Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Size: px
Start display at page:

Download "Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits"

Transcription

1 Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018

2 Last time using Kirchhoff s laws

3 Overview two Kirchhoff trick problems resistance-capacitance circuits

4 (a) (b) (c) Using Kirchhoff s Laws examples Fig Question 5. 6 Res-monster maze. In Fig , all the resistors have a resistance of 4.0 and all the (ideal) batteries have an emf of 4.0 V. What is the current through resistor R? (If you can find the proper loop through this maze, you can answer the question with a few seconds of mental calculation.) (b) Are istances o abatl. Rank through R x tion 4. Fig Question 6. 1 Halliday, Resnick, Walker, 8th ed, page 725, question 6.

5 rent i 1 through R 1 now more than, less than, or the same as previously? (c) Is the equivalent resistance R 12 of R 1 and R 2 more than, less than, or equal to R 1? Using Kirchhoff s Laws examples 8 Cap-monster maze. In Fig , all the capacitors have a capacitance of 6.0 mf, and all the batteries have an emf of 10 V. What is the charge on capacitor C? (If you can find the proper loop through this maze, you can answer the question with a few seconds of mental calculation.) C R 2 more through current t 10 Aft closed on through gives tha values of and C 0,( 2C 0,(4) 2 with whic 11 Figu tions of nected in via a swi capacito rium) ch capacito Fig Question 8. 1 Halliday, Resnick, Walker, 8th ed, page 726, question 8.

6 Time Varying Circuits In circuits charge is not static, but moving. Current does not necessarily have to remain constant in time. Capacitors take some time to charge and discharge due to resistances in the wires. Other components also cause current to behave differently at different times, but for now, we will concentrate on circuits with resistors and capacitors.

7 RC Circuits Circuits with resistors and capacitors are called RC circuits. + a b S Fig When switch S is closed on a,the capacitor is charged through the re- R C C T cl ca ch te p p h li

8 Charging a Capacitor When an uncharged capacitor is first connected to an electrical potential difference, a current will flow. Once the capacitor is fully charged however, q = C ( V ), current has no where to flow and stops. The capacitor gently switches off the current.

9 at t 0 t Charge goes to varies with time equation acitor 16a. (27-34) e current becomes elative The capacitor s charge grows as the resistor's The charge on the capacitor current changes dies out. with time. 12 q ( µ C) i (ma) Time (ms) 6 4 Current is the rate of charge flow with time: i = dq 2 C (a) It is possible to determine how if changes by considering the loop rule for a resistor in series with a capacitor: E /R ir q C = 0 dt.

10 Charge varies with time If we replace i in our equation with the derivative: E R dq dt q C = 0 This is a differential equation. There is a way to solve such equations to find solutions for how q depends on time. Here, separation of the variables q and t is possible.

11 Charge varies with time Rearranging: E R dq dt q C = 0 dq dt 1 CE q dq = = CE RC 1 RC dt q RC The limits of our integral will be determined by the initial conditions for the situation we are considering.

12 RC Circuits: Charging Capacitor When charging an initially uncharged capacitor: q = 0 at t = 0 q 0 1 CE q dq = t ln(ce q) + ln(ce 0) = t RC ( ) CE ln = t CE q RC CE CE q 0 = e t/rc 1 RC dt The solution is: q(t) = CE (1 ) e t/rc

13 tary RC charge.) Circuits: Note Charging Capacitor n, because at t 0 The capacitor s charge o that as t goes to q(t) = CE (1 ) grows as the resistor's o; so the equation e t/rc current dies out. n the capacitor This solution could also be in Fig a. written in a different way. tor: C Notice Q max = CE.. (27-34) (E takes the place of the potential difference.) te that the current apacitor becomes ( ) q(t) = Q max 1 e t/rc 12 q ( µ C) Time (ms) (a)

14 RC Circuits: Charging Capacitor Using the equation for q, an equation for current can also be found, since i = dq dt : i(t) = ( ) E e t/rc R Dividing the charge by the capacitance C, we can also find the potential difference across the capacitor: V C (t) = E(1 e t/rc )

15 cess is given in Fig a. g the capacitor: RC Circuits: Charging Capacitor How the solutions appear with time: ing a capacitor). (27-34) The capacitor s charge Charge: grows as resistor's Current: g b.Note that the current q = Qcurrent max (1 dies e t/rc Time (ms) zero as the capacitor becomes out. ) i = I i e t/rc (a) 12 q ( µ C) 8 4 C 12 q ( µ C) dinary connecting C wire relative broken wire , we find that the potential rging process 0 2 is Time (ms) (a) where for this circuit ing a capacitor). (27-35) Q max = CE 6 when the capacitor /R becomes i (ma) /R Time (ms) 10 (b) where for this circuit I i = E R Fig (a) A plot of Eq , which shows the buildup of charge on the

16 RC Circuits: Time Constant τ = RC τ is called the time constant of the circuit. This gives the time for the current in the circuit to fall to 1/e of its initial value. It is useful for comparing the relaxation time of different RC-circuits.

17 RC Circuits: Discharging Capacitor Imagine that we have charged up the capacitor, so that the charge on it is Q i. Now we flip the switch to b, the battery is disconnected, but charge flows off the capacitor, creating a current: + a b S Fig When switch S is closed on a,the capacitor is charged through the resistor. When the Rswitch dq is afterward closed on b,the capacitor dtdischarges q C = 0 through the resistor. R C In precedi vary with t Charging The capaci close switc capacitor, a From S charge beg terminal on plates and potential d here is equ librium (fin Here w know how across the charging p

18 RC Circuits: Discharging Capacitor What happens to the charge on the capacitor?

19 RC Circuits: Discharging Capacitor What happens to the charge on the capacitor? q(t) = Q i e t/rc It decreases exponentially with time.

20 RC Circuits: Discharging Capacitor R dq dt q C = 0 When discharging an initially charged capacitor: q = Q i at t = 0 The solution is: q Q i 1 q dq = t ln(q) ln(q i ) = t RC ( ) q ln = t Q i RC 0 q(t) = Q i e t/rc 1 RC dt

21 RC Circuits: Discharging Capacitor What happens to the current? i(t) = I i e t/rc where I i = Q i RC The negative sign means the current flows in the opposite direction through the resistor when discharging as compared with charging. i (ma) /R Time (ms) (b) 10

22 RC Circuits: Discharging Capacitor Multiplying the current by the resistance R gives the potential difference across the resistor: V R (t) = ( V ) i e t/rc The same expression describes the potential difference across the capacitor! V C (t) = ( V ) i e t/rc where ( V ) i = I i R = Q i C.

23 RC(28.19) Circuits Question Current as a function of time for a discharging capacitor Quick Quiz 28.5: Consider the circuit shown and assume the battery has no internal resistance. C at as the he capacid 28.16c.) at a rate tery has ent in the i) After battery? a e choices. (A) 0 e Figure (Quick Quiz 28.5) How does the current vary after the switch is closed? (i) Just after the switch is closed, what is the current in the (B) E/2R (C) 2E/R (D) E/R R R

24 RC (28.19) Circuits Question Current as a function of time for a discharging capacitor Quick Quiz 28.5: Consider the circuit shown and assume the battery has no internal resistance. C at as the he capacid 28.16c.) at a rate tery has ent in the i) After a (A) 0 e choices. e Figure (Quick Quiz 28.5) (ii) After a very long time, what is the current in the battery? How does the current vary after the switch is closed? (B) E/2R (C) 2E/R (D) E/R R R

25 tential. Therefore, Note that e (as opposed to RC Circuits Example When the switch is thrown he circuit Consider and a the capacitor to of position capacitance b, the capacitor C that is being discharged is thrown through to a posiresistor of discharges. resistance R as shown in the figure..11 shows that the C a b (28.12) i R ls appears entirely imum value Q max, otential difference Substituting i 5 0 After how many time constants is the charge on the capacitor one-fourth (28.13) its initial Figure value? A capacitor in of the charge and ing two variables q b c e e series with a resistor, switch, and battery.

26 RC Circuits Example After how many time constants is the charge on the capacitor one-fourth its initial value? q(t) = Q i e t/rc Let T be the time when the charge is 1/4 of the initial charge. q(t ) Q i = 1 4 e T /τ = 1 4 T τ = ln 4

27 RC Circuits Example After how many time constants is the charge on the capacitor one-fourth its initial value? q(t) = Q i e t/rc Let T be the time when the charge is 1/4 of the initial charge. q(t ) Q i = 1 4 So, e T /τ = 1 4 T τ = ln 4 T = (ln 4)τ = 1.39τ

28 tential. Therefore, RC Circuits Note that Example e (as opposed to When the switch is thrown he circuit Consider and a the capacitor to of position capacitance b, the capacitor C that is being discharged is thrown through to a posiresistor of discharges. resistance R as shown in the figure..11 shows that the C a b (28.12) i R ls appears entirely imum value Q max, otential difference Substituting i 5 0 b c e The energy stored in the capacitor decreases with time as the capacitor (28.13) discharges. Figure After how many A capacitor time in constants is this stored series with a resistor, switch, and energy one-fourth its initial value? of the charge and battery. ing two variables q e. Therefore, the

29 RC Circuits Example After how many time constants is this stored energy one-fourth its initial value? U = q2 2C Now let T be the time when the energy stored is 1/4 of the initial energy. U(T ) U i = 1 4 q(t ) 2 = 1 4 Q 2 i e T /τ = 1 2

30 RC Circuits Example After how many time constants is this stored energy one-fourth its initial value? U = q2 2C Now let T be the time when the energy stored is 1/4 of the initial energy. U(T ) U i = 1 4 q(t ) 2 = 1 4 Q 2 i e T /τ = 1 2 So, T = (ln 2)τ = 0.693τ

31 s discussed earlier RC Circuits Example 28.11: ion from the positential. Therefore, b e Energy delivered Note that e (as A opposed 5.00 µf capacitor to is charged to a potential difference of 800 V and then discharged through a resistor. How much energy is When the switch is thrown he circuit delivered and to the the resistor to position in the time b, the interval capacitor required to fully is thrown discharge to posithe capacitor? discharges..11 shows that the (28.12) ls appears entirely imum value Q max, otential difference Substituting i 5 0 c a e b C i R (28.13) Figure A capacitor in series with a resistor, switch, and

32 RC Circuits Example 28.11: Energy delivered C = 5.00 µf, V = 800 V. How much energy is delivered to the resistor in the time interval required to fully discharge the capacitor? Two ways: (1) Energy conservation. (2) sum up the power delivered over the time.

33 RC Circuits Example 28.11: Energy delivered Way (1): Energy not stored in the resistor must have been delivered to the resistor. U C + E R = 0 E R = U C,i U C,f

34 RC Circuits Example 28.11: Energy delivered Way (1): Energy not stored in the resistor must have been delivered to the resistor. U C + E R = 0 E R = U C,i U C,f = Q2 i 2C 0 (C V )2 = 2C C ( V )2 = 2 0 E R = 1.60 J

35 RC Circuits Example 28.11: Energy delivered Way (2): integrate the power delivered over the time P = dw dt E R = P dt = i 2 R dt = R 0 I 2 i e 2t/RC dt

36 RC Circuits Example 28.11: Energy delivered Way (2): integrate the power delivered over the time E R = = P = dw dt P dt i 2 R dt = R Ii 2 e 2t/RC dt 0 [ = Ii 2 R RC ] 2 e 2t/RC 0 Same! E R = 1.60 J = = ( V R C( V )2 2 ) 2 R 2 C 2

37 Summary resistance-capacitance circuits Next Test on Feb 15. Homework Serway & Jewett: NEW: Ch 28, onward from page 857. Problems: 37, 41, 43, 45, 65, 71

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance

Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance Lana Sheridan De Anza College Mar 14, 2018 Last time inductors resistor-inductor circuits Overview wrap up resistor-inductor circuits

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Lana Sheridan De Anza College Feb 9, 08 Last time power Kirchhoff s laws Overview more Kirchhoff examples Example with Two Batteries Find the

More information

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1

RC Circuits (32.9) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 1 (32.9) We have only been discussing DC circuits so far. However, using a capacitor we can create an RC circuit. In this example, a capacitor is charged but the switch is open, meaning no current flows.

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

More information

Electricity and Magnetism Capacitors in Series Energy Stored in a Capacitor

Electricity and Magnetism Capacitors in Series Energy Stored in a Capacitor Electricity and Magnetism Capacitors in Series Energy Stored in a Capacitor Lana Sheridan De Anza College Jan 31, 2018 Last time cylindrical and spherical capacitors Parallel plate capacitors Circuits

More information

Chapter 26 Direct-Current Circuits

Chapter 26 Direct-Current Circuits Chapter 26 Direct-Current Circuits 1 Resistors in Series and Parallel In this chapter we introduce the reduction of resistor networks into an equivalent resistor R eq. We also develop a method for analyzing

More information

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 Physics 212 Lecture 11 ircuits hange in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1 ircuit harging apacitor uncharged, switch is moved to position a Kirchoff

More information

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules

Physics 115. General Physics II. Session 24 Circuits Series and parallel R Meters Kirchoff s Rules Physics 115 General Physics II Session 24 Circuits Series and parallel R Meters Kirchoff s Rules R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 5/15/14 Phys

More information

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71.

Chapter 6 DIRECT CURRENT CIRCUITS. Recommended Problems: 6,9,11,13,14,15,16,19,20,21,24,25,26,28,29,30,31,33,37,68,71. Chapter 6 DRECT CURRENT CRCUTS Recommended Problems: 6,9,,3,4,5,6,9,0,,4,5,6,8,9,30,3,33,37,68,7. RESSTORS N SERES AND N PARALLEL - N SERES When two resistors are connected together as shown we said that

More information

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1 1 (a) Define capacitance..... [1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. S 1 S 2 6.3 V 4.5 μf Fig. 1.1 Switch S 1 is closed and switch S 2 is left

More information

Lecture 27: FRI 20 MAR

Lecture 27: FRI 20 MAR Physics 2102 Jonathan Dowling Lecture 27: FRI 20 MAR Ch.30.7 9 Inductors & Inductance Nikolai Tesla Inductors: Solenoids Inductors are with respect to the magnetic field what capacitors are with respect

More information

Circuits. David J. Starling Penn State Hazleton PHYS 212

Circuits. David J. Starling Penn State Hazleton PHYS 212 Invention is the most important product of man s creative brain. The ultimate purpose is the complete mastery of mind over the material world, the harnessing of human nature to human needs. - Nikola Tesla

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

Circuits Gustav Robert Kirchhoff 12 March October 1887

Circuits Gustav Robert Kirchhoff 12 March October 1887 Welcome Back to Physics 1308 Circuits Gustav Robert Kirchhoff 12 March 1824 17 October 1887 Announcements Assignments for Thursday, October 18th: - Reading: Chapter 28.1-28.2, 28.4 - Watch Video: https://youtu.be/39vkt4cc5nu

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

Laboratory 7: Charging and Discharging a Capacitor Prelab

Laboratory 7: Charging and Discharging a Capacitor Prelab Phys 132L Fall 2018 Laboratory 7: Charging and Discharging a Capacitor Prelab Consider a capacitor with capacitance C connected in series to a resistor with resistance R as shown in Fig. 1. Theory predicts

More information

Electricity and Magnetism Current

Electricity and Magnetism Current Electricity and Magnetism Current Lana Sheridan De Anza College Feb 2, 2018 Last time dielectrics and capacitors uses of capacitors Overview current current density drift speed Motion of Charge Up until

More information

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Circuits. Lectures Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Circuits Lectures 11-12 Chapter 27 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 27 Circuits In this chapter we will cover the following topics: -Electromotive

More information

Lecture 16 - Circuit Problems

Lecture 16 - Circuit Problems Lecture 16 - Circuit Problems A Puzzle... Crash Course in Circuits Compute the change in voltage from point A to point B (in other words, the voltage difference V B - V A ) in the following cases. Current

More information

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance, RL Circuits, LC Circuits, RLC Circuits Inductance, R Circuits, C Circuits, RC Circuits Inductance What happens when we close the switch? The current flows What does the current look like as a function of time? Does it look like this? I t Inductance

More information

Electricity & Optics

Electricity & Optics Physics 241 Electricity & Optics Lecture 12 Chapter 25 sec. 6, 26 sec. 1 Fall 217 Semester Professor Koltick Circuits With Capacitors C Q = C V V = Q C + V R C, Q Kirchhoff s Loop Rule: V I R V = V I R

More information

Direct-Current Circuits. Physics 231 Lecture 6-1

Direct-Current Circuits. Physics 231 Lecture 6-1 Direct-Current Circuits Physics 231 Lecture 6-1 esistors in Series and Parallel As with capacitors, resistors are often in series and parallel configurations in circuits Series Parallel The question then

More information

Chapter 2: Capacitor And Dielectrics

Chapter 2: Capacitor And Dielectrics hapter 2: apacitor And Dielectrics In this chapter, we are going to discuss the different ways that a capacitor could be arranged in a circuit and how its capacitance could be increased. Overview apacitor

More information

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf 1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

More information

Phys 2025, First Test. September 20, minutes Name:

Phys 2025, First Test. September 20, minutes Name: Phys 05, First Test. September 0, 011 50 minutes Name: Show all work for maximum credit. Each problem is worth 10 points. Work 10 of the 11 problems. k = 9.0 x 10 9 N m / C ε 0 = 8.85 x 10-1 C / N m e

More information

INDUCTANCE Self Inductance

INDUCTANCE Self Inductance NDUTANE 3. Self nductance onsider the circuit shown in the Figure. When the switch is closed the current, and so the magnetic field, through the circuit increases from zero to a specific value. The increasing

More information

Direct-Current Circuits

Direct-Current Circuits Direct-Current Circuits A'.3/.". 39 '- )232.-/ 32,+/" 7+3(5-.)232.-/ 7 3244)'03,.5B )*+,"- &'&./( 0-1*234 35-2567+- *7 2829*4-& )"< 35- )*+,"-= 9-4-- 3563 A0.5.C2/'-231).D')232.')2-1 < /633-">&@5-:836+-0"1464-625"-4*43"

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 11. RC Circuits Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Chapter 2: Capacitors And Dielectrics

Chapter 2: Capacitors And Dielectrics hapter 2: apacitors And Dielectrics 2.1 apacitance and capacitors in series and parallel L.O 2.1.1 Define capacitance and use capacitance apacitor is a device that is capable of storing electric charges

More information

Circuits Practice Websheet 18.1

Circuits Practice Websheet 18.1 Circuits Practice Websheet 18.1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How much power is being dissipated by one of the 10-Ω resistors? a. 24

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Electricity and Magnetism Inductance

Electricity and Magnetism Inductance Electricity and Magnetism Inductance ana Sheridan De Anza College Mar 13, 2018 ast time relativity and fields Overview inductors and inductance resistor-inductor circuits Inductors A capacitor is a device

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit

More information

Electricity and Magnetism Capacitors and Dielectrics

Electricity and Magnetism Capacitors and Dielectrics Electricity and Magnetism Capacitors and Dielectrics Lana Sheridan De Anza College Oct 20, 2015 Last time circuits capacitors in series and parallel Warm Up Question pictorial presentation of two pacitors

More information

PHYS 202 Notes, Week 6

PHYS 202 Notes, Week 6 PHYS 202 Notes, Week 6 Greg Christian February 23 & 25, 2016 Last updated: 02/25/2016 at 12:36:40 This week we learn about electromagnetic induction. Magnetic Induction This section deals with magnetic

More information

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the

More information

I(t) R L. RL Circuit: Fundamentals. a b. Specifications: E (emf) R (resistance) L (inductance) Switch S: a: current buildup. b: current shutdown

I(t) R L. RL Circuit: Fundamentals. a b. Specifications: E (emf) R (resistance) L (inductance) Switch S: a: current buildup. b: current shutdown RL Circuit: Fundamentals pecifications: E (emf) R (resistance) L (inductance) witch : a: current buildup a b I(t) R L b: current shutdown Time-dependent quantities: I(t): instantaneous current through

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time? Chapter 25 Term 083 Q13. Each of the two 25-µF capacitors, as shown in Fig. 3, is initially uncharged. How many Coulombs of charge pass through ammeter A after the switch S is closed for long time? A)

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Chapter 28 Direct Current Circuits

Chapter 28 Direct Current Circuits Chapter 28 Direct Current Circuits Multiple Choice 1. t what rate is thermal energy being generated in the 2-resistor when = 12 V and = 3.0 Ω? 2 a. 12 W b. 24 W c. 6.0 W d. 3.0 W e. 1.5 W 2. t what rate

More information

Physics Tutorial - Currents and Circuits

Physics Tutorial - Currents and Circuits Question 1: Ion Channels Physics Tutorial - Currents and Circuits The biochemistry that takes place inside cells depends on various elements that are dissolved in water as ions. The ions enter cells through

More information

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 27-9 Apparatus:

More information

A positive value is obtained, so the current is counterclockwise around the circuit.

A positive value is obtained, so the current is counterclockwise around the circuit. Chapter 7. (a) Let i be the current in the circuit and take it to be positive if it is to the left in. We use Kirchhoff s loop rule: ε i i ε 0. We solve for i: i ε ε + 6. 0 050.. 4.0Ω+ 80. Ω positive value

More information

Physics 220: Worksheet 7

Physics 220: Worksheet 7 (1 A resistor R 1 =10 is connected in series with a resistor R 2 =100. A current I=0.1 A is present through the circuit. What is the power radiated in each resistor and also in the total circuit? (2 A

More information

The RC Time Constant

The RC Time Constant The RC Time Constant Objectives When a direct-current source of emf is suddenly placed in series with a capacitor and a resistor, there is current in the circuit for whatever time it takes to fully charge

More information

Physics 208, Spring 2016 Exam #2

Physics 208, Spring 2016 Exam #2 Physics 208, Spring 2016 Exam #2 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

More information

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used).

To receive full credit, you must show all your work (including steps taken, calculations, and formulas used). Page 1 Score Problem 1: (35 pts) Problem 2: (25 pts) Problem 3: (25 pts) Problem 4: (25 pts) Problem 5: (15 pts) TOTAL: (125 pts) To receive full credit, you must show all your work (including steps taken,

More information

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017 PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

More information

Physics 102: Lecture 7 RC Circuits

Physics 102: Lecture 7 RC Circuits Physics 102: Lecture 7 C Circuits Physics 102: Lecture 7, Slide 1 C Circuits Circuits that have both resistors and capacitors: K Na Cl C ε K ε Na ε Cl S With resistance in the circuits, capacitors do not

More information

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. 1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the

More information

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits Prof. Anyes Taffard Physics 120/220 Voltage Divider Capacitor RC circuits Voltage Divider The figure is called a voltage divider. It s one of the most useful and important circuit elements we will encounter.

More information

Tactics Box 23.1 Using Kirchhoff's Loop Law

Tactics Box 23.1 Using Kirchhoff's Loop Law PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

More information

Electric Circuits Fall 2015 Solution #5

Electric Circuits Fall 2015 Solution #5 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Wednesday, March 8, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 5.1 Ohm s Law and Resistance ELECTRIC CURRENT is defined as flow of electric charge through a cross-sectional area Convention i = dq dt Unit

More information

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

More information

Physics Jonathan Dowling. Final Exam Review

Physics Jonathan Dowling. Final Exam Review Physics 2102 Jonathan Dowling Physics 2102 Final Exam Review A few concepts: electric force, field and potential Electric force: What is the force on a charge produced by other charges? What is the force

More information

MasteringPhysics: Assignment Print View. Problem 30.50

MasteringPhysics: Assignment Print View. Problem 30.50 Page 1 of 15 Assignment Display Mode: View Printable Answers phy260s08 homework 13 Due at 11:00pm on Wednesday, May 14, 2008 View Grading Details Problem 3050 Description: A 15-cm-long nichrome wire is

More information

Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.

Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor. Lab 08: Capacitors Last edited March 5, 2018 Learning Objectives: 1. Understand the short-term and long-term behavior of circuits containing capacitors. 2. Understand the mathematical relationship between

More information

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L. 1 (a) A charged capacitor is connected across the ends of a negative temperature coefficient (NTC) thermistor kept at a fixed temperature. The capacitor discharges through the thermistor. The potential

More information

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004 ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor.

Experiment 4. RC Circuits. Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Experiment 4 RC Circuits 4.1 Objectives Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. Graphically determine the time constant τ for the decay. 4.2

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 23 University Physics (PHY 2326) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors 3/26/2015

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

PHYS 202. Lecture 7 Professor Stephen Thornton February 9, 2006

PHYS 202. Lecture 7 Professor Stephen Thornton February 9, 2006 PHYS 202 Lecture 7 Professor Stephen Thornton February 9, 2006 Reading Quiz What is the result when we break a thin bar magnet in two pieces? 1. One piece has only a N pole. The other piece only a S pole.

More information

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Lana heridan De Anza College Mar 8, 2018 Last time Lenz s law applying Faraday s law in problems technological applications Overview

More information

Electricity and Magnetism Applying Faraday s Law

Electricity and Magnetism Applying Faraday s Law Electricity and Magnetism Applying Faraday s Law Lana heridan De Anza College Nov 24, 2015 Last time Ampere s law Faraday s law Lenz s law Overview induction and energy transfer induced electric fields

More information

Physics 24 Exam 2 March 18, 2014

Physics 24 Exam 2 March 18, 2014 Exam Total / 200 Physics 24 Exam 2 March 18, 2014 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. You need to store electrical

More information

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark)

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark) Q1.n uncharged 4.7 nf capacitor is connected to a 1.5 V supply and becomes fully charged. How many electrons are transferred to the negative plate of the capacitor during this charging process? 2.2 10

More information

Physics 2135 Exam 2 March 22, 2016

Physics 2135 Exam 2 March 22, 2016 Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An air-filled

More information

Discussion Question 7A P212, Week 7 RC Circuits

Discussion Question 7A P212, Week 7 RC Circuits Discussion Question 7A P1, Week 7 RC Circuits The circuit shown initially has the acitor uncharged, and the switch connected to neither terminal. At time t = 0, the switch is thrown to position a. C a

More information

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

More information

Physics 6B Summer 2007 Final

Physics 6B Summer 2007 Final Physics 6B Summer 2007 Final Question 1 An electron passes through two rectangular regions that contain uniform magnetic fields, B 1 and B 2. The field B 1 is stronger than the field B 2. Each field fills

More information

= e = e 3 = = 4.98%

= e = e 3 = = 4.98% PHYS 212 Exam 2 - Practice Test - Solutions 1E In order to use the equation for discharging, we should consider the amount of charge remaining after three time constants, which would have to be q(t)/q0.

More information

IMPORTANT Read these directions carefully:

IMPORTANT Read these directions carefully: Physics 208: Electricity and Magnetism Common Exam 2, October 17 th 2016 Print your name neatly: First name: Last name: Sign your name: Please fill in your Student ID number (UIN): _ - - Your classroom

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

Chapter 21. Ac Circuits

Chapter 21. Ac Circuits Chapter 21 Ac Circuits AC current Transformer Transforms AC voltage UP or DOWN Historical basis for AC Grid your use George Westinghouse (AC) vs Edison (DC) Losses due to resistance in wire and eddy currents

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

More information

Physics Physics 2102

Physics Physics 2102 Physics 2102 Jonathan Dowling Physics 2102 Exam 2: Review Session Chapters 24.9-28.8 / HW04-06 Some links on exam stress: http://appl003.lsu.edu/slas/cas.nsf/$content/stress+management+tip+1 http://wso.williams.edu/orgs/peerh/stress/exams.html

More information

Lecture 19: WED 07 OCT

Lecture 19: WED 07 OCT b Physics 2113 a Jonathan Dowling Lecture 19: WED 07 OCT Circuits I 27.2: Pumping Charges: In order to produce a steady flow of charge through a resistor, one needs a charge pump, a device that by doing

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information