah Lambart

REVIEW: CHAPTERS 1 TO 5. Sarah Lambart REVIEW: CHAPTERS 1 TO 5 Sarah Lambart CHAPTER 1: MINERAL PROPERTIES AND CLASSIFICATION CHAP. 1: MINERAL PROPERTIES AND CLASSIFICATION Mineral: naturally occurring (always) a structure and a composition

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Condensed Matter A Week 2: Crystal structure (II)

Condensed Matter A Week 2: Crystal structure (II) QUEEN MARY, UNIVERSITY OF LONDON SCHOOL OF PHYSICS AND ASTRONOMY Condensed Matter A Week : Crystal structure (II) References for crystal structure: Dove chapters 3; Sidebottom chapter. Last week we learnt

More information

WALLPAPER GROUPS. Julija Zavadlav

WALLPAPER GROUPS. Julija Zavadlav WALLPAPER GROUPS Julija Zavadlav Abstract In this paper we present the wallpaper groups or plane crystallographic groups. The name wallpaper groups refers to the symmetry group of periodic pattern in two

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

Chapter 1. Crystal structure. 1.1 Crystal lattices

Chapter 1. Crystal structure. 1.1 Crystal lattices Chapter 1 Crystal structure 1.1 Crystal lattices We will concentrate as stated in the introduction, on perfect crystals, i.e. on arrays of atoms, where a given arrangement is repeated forming a periodic

More information

4. Interpenetrating simple cubic

4. Interpenetrating simple cubic 2 1. The correct structure t of CsClCl crystal is 1. Simple cubic 2. Body centered cubic 3. Face centered cubic 4. Interpenetrating simple cubic If corner as well as the particle at the center are same

More information

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart

CHAPTER 5: CRYSTAL DEFECTS AND TWINNING. Sarah Lambart CHAPTER 5: CRYSTAL DEFECTS AND TWINNING Sarah Lambart RECAP CHAP. 4 Hermann-Mauguin symbols 32 crystal classes Miller indices Crystal forms RECAP CHAP. 4 Crystal System Crystal Class Symmetry Name of Class

More information

Mineralogy ( ) Chapter 5: Crystallography

Mineralogy ( ) Chapter 5: Crystallography Hashemite University Faculty of Natural Resources and Environment Department of earth and environmental sciences Mineralogy (1201220) Chapter 5: Crystallography Dr. Faten Al-Slaty First Semester 2015/2016

More information

Incorporating strain gradient effects in a multi-scale constitutive framework for nickel-base superalloys

Incorporating strain gradient effects in a multi-scale constitutive framework for nickel-base superalloys Incorporating strain gradient effects in a ulti-scale constitutive fraework for nickel-base superalloys Tiedo Tinga, Marcel Brekelans, Marc Geers To cite this version: Tiedo Tinga, Marcel Brekelans, Marc

More information

Solids. properties & structure

Solids. properties & structure Solids properties & structure Determining Crystal Structure crystalline solids have a very regular geometric arrangement of their particles the arrangement of the particles and distances between them is

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

Geometry of Crystal Lattice

Geometry of Crystal Lattice 0 Geometry of Crystal Lattice 0.1 Translational Symmetry The crystalline state of substances is different from other states (gaseous, liquid, amorphous) in that the atoms are in an ordered and symmetrical

More information

NOMENCLATURE REMARKS ON CRYSTALLOGRAPHIC. M. A. PBacocr, (Jni,aersity of Toronto, Toronto, Canaila.* Assrnecr

NOMENCLATURE REMARKS ON CRYSTALLOGRAPHIC. M. A. PBacocr, (Jni,aersity of Toronto, Toronto, Canaila.* Assrnecr REMARKS ON CRYSTALLOGRAPHIC NOMENCLATURE M. A. PBacocr, (Jni,aersity of Toronto, Toronto, Canaila.* Assrnecr In special cases the lattice (not structure) of a crystal in any system may be indistinguishable

More information

Supporting information for Self-assembly of multicomponent structures in and out of equilibrium

Supporting information for Self-assembly of multicomponent structures in and out of equilibrium Supporting inforation for Self-assebly of ulticoponent structures in and out of equilibriu Stephen Whitela 1, Rebecca Schulan 2, Lester Hedges 1 1 Molecular Foundry, Lawrence Berkeley National Laboratory,

More information

Jordan Journal of Physics

Jordan Journal of Physics Volue 5, Nuber 3, 212. pp. 113-118 ARTILE Jordan Journal of Physics Networks of Identical apacitors with a Substitutional apacitor Departent of Physics, Al-Hussein Bin Talal University, Ma an, 2, 71111,

More information

Helpful resources for all X ray lectures Crystallization http://www.hamptonresearch.com under tech support: crystal growth 101 literature Spacegroup tables http://img.chem.ucl.ac.uk/sgp/mainmenu.htm Crystallography

More information

Atomic Arrangement. Primer in Materials Spring

Atomic Arrangement. Primer in Materials Spring Atomic Arrangement Primer in Materials Spring 2017 30.4.2017 1 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling the volume to

More information

Atomic Arrangement. Primer Materials For Science Teaching Spring

Atomic Arrangement. Primer Materials For Science Teaching Spring Atomic Arrangement Primer Materials For Science Teaching Spring 2016 31.3.2015 Levels of atomic arrangements No order In gases, for example the atoms have no order, they are randomly distributed filling

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: He atoms: [E (ev)] 1/2 = 0.14 / (Å) E 1Å = 0.0196 ev Neutrons: [E (ev)] 1/2 = 0.28 / (Å) E 1Å = 0.0784 ev Electrons:

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Low Frequency Properties of Dielectric Crystals

Low Frequency Properties of Dielectric Crystals Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series I Editor in Chief: O. Madelung Group III: Solid State Physics Volume 29 Low Frequency Properties of Dielectric

More information

Lattice (Sieć) A collection of nodes, i.e. points with integral coordinates. In crystallography, a lattice is an

Lattice (Sieć) A collection of nodes, i.e. points with integral coordinates. In crystallography, a lattice is an Prof. dr hab. Mariusz Jaskólski GLOSSARYUSZ TERMINÓW KRYSTALOGRAFICZNYCH (dla osób nie znających jeszcze krystalografii, ale znających język angielski) Symmetry (Symetria) Property of physical and mathematical

More information

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3

Roger Johnson Structure and Dynamics: The 230 space groups Lecture 3 Roger Johnson Structure and Dnamics: The 23 space groups Lecture 3 3.1. Summar In the first two lectures we considered the structure and dnamics of single molecules. In this lecture we turn our attention

More information

Natural Sciences Tripos Part IA. Course A: Atomic Structure of Materials. Name... College... Prof. Paul Midgley Michaelmas Term

Natural Sciences Tripos Part IA. Course A: Atomic Structure of Materials. Name... College... Prof. Paul Midgley Michaelmas Term Natural Sciences Tripos Part IA MATEIALS SCIENCE Course A: Atomic Structure of Materials Name... College... Prof. Paul Midgley Michaelmas Term 2013-14 14 IA AH1 MATEIALS SCIENCE Course A: Atomic Structure

More information