Electromagnetics in LS-DYNA

Size: px
Start display at page:

Download "Electromagnetics in LS-DYNA"

Transcription

1 Electromagnetics in LS-DYNA

2

3 Fully implicit. Double precision. 2D axisymmetric solver /3D solver. SMP and MPP versions available. Automatically coupled with LS-DYNA solid and thermal solvers. FEM for conducting pieces, no air mesh needed (FEM-BEM method). New set of keywords starting with *EM.

4

5 MMF: High velocity forming process Forming limits increased Springback reduced Wrinkling reduced High reproducibility In collaboration with: G. Mazars & G. Avrillaud: Bmax, Toulouse, France

6 Magneto crimping Magneto forming In collaboration with: G. Mazars and G. Avrillaud: Bmax, Toulouse, France In collaboration with: Christian Scheffler, Chemnitz, Germany

7 Heating by Joule losses pressure applied for consolidation and maintained during cooling. EM Solver Introduction In collaboration with: M. Duhovic, Institut für Verbundwerkstoffe, Kaiserslautern, Germany

8 Rail gun simulation EM Solver Introduction

9 Joule heating study Study of shortcuts EM Solver Introduction

10 EM heats up a coil plunged in a kettle ICFD with conjugate heat transfer heats up the water Water stream lines colored by the temperature level.

11 EM solver New Developments

12 Application : Resistive spot welding and others Development : Calculation of a additional resistance term and local Joule heating due to contact occurring between two conductors. Resistive spot welding is a process in which contacting metal surfaces are joined by the heat obtained from resistance to electric current. Frequently encountered in the automobile manufacturing industry where it is used almost universally to weld metal sheets together (often automated process). Several formulas exist, often variation of Holm s law: R contact = ρ 2a With ρ the material s resistivity and a the radius of the equivalent contact circle area.

13 Application : Resistive spot welding and others Status : Available in the development version. Several methods for calculating contact Resistance available. See *EM_CONTACT_RESISTANCE card. R contact = ρ 2a Local heating spot between electrodes and work piece due to Contact Resistance

14 Application : Conducting shells Development : Allowing user to define conductive shells in 3D problems. Advancement stage : Conducting shells can be used in the development version with the Eddy Current, Inductive heating and Resistive heating solvers. EM contact also available. SMP and MPP versions fully functional. Eddy currents i.e the combination of inductive diffusive effects is essentially a 3D effect which means that elements with thickness are usually required for correct solve. Consequently, up to now, only solid conductive elements were allowed, shells could be insulators only. However, some users have expressed the wish to be able to use conductive shells in 3D problems in order to maintain their associated mechanical and thermal properties. From the EM perspective, those shells are treated like invisible solids i.e the EM solver will build an underlying equivalent solid mesh to solve for the EM quantities.

15 EM forming using conducting solids EM forming using conducting shells

16 Impact against battery : shortcut study

17 Application : Towards battery crash simulations Development : Allowing user to simulate joule heating of batteries during crash and shortcut conditions.

18 Towards a first model of a cell (2) Just 2 plates (gap enlarged) dϕ=v represents the voltage drop due to the electro-chemical reaction between the Li-ion electrode plate pair ( voltage of the battery at the time of the crash). It would be imposed as a constraint in the EM solver. dϕ

19 Test model 1 = battery in Short circuit. We could also impose ϕ2-ϕ1=ri or other System solved: Δϕ = 0 ϕ2-ϕ1 = V on matching nodes plate1/plate2 ϕ=0 at 2 ends of the electrodes From which we get: J = grad(ϕ), current density Ej = j^2/σ, joule heating V=ϕ2-ϕ1 imposed as a constraint between each couple of nodes of plate1/plate2

20 Model 1: potential ϕ in the plates Positive electrode negative electrode

21 Model 1: current density Current density vector field (one plate behind the other)

22 Test Model model 2: Battery nail through perfored the pair by a of nail plates System solved: Δϕ = 0 ϕ2-ϕ1 = V on matching nodes plate1/plate2 ϕ2-ϕ1 = 0 on 1 couple of nodes ϕ=0 at 2 ends of the electrodes From which we get: J = grad(ϕ), current density Ej = j^2/σ, joule heating V=ϕ2-ϕ1 imposed as a constraint between each couple of nodes of plate1/plate2, except fo 1 couple where ϕ2-ϕ1 =0

23 Model 2 : nail through the pair of plates Potential ϕ on positive electrode Temperature (current density looks similar)

24 new EM developments Added capability to impose a potential difference V between matching nodes of 2 segment sets. V is constant for now, but we could have a load curve for V vs time or other). This could represent a rough model for the EM behavior of an electrode plate pair. V would represent the voltage between the 2 plates, generated by the electrochemical reactions, at the time of the crash. This potential difference is overwritten when and where contact is detected, with V=0 in the contact areas. These constraints generate some high current densities and high Joule heating in the conductors in the contact areas. New card that imposes a voltage V between segment set 1 and segment set 2.

25 2 plates with contact (1) 2 plates with imposed voltage V V 0 V drops to 0 in the contact area when contact detected

26 2 plates with contact (2) Scalar Potential Current Density

27 Application : Magnetic field lines Development : Have the solver compute some magnetic field lines in the air based on user defined parameters for analysis and post treating purposes. The use of the BEM method i.e no air mesh does not allow the visualization of the EM fields in the air hence the interest of this new feature. From a starting point given by the user the field line is computed step by step using a explicit numerical integration scheme (RK4, DOP853). Approximation methods are available in order to speed up the computation of the second member of the magnetic field line equations : multipole method multicenter method : this method has been developed at LSTC This feature along with the multicenter/multipole methods are treated as a research project that could be used at a latter stage to compute and store efficiently the BEM matrix and thus speed up the computational time of the EM solver.

28 Application : Magnetic field lines Current status : The magnetic field lines are now exported as individual lsprepost readable files at each output state, and will soon be integrated in the d3plot files. In a future development cycle, they will be automatically generated in lsprepost at any time without the user having to specify the output times before the run. Example 1 Example 2

29 Future Developments New axisymmetric solver Symmetry conditions Erosion Piezo electric materials Magnetic materials

Electromechanics in LS-DYNA R7

Electromechanics in LS-DYNA R7 Electromechanics in LS-DYNA R7 Information Day, Gbg, 2013-06-26 marcus.lilja@dynamore.se General 2013-10-04 2 Electromechanics in LS-DYNA R7 Available in R7.0.0 Eddy Current Solver Inductive Heating Solver

More information

Electromagnetism Module Presentation. Pierre L Eplattenier, Iñaki Çaldichoury

Electromagnetism Module Presentation. Pierre L Eplattenier, Iñaki Çaldichoury Electromagnetism Module Presentation Pierre L Eplattenier, Iñaki Çaldichoury Part 1 Introduction 1.1 Background 1.2 Main characteristics and features 1.3 Examples of applications 5/5/2014 EM Module training

More information

Coupling of the EM Solver with Mechanical and Thermal Shell Elements

Coupling of the EM Solver with Mechanical and Thermal Shell Elements 13 th International LS-DYNA Users Conference Session: Electromagnetic Coupling of the EM Solver with Mechanical and Thermal Shell Elements Pierre L Eplattenier Julie Anton Iñaki Çaldichoury Livermore Software

More information

Update On The Electromagnetism Module In LS-DYNA

Update On The Electromagnetism Module In LS-DYNA 12 th International LS-DYNA Users Conference Electromagnetic(1) Update On The Electromagnetism Module In LS-DYNA Pierre L'Eplattenier Iñaki Çaldichoury Livermore Software Technology Corporation 7374 Las

More information

9th European LS-DYNA Conference 2013

9th European LS-DYNA Conference 2013 LS-DYNA R7: Coupled Multiphysics analysis involving Electromagnetism (EM), Incompressible CFD (ICFD) and solid mechanics thermal solver for conjugate heat transfer problem solving Iñaki Çaldichoury (1)

More information

5/20/2014 Further Advances in Simulating the Processing of Composite Materials by Electromagnetic Induction. Abstract.

5/20/2014 Further Advances in Simulating the Processing of Composite Materials by Electromagnetic Induction. Abstract. 5/20/2014 Further Advances in Simulating the Processing of Composite Materials by Electromagnetic Induction M. Duhovic, M. Hümbert, P. Mitschang, M. Maier Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str.,

More information

Ultra High Power applications designed using the LS-DYNA EMAG solver

Ultra High Power applications designed using the LS-DYNA EMAG solver Ultra High Power applications designed using the LS-DYNA EMAG solver Gilles MAZARS, Gilles AVRILLAUD, Anne-Claire JEANSON, Jean-Paul CUQ-LELANDAIS Bmax Toulouse, France - www.bmax.com Abstract Bmax offers

More information

Resistive Spot Welding Simulations Using LS-DYNA

Resistive Spot Welding Simulations Using LS-DYNA Resistive Spot Welding Simulations Using LS-DYNA Pierre L Eplattenier 1, Iñaki Çaldichoury 1, Sarah Bateau-Meyer 1, Tobias Loose, Uwe Reisgen 3 1 LSTC, Livermore, USA DynaWeld GmbH & Co. KG, Germany 3

More information

FEA Information Engineering Journal

FEA Information Engineering Journal ISSN 2167-1273 Volume 3, Issue 6, June 2014 FEA Information Engineering Journal Electromagnetics FEA Information Engineering Journal Aim and Scope FEA Information Engineering Journal (FEAIEJ ) is a monthly

More information

Batteries crash simulation with LS-DYNA. Lithium-Ion cell. In collaboration with J. Marcicki et al, Ford Research and Innovation Center, Dearborn, MI

Batteries crash simulation with LS-DYNA. Lithium-Ion cell. In collaboration with J. Marcicki et al, Ford Research and Innovation Center, Dearborn, MI Batteries crash simulation with LS-DYNA Lithium-Ion cell In collaboration with J. Marcicki et al, Ford esearch and Innovation Center, Dearborn, MI Battery crash simulation (general) Car crash Mechanical

More information

Coupling Possibilities in LS-DYNA: Development Status and Sample Applications

Coupling Possibilities in LS-DYNA: Development Status and Sample Applications Coupling Possibilities in LS-DYNA: Development Status and Sample Applications I. Çaldichoury 1, F. Del Pin 1, P. L Eplattenier 1, D. Lorenz 2, N. Karajan 2 1 LSTC, Livermore, USA 2 DYNAmore GmbH, Stuttgart,

More information

A Distributed Randles Circuit Model for Battery Abuse Simulations Using LS-DYNA

A Distributed Randles Circuit Model for Battery Abuse Simulations Using LS-DYNA Page 1 A Distributed Randles Circuit Model for Battery Abuse Simulations Using LS-DYNA Pierre L Eplattenier 1, Iñaki Çaldichoury 1 James Marcicki 2, Alexander Bartlett 2, Xiao Guang Yang 2, Valentina Mejia

More information

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires

A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel Current Wires 13 th International LS-DYNA Users Conference Session: Electromagnetic A Simple Weak-Field Coupling Benchmark Test of the Electromagnetic-Thermal-Structural Solution Capabilities of LS-DYNA Using Parallel

More information

Simulating the Joining of Composite Materials by Electromagnetic Induction

Simulating the Joining of Composite Materials by Electromagnetic Induction 12 th International LS-DYNA Users Conference Electromagnetic(2) Simulating the Joining of Composite Materials by Electromagnetic Induction M. Duhovic, L. Moser, P. Mitschang, M. Maier Institut für Verbundwerkstoffe

More information

Electromagnetism Review Sheet

Electromagnetism Review Sheet Electromagnetism Review Sheet Electricity Atomic basics: Particle name Charge location protons electrons neutrons + in the nucleus - outside of the nucleus neutral in the nucleus What would happen if two

More information

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules

Electromagnetics in COMSOL Multiphysics is extended by add-on Modules AC/DC Module Electromagnetics in COMSOL Multiphysics is extended by add-on Modules 1) Start Here 2) Add Modules based upon your needs 3) Additional Modules extend the physics you can address 4) Interface

More information

Philippe Wendling

Philippe Wendling Flux: Transformers xxx Philippe Wendling info@tianyuantech.com Create,,Design, sg Engineer! www.magsoft-flux.com www.cedrat.com Possible analysis Modeling any type of industrial transformers: three-phase,

More information

Introduction. HFSS 3D EM Analysis S-parameter. Q3D R/L/C/G Extraction Model. magnitude [db] Frequency [GHz] S11 S21 -30

Introduction. HFSS 3D EM Analysis S-parameter. Q3D R/L/C/G Extraction Model. magnitude [db] Frequency [GHz] S11 S21 -30 ANSOFT Q3D TRANING Introduction HFSS 3D EM Analysis S-parameter Q3D R/L/C/G Extraction Model 0-5 -10 magnitude [db] -15-20 -25-30 S11 S21-35 0 1 2 3 4 5 6 7 8 9 10 Frequency [GHz] Quasi-static or full-wave

More information

Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil

Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling. Henrik Nordborg HSR University of Applied Sciences Rapperswil Simulations of Electrical Arcs: Algorithms, Physical Scales, and Coupling Henrik Nordborg HSR University of Applied Sciences Rapperswil What is an electrical arc? 2 Technical applications of arcs and industrial

More information

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION.

PHYSICS - GIANCOLI CALC 4E CH 29: ELECTROMAGNETIC INDUCTION. !! www.clutchprep.com CONCEPT: ELECTROMAGNETIC INDUCTION A coil of wire with a VOLTAGE across each end will have a current in it - Wire doesn t HAVE to have voltage source, voltage can be INDUCED i V Common

More information

Medical Physics & Science Applications

Medical Physics & Science Applications Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-5: Introduction to the Finite Element Method Introduction Finite Element Method is used

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other. Exam II Solutions Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. 1.! Concerning electric and magnetic fields, which of the following is wrong?!! A

More information

Numerical Simulation and Experimental Study of Electromagnetic Forming

Numerical Simulation and Experimental Study of Electromagnetic Forming 11 th International LS-DYNA Users Conference Metal Forming Numerical Simulation and Experimental Study of Electromagnetic Forming Jianhui Shang 1, Pierre L Eplattenier 2, Larry Wilkerson 1, Steve Hatkevich

More information

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons. Magnetism Electricity Magnetism Magnetic fields are produced by the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. -> permanent magnets Magnetic

More information

NUMERICAL SIMULATION OF ELECTROMAGNETIC FORMING PROCESS USING A COMBINATION OF BEM AND FEM

NUMERICAL SIMULATION OF ELECTROMAGNETIC FORMING PROCESS USING A COMBINATION OF BEM AND FEM NUMERICAL SIMULATION OF ELECTROMAGNETIC FORMING PROCESS USING A COMBINATION OF BEM AND FEM Ibai Ulacia 1, José Imbert 2, Pierre L Eplattenier 3, Iñaki Hurtado 1, Michael J. Worswick 2 1 Dept. of Manufacturing,

More information

Lua, Boundary Conditions and ect..

Lua, Boundary Conditions and ect.. Lua, Boundary Conditions and ect.. Some further informations about calculating in Femm M. Rad 10.03.2017 Outline Lua scripting Border conditions About torque and force calculation in Femm Lua scripts To

More information

Thomas Johansson DYNAmore Nordic AB. Drop Test Simulation

Thomas Johansson DYNAmore Nordic AB. Drop Test Simulation Thomas Johansson DYNAmore Nordic AB Drop Test Simulation Plastic Work Displacement LS-DYNA solve all your applications One Code for Multi-Physics Solutions Thermal Solver Implicit Double precision EM Solver

More information

Numerical Simulation and Experimental Study for Magnetic Pulse Welding Process on AA6061-T6 and Cu101 Sheet

Numerical Simulation and Experimental Study for Magnetic Pulse Welding Process on AA6061-T6 and Cu101 Sheet 10 th International LS-DYNA Users Conference Simulation Technology (2) Numerical Simulation and Experimental Study for Magnetic Pulse Welding Process on AA6061-T6 and Cu101 Sheet Yuan Zhang 1, Pierre L

More information

Battery Abuse Case Study Analysis Using LS-DYNA

Battery Abuse Case Study Analysis Using LS-DYNA 14 th International LS-DYNA Users Conference Session: Electromagnetic Battery Abuse Case Study Analysis Using LS-DYNA James Marcicki 1, Alexander Bartlett 1, Xiao Guang Yang 1, Valentina Mejia 1, Min Zhu

More information

Finite Element Model of a Magnet Driven Reed Switch

Finite Element Model of a Magnet Driven Reed Switch Excerpt from the Proceedings of the COMSOL Conference 2008 Boston Finite Element Model of a Magnet Driven Reed Switch Bryan M. LaBarge 1 and Dr. Ernesto Gutierrez-Miravete 2 1 Gems Sensors and Controls,

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

A BEM method for Electromagnetics in complex 3D geometries

A BEM method for Electromagnetics in complex 3D geometries A BEM method for Electromagnetics in complex 3D geometries P. L Eplattenier, I. Çaldichoury Livermore Software Technology Corporation, Livermore, CA, USA Abstract An electromagnetism module is under development

More information

LECTURE 17. Reminder Magnetic Flux

LECTURE 17. Reminder Magnetic Flux LECTURE 17 Motional EMF Eddy Currents Self Inductance Reminder Magnetic Flux Faraday s Law ε = dφ B Flux through one loop Φ B = BAcosθ da Flux through N loops Φ B = NBAcosθ 1 Reminder How to Change Magnetic

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

5) Two large metal plates are held a distance h apart, one at a potential zero, the other

5) Two large metal plates are held a distance h apart, one at a potential zero, the other Promlems 1) Find charge distribution on a grounded conducting sphere with radious R centered at the origin due to a charge q at a position (r,θ,φ) outside of the sphere. Plot the charge distribution as

More information

Physics 196 Final Test Point

Physics 196 Final Test Point Physics 196 Final Test - 120 Point Name You need to complete six 5-point problems and six 10-point problems. Cross off one 5-point problem and one 10-point problem. 1. Two small silver spheres, each with

More information

ADAM PIŁAT Department of Automatics, AGH University of Science and Technology Al. Mickiewicza 30, Cracow, Poland

ADAM PIŁAT Department of Automatics, AGH University of Science and Technology Al. Mickiewicza 30, Cracow, Poland Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 4, 497 501 FEMLAB SOFTWARE APPLIED TO ACTIVE MAGNETIC BEARING ANALYSIS ADAM PIŁAT Department of Automatics, AGH University of Science and Technology

More information

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 30 Lecture RANDALL D. KNIGHT Chapter 30 Electromagnetic Induction IN THIS CHAPTER, you will learn what electromagnetic induction is

More information

General Physics II. Electromagnetic Induction and Electromagnetic Waves

General Physics II. Electromagnetic Induction and Electromagnetic Waves General Physics II Electromagnetic Induction and Electromagnetic Waves 1 Induced emf We have seen that an electric current produces a magnetic field. Michael Faraday demonstrated that a magnetic field

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

EM THEORY MANUAL. Electromagnetism and Linear Algebra in LS-DYNA. Tested with LS-DYNA R v980 Revision Beta. Thursday 9 th August, 2012

EM THEORY MANUAL. Electromagnetism and Linear Algebra in LS-DYNA. Tested with LS-DYNA R v980 Revision Beta. Thursday 9 th August, 2012 EM THEORY MANUAL Electromagnetism and Linear Algebra in LS-DYNA Tested with LS-DYNA R v980 Revision Beta Thursday 9 th August, 2012 Disclaimer: LSTC does not warrant that the material contained herein

More information

Final Exam Concept Map

Final Exam Concept Map Final Exam Concept Map Rule of thumb to study for any comprehensive final exam - start with what you know - look at the quiz problems. If you did not do well on the quizzes, you should certainly learn

More information

Lecture 24. April 5 th, Magnetic Circuits & Inductance

Lecture 24. April 5 th, Magnetic Circuits & Inductance Lecture 24 April 5 th, 2005 Magnetic Circuits & Inductance Reading: Boylestad s Circuit Analysis, 3 rd Canadian Edition Chapter 11.1-11.5, Pages 331-338 Chapter 12.1-12.4, Pages 341-349 Chapter 12.7-12.9,

More information

Possibilities of Using COMSOL Software in Physics

Possibilities of Using COMSOL Software in Physics ALEKSANDRAS STULGINSKIS UNIVERSITY Possibilities of Using COMSOL Software in Physics Jolita Sakaliūnienė 1 Overview Requirement of study quality Student motivation COMSOL software Composition of COMSOL

More information

3D Finite Element Analysis of Flexible Induction Heating System of Metallic Sheets

3D Finite Element Analysis of Flexible Induction Heating System of Metallic Sheets 3D Finite Element Analysis of Flexible Induction Heating System of Metallic Sheets T. Tudorache, P. Deaconescu POLITEHNICA University of Bucharest, EPM_NM Laboratory 313 Splaiul Independentei, 642, Bucharest,

More information

Coupled problems require the simultaneous solution of more than one physics module of LS-DYNA to obtain an accurate result.

Coupled problems require the simultaneous solution of more than one physics module of LS-DYNA to obtain an accurate result. Coupled problems require the simultaneous solution of more than one physics module of LS-DYNA to obtain an accurate result. Accurate CFD analysis will require structural coupling The mechanical behavior

More information

Finite Element Method based investigation of IPMSM losses

Finite Element Method based investigation of IPMSM losses Finite Element Method based investigation of IPMSM losses Martin Schmidtner 1, Prof. Dr. -Ing. Carsten Markgraf 1, Prof. Dr. -Ing. Alexander Frey 1 1. Augsburg University of Applied Sciences, Augsburg,

More information

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors L05: Capacitors and Inductors 50 Capacitors 51 Outline of the lecture: Capacitors and capacitance. Energy storage. Capacitance formula. Types of capacitors. Inductors and inductance. Inductance formula.

More information

Virgiliu FIRETEANU, Alex-Ionel CONSTANTIN Patrick LOMBARD, Diana MAVRUDIEVA. FLUX Conference 2013, October 16-18, Aix-les-Bains, France

Virgiliu FIRETEANU, Alex-Ionel CONSTANTIN Patrick LOMBARD, Diana MAVRUDIEVA. FLUX Conference 2013, October 16-18, Aix-les-Bains, France Transverse Flux Induction Heating of the Magnetic Nonlinear Sheets. The Non-magnetic Sheet Model. Transversal Non-uniformity of Heating. Sheet Screening Optimization Virgiliu FIRETEANU, Alex-Ionel CONSTANTIN

More information

Electromagnetic characterization of magnetic steel alloys with respect to the temperature

Electromagnetic characterization of magnetic steel alloys with respect to the temperature Electromagnetic characterization of magnetic steel alloys with respect to the temperature B Paya, P Teixeira To cite this version: B Paya, P Teixeira. Electromagnetic characterization of magnetic steel

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction In this chapter we investigate how changing the magnetic flux in a circuit induces an emf and a current. We learned in Chapter 25 that an electromotive force (E) is

More information

CST EM : Examples. Chang-Kyun PARK (Ph. D. St.) Thin Films & Devices (TFD) Lab.

CST EM : Examples. Chang-Kyun PARK (Ph. D. St.)   Thin Films & Devices (TFD) Lab. CST Advanced Training 2004 @ Daedeok Convention Town (2004.03.24) CST EM : Examples TM EM Studio TM Chang-Kyun PARK (Ph. D. St.) E-mail: ckpark@ihanyang.ac.kr Thin Films & Devices (TFD) Lab. Dept. of Electrical

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

CAD package for electromagnetic and thermal analysis using finite elements. Flux. by CEDRAT. Magneto Static application tutorial.

CAD package for electromagnetic and thermal analysis using finite elements. Flux. by CEDRAT. Magneto Static application tutorial. CAD package for electromagnetic and thermal analysis using finite elements Flux by CEDRAT Magneto Static application tutorial 2D basic example Flux is a registered trademark. Flux software : COPYRIGHT

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT: Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method Yun Hang, Mhamed Souli, Rogelio Perez Livermore Software Technology Corporation USA & University of Lille Laboratoire

More information

New Facilities for Multiphysics Modelling in Opera-3d version 16 By Chris Riley

New Facilities for Multiphysics Modelling in Opera-3d version 16 By Chris Riley FEA ANALYSIS General-purpose multiphy sics design and analy sis softw are for a w ide range of applications OPTIMIZER A utomatically selects and manages multiple goalseeking algorithms INTEROPERABILITY

More information

Electromagnetic Analysis Applied to the Prediction of Stray Losses in Power Transformer

Electromagnetic Analysis Applied to the Prediction of Stray Losses in Power Transformer Electromagnetic Analysis Applied to the Prediction of Stray Losses in Power Transformer L. Susnjic 1), Z. Haznadar 2) and Z. Valkovic 3) 1) Faculty of Engineering Vukovarska 58, 5 Rijeka, Croatia, e-mail:

More information

Introduction to Electric Circuit Analysis

Introduction to Electric Circuit Analysis EE110300 Practice of Electrical and Computer Engineering Lecture 2 and Lecture 4.1 Introduction to Electric Circuit Analysis Prof. Klaus Yung-Jane Hsu 2003/2/20 What Is An Electric Circuit? Electrical

More information

Plasma Simulation in STAR-CCM+ -- towards a modern software tool

Plasma Simulation in STAR-CCM+ -- towards a modern software tool Plasma Simulation in STAR-CCM+ -- towards a modern software tool 1 Introduction Electrical arcs and other forms of industrial plasmas have a large number of technical applications, including circuit breakers,

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

Chapter 15 Magnetic Circuits and Transformers

Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the right-hand rule to determine

More information

Symbol Meaning unit. 2. k 3. q. 4. r. 5. E 6. R Total 7. 1/R Total 8. P 9. V 10. I 11. R. 12. Q 13. N 14. e 15. F magnetic 16. v 17.

Symbol Meaning unit. 2. k 3. q. 4. r. 5. E 6. R Total 7. 1/R Total 8. P 9. V 10. I 11. R. 12. Q 13. N 14. e 15. F magnetic 16. v 17. Name period 3 rd 9 weeks test PEOPLE and SYMBOLS practice Instructions: Work in groups following Quiz-Quiz-Trade activity Date: Monday 2/25/13 Write what each symbol means, including the unit Symbol Meaning

More information

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco

Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco Thermal Analysis & Design Improvement of an Internal Air-Cooled Electric Machine Dr. James R. Dorris Application Specialist, CD-adapco Thermal Analysis of Electric Machines Motivation Thermal challenges

More information

Material Constitutive Parameter Identification using an Electromagnetic Ring Expansion Experiment Coupled with LS-DYNA and LS-OPT

Material Constitutive Parameter Identification using an Electromagnetic Ring Expansion Experiment Coupled with LS-DYNA and LS-OPT 10 th International LS-DYNA Users Conference pitmization (2) Material Constitutive Parameter Identification using an Electromagnetic ing Expansion Experiment Coupled with LS-DYNA and LS-PT Ismael Henchi*,

More information

Basic design and engineering of normalconducting, iron dominated electro magnets

Basic design and engineering of normalconducting, iron dominated electro magnets CERN Accelerator School Specialized Course on Magnets Bruges, Belgium, 16 25 June 2009 Basic design and engineering of normalconducting, iron dominated electro magnets Numerical design Th. Zickler, CERN

More information

STAR-CCM+ and SPEED for electric machine cooling analysis

STAR-CCM+ and SPEED for electric machine cooling analysis STAR-CCM+ and SPEED for electric machine cooling analysis Dr. Markus Anders, Dr. Stefan Holst, CD-adapco Abstract: This paper shows how two well established software programs can be used to determine the

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS Instructor: Kazumi Tolich Lecture 22 2! Reading chapter 22.5 to 22.7! Magnetic torque on current loops! Magnetic field due to current! Ampere s law! Current

More information

ANSYS 14.5 Capabilities Brochure. Fluid Dynamics Structural Mechanics Electromagnetics Systems & Multiphysics

ANSYS 14.5 Capabilities Brochure. Fluid Dynamics Structural Mechanics Electromagnetics Systems & Multiphysics 14.5 Capabilities Brochure Fluid Dynamics Structural Mechanics Electromagnetics Systems & Multiphysics Product Solutions 14.5 Multiphysics Mechanical Structural DesignSpace Explicit STR Autodyn LS-DYNA

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature:   Section Number: Do not fill out the information below until instructed to do so! Name: Signature: E-mail: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly

More information

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA 12 th International LS-DYNA Users Conference Simulation(2) BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA Mhamed Souli, Yun Huang, Rongfeng Liu Livermore Software Technology Corporation

More information

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Problem info Geometry model Labelled Objects Results Nonlinear dependencies Problem info Problem type: Transient Magnetics (integration time: 9.99999993922529E-09 s.) Geometry model class: Plane-Parallel Problem database file names: Problem: circuit.pbm Geometry: Circuit.mod Material

More information

A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives

A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives Excerpt from the Proceedings of the COMSOL Conference 2008 Boston A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives Ranjith Divigalpitiya 3M Canada Laboratory 3M Canada

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15)

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE PART A. 1. Define mutual inductance and self inductance. (A/M-15) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF EEE EE6302-ELECTROMAGNETIC THEORY UNIT 4 PART A 1. Define mutual inductance and self inductance. (A/M-15) Self inductance is the ration between the induced

More information

r where the electric constant

r where the electric constant 1.0 ELECTROSTATICS At the end of this topic, students will be able to: 10 1.1 Coulomb s law a) Explain the concepts of electrons, protons, charged objects, charged up, gaining charge, losing charge, charging

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera ELECTROMAGNETISM Q # 1. Describe the properties of magnetic field due to current in a long straight conductor. Ans. When the heavy current is passed through a straight conductor: i. A magnetic field is

More information

Combined Science Physics Academic Overview

Combined Science Physics Academic Overview Combined Science Physics Academic Overview 2018-19 Science Term 1.1 Term 1.2 Term 2.1 Term 2.2 Term 3.1 Term 3.1 Year 9 Motion Forces 1 Newton s Laws Forces 2 Momentum and Safety Energy Waves End of year

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 29 Electromagnetic Induction PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 29 Looking forward

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition Conceptual Physical Science 6 th Edition Chapter 8: STATIC AND CURRENT ELECTRICITY 1 Chapter 8: STATIC AND CURRENT ELECTRICITY Chapter 8: Read: All Homework: Four problems from the following set: 4, 6,

More information

Sliding Conducting Bar

Sliding Conducting Bar Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field

More information

Chapter Electrostatic Potential and Capacitance

Chapter Electrostatic Potential and Capacitance Chapter Electrostatic Potential and Capacitance C/ 2 C/2 Ans: Q6. MockTime.com Q1. A 4µF conductor is charged to 400 volts and then its plates are joined through a resistance of 1 kω. The heat produced

More information

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level)

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) 1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Physics (A-level) Electromagnetic induction (Chapter 23): For a straight wire, the induced current or e.m.f. depends on: The magnitude of the magnetic

More information

Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II

Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II In today s lecture, we will finish our discussion of Gauss law. Slide 25-1 Applying Gauss s law Procedure: Calculating

More information

FEA Information Engineering Journal

FEA Information Engineering Journal ISSN 2167-1273 Volume 2, Issue 8, August 2013 FEA Information Engineering Journal R7 LS-DYNA 9 th European LS-DYNA Users Conference FEA Information Engineering Journal Aim and Scope FEA Information Engineering

More information

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will

More information

Version The diagram below represents lines of magnetic flux within a region of space.

Version The diagram below represents lines of magnetic flux within a region of space. 1. The diagram below represents lines of magnetic flux within a region of space. 5. The diagram below shows an electromagnet made from a nail, a coil of insulated wire, and a battery. The magnetic field

More information

1. A solenoid is a powerful magnet that is created by looping a conductor and passing a current through the conductor.

1. A solenoid is a powerful magnet that is created by looping a conductor and passing a current through the conductor. Electricity and Magnetism Unit Test /60 Part A: True/False [5 K/U] In the blank provided, identify if the statement is true or false. If the statement is false, identify and correct the portion that is

More information

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1

Chapter 2: Fundamentals of Magnetism. 8/28/2003 Electromechanical Dynamics 1 Chapter 2: Fundamentals of Magnetism 8/28/2003 Electromechanical Dynamics 1 Magnetic Field Intensity Whenever a magnetic flux, φ, exist in a conductor or component, it is due to the presence of a magnetic

More information

7th Grade Task for today:

7th Grade Task for today: 7th Grade Task for today: Complete the Magnetism and Electricity task sheet. Be sure to complete both sides Use pages 654-677 for Magnetism Use pages 682-717 for Electricity 1. How do magnec poles interact?

More information

2. How do electrically charged objects affect neutral objects when they come in contact?

2. How do electrically charged objects affect neutral objects when they come in contact? North arolina Testing Program EO Physical Science Sample Items Goal 4 1. When a plastic rod is rubbed with fur, the plastic rod becomes negatively charged. Which statement explains the charge transfer

More information

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00 NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 2008 (12041002) (X-Paper) 09:00 12:00 EXEMPLAR This question paper consists of 7 pages. EXEMPLAR -2- NC(V) TIME: 3 HOURS

More information

Outline. Tension test of stainless steel type 301. Forming including the TRIP-effect

Outline. Tension test of stainless steel type 301. Forming including the TRIP-effect Outline Erweiterte Kontaktformulierung, User-Reibmodell und thermische Analyse Simulationsmöglichkeiten zur Werkzeugauslegung mit LS-DYNA Workshop Simulation in der Umformtechnik Institut für Statik und

More information

Lecture 33. PHYC 161 Fall 2016

Lecture 33. PHYC 161 Fall 2016 Lecture 33 PHYC 161 Fall 2016 Faraday s law of induction When the magnetic flux through a single closed loop changes with time, there is an induced emf that can drive a current around the loop: Recall

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism

NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism NIU Ph.D. Candidacy Examination Fall 2018 (8/21/2018) Electricity and Magnetism You may solve ALL FOUR problems if you choose. The points of the best three problems will be counted towards your final score

More information

Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method.

Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method. Solving a magnetic diffusion equation by the Mixed Hybrid Finite Element method. Corinne Aymard, Christophe Fochesato CEA, DAM, DIF, F-91297 Arpajon CEA/DAM/DIF 6 juillet 2010 1 Outline Objectives Model

More information

Magnetic Field Analysis

Magnetic Field Analysis NISA - EMAG EMAG is the electromagnetic module of the family of general purpose finite element based program NISA. It can determine electric and magnetic field distributions in a wide class of electromagnetic

More information