CVEEN 7330 Modeling Exercise 2c

Size: px
Start display at page:

Download "CVEEN 7330 Modeling Exercise 2c"

Transcription

1 CVEEN 7330 Modeling Exercise 2c Table of Contents Table of Contents... 1 Objectives:... 2 FLAC Input:... 2 DEEPSOIL INPUTS:... 5 Required Outputs from FLAC:... 6 Required Output from DEEPSOIL:... 6 Additional Calculations and Discussion:... 6 FLAC Helps... 7 Seismosignal Helps... 9 FLAC Solution: DEEPSOIL Solution: Required Calculations and Discussion: FLAC Source Code DEEPSOIL Input File Printout

2 Objectives: This modeling exercise compares the nonlinear dynamic results for a 1D homogeneous soil column form FLAC with hysteretic damping to those of DEEPSOIL using modified hyperbolic model. FLAC is a 2D nonlinear dynamic code. DEEPSOIL is a 1D nonlinear code. Thus, we will develop a 1D FLAC model and compare the results with DEEPSOIL output for a simple ground response analysis using a homogenous sand profile. FLAC Input: To develop the FLAC 1D model, we will use an example file and modify it. The example project file is found in: C:\Program Files\Itasca\flac500\Options\3-Dynamic\ op_03_12.prj Geometry: 20 m high model by 1 m width. Boundary Conditions: Fix all elements in the y direction Model Type: 2

3 Elastic with hysteretic damping Hysteretic damping model (use default model (2 parameter model) with following properties (default ) (see pink lines in Figures 3.27 and 3.28 below, which represent the default model parameters of and 0.823) Elastic Material Properties: density = 2000 kg/m 3 shear modulus = 0.97e8 N/m 2 = 97 MPa bulk modulus = 2e8 N/m 2 = 200 Mpa Input Acceleration Time History: Taft Record (unscaled) (obtained from course website) 3

4 4

5 DEEPSOIL INPUTS: Type of Analysis Nonlinear Total Stress Metric Pressure-Dependent Hyperbolic Model: Masing Criteria Input Properties by Modulus Geometry: 20 m deep soil model with 20 1-m thick sand layers. Material Properties: density = kn/m 3 (2000 kg/m 3 ) shear modulus = 0.97e8 N/m 2 = 97 Mpa = kpa Shear modulus reduction curves from table below User-Defined 11 points Use the points that corresponds to the pink lines in Figure 3.27 and Figure 3.28 (see below) Shear strain (%) G/Gmax Damping (%) Bedrock Properties Rigid 5

6 Input Acceleration Time History: Taft Record (unscaled from course website) Required Outputs from FLAC: 1. Acceleration time history at base of model (node i = 1) 2. Acceleration time history at middle of model (node i=11) 3. Acceleration time history at top of model (node i=21) 4. Shear stress versus shear strain time history for middle of model (between nodes j=11 and j=10) 5. Surface acceleration response spectrum (5 percent damped) as a function of period. (Use Seismosignal and the results from no. 3 above). 6. Printout of source code for FLAC model. Required Output from DEEPSOIL: 1. Acceleration time history at base of model (layer 20) 2. Acceleration time history at middle of model (layer 10) 3. Acceleration time history at top of model (layer 1) 4. Shear stress/effective vertical stress versus shear strain time history for middle of model (in layer 10) 5. Surface acceleration response spectrum (5 percent damped) as a function of period. (Use Seismosignal and the results from no. 3 above). 6. Printout of DEEPSOIL input profile (*.dp) file Additional Calculations and Discussion: 1. Calculate the fundamental period of the 20 m thick soil column using Eq. (7.16) in Kramer. 2. Compare the maximum shear strain that develops in the middle of the layers for the FLAC and DEEPSOIL results. Discuss how well the maximum shear strains compare for both layers for both models. 3. Make a composite plot of the surface response spectra for both FLAC and DEEPSOIL. Discuss how well the response spectra compare. 6

7 FLAC Helps 1. Since you are using the dynamic option of FLAC, you must configure the dynamic extension with the following command: conf dyn ext 5 2. You need to generate a 1D soil column that is 1 m wide by 20 m high: grid Use will be using an elastic model with hysteretic damping in FLAC to compare with DEEPSOIL. The elastic model with hysteretic damping is involved with: model elastic ini dy_damp hyst default (The default hysteretic damping model in FLAC produces shear modulus and damping curves that are given Figures 3.27 and 3.28 (see pink lines). 4. You must fix the nodes in the y direction to not allow vertical movement. We only want horizontal movement so that an SH wave can propagate. fix y 5. To read in the Taft acceleration time history and apply it to the base of the model, your FLAC code should have his read 100 taft_flac.acc apply xacc 9.81 his 100 j = 1 apply yvel 0.0 j = 1 The taft_flac.acc file must be present in the same directory as the flac model. It has already been formatted to be read into flac and is found on the course website. (Note that the 9.81 multiplier in the second line is applied to the Taft record to convert the record from acceleration (g) to acceleration (m/s). You must use units that are consistent with the FLAC analysis (m, s, N, Pa, etc.) (Note also that the command apply yvel 0.0 j = 1 prevents rocking of the model along the grid point j = 1.) 6. Shear strain is not directly calculated by FLAC, so you have to create code to do so. The following subroutine needs to be in your code: 7

8 def strain1 deltay = 1; one m vertical spacing between nodes strain1 = (xdisp(1,11) - xdisp(1,10))/deltay end 7. Time history plots of acceleration, shear stress and shear strain can be created using the following commands: his 1 dytime his 2 sxy i 1 j 10 his 3 strain1 his 4 xacc i 1 j 1 his 5 xacc i 1 j 11 his 6 xacc i 1 j We want the FLAC output to be at an even timestep for plotting in Seismosignal. This can be done by the following command: set dydt = This sets the time increment to eight ten- thousandths of a second. This small timestep is also required for numerical stability. 9. We are now ready to add the command to start solving. Most of the strong motion ends after about 74 seconds, so we will solve for only the first 74 seconds of the acceleration time history. This is done with the following command: solve dytime After solving, we want to output the surface acceleration time history from FLAC so that we can create a response spectrum in Seismosignal: set hisfile surface.his his write 6 vs 1 save model.sav This creates a file called surface.his for the output and stores the results of history 6 (acceleration at surface) versus history 1 (dynamic time). The last line in the code saves the FLAC model and all output as a file called model.sav 8

9 Seismosignal Helps Note that the time increment for acceleration time history in surface.his is 8 x10-3 seconds. When you read surface.his into Seismosignal, use should use the following parameters (see below). Remember also that acceleration time history from surface.his is in units of m/s 2 and not g. To convert this FLAC file to units of g, you can use the scaling factor. In the above screen shot the scaling factor has been set to , which is equal to 1 / Once you have successfully read the time history into Seismosignal, you should create a 5 percent damped, elastic, pseudo-acceleration response spectrum in Seismosignal for the time history for comparison with DEEPSOIL. 9

1D Nonlinear Numerical Methods

1D Nonlinear Numerical Methods 1D Nonlinear Numerical Methods Page 1 1D Nonlinear Numerical Methods Reading Assignment Lecture Notes Pp. 275-280 Kramer DEEPSOIL.pdf 2001 Darendeli, Ch. 10 Other Materials DeepSoil User's Manual 2001

More information

2D Embankment and Slope Analysis (Numerical)

2D Embankment and Slope Analysis (Numerical) 2D Embankment and Slope Analysis (Numerical) Page 1 2D Embankment and Slope Analysis (Numerical) Sunday, August 14, 2011 Reading Assignment Lecture Notes Other Materials FLAC Manual 1. 2. Homework Assignment

More information

CVEEN Table of Contents

CVEEN Table of Contents CVEEN 7330 Table of Contents Table of Contents... 1 Objectives... 2 ackground... 2 Model Setup and Analysis Input... 2 Data for Interfaces... 5 Required Outputs from FLAC... 10 Required Calculations and

More information

CVEEN Table of Contents

CVEEN Table of Contents CVEEN 7330 Table of Contents Table of Contents... 1 Objectives:... 2 FLAC Input:... 3 Model Inputs... 3 Create Grid and Assign Properties... 4 Create Foundation... 4 Create Forcing Function... 4 Create

More information

1D Analysis - Simplified Methods

1D Analysis - Simplified Methods 1D Equivalent Linear Method Page 1 1D Analysis - Simplified Methods Monday, February 13, 2017 2:32 PM Reading Assignment Lecture Notes Pp. 255-275 Kramer (EQL method) p. 562 Kramer (Trigonometric Notation

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

1D Ground Response Analysis

1D Ground Response Analysis Lecture 8 - Ground Response Analyses Page 1 1D Ground Response Analysis 1. 2. 3. Dynamic behavior of soils is quite complex and requires models which characterize the important aspects of cyclic behavior,

More information

1 Slope Stability for a Cohesive and Frictional Soil

1 Slope Stability for a Cohesive and Frictional Soil Slope Stability for a Cohesive and Frictional Soil 1-1 1 Slope Stability for a Cohesive and Frictional Soil 1.1 Problem Statement A common problem encountered in engineering soil mechanics is the stability

More information

USER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.

USER S MANUAL. 1D Seismic Site Response Analysis Example.  University of California: San Diego. USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 2, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer

Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer Design Spectra Page 1 Design Spectra Reading Assignment Course Information Lecture Notes Pp. 73-75 Kramer Appendix B7 Kramer Other Materials Responsespectra.pdf (Chopra) ASCE 7-05.pdf Sakaria time history

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

Liquefaction Remediation

Liquefaction Remediation Liquefaction Remediation Page 1 Liquefaction Remediation Step 1 - Determine the required area replacement ratio, Ra, based on the pre-improvement factor of safety against liquefaction, FSpre, and the ratio

More information

8 Displacements near the Face of an Advancing Shaft

8 Displacements near the Face of an Advancing Shaft Displacements near the Face of an Advancing Shaft 8-1 8 Displacements near the Face of an Advancing Shaft 8.1 Problem Statement A circular shaft is excavated in chalk and lined with monolithic precast

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

13 Plastic Flow in a Punch Problem

13 Plastic Flow in a Punch Problem Plastic Flow in a Punch Problem 13-1 13 Plastic Flow in a Punch Problem 13.1 Problem Statement Difficulties are sometimes reported in the modeling of plastic flow where large velocity gradients exist.

More information

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada Recent Research on EPS Geofoam Seismic Buffers Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada What is a wall (SEISMIC) buffer? A compressible inclusion placed between

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

1 Slope Stability for a Cohesive and Frictional Soil

1 Slope Stability for a Cohesive and Frictional Soil Slope Stability for a Cohesive and Frictional Soil 1-1 1 Slope Stability for a Cohesive and Frictional Soil 1.1 Problem Statement A common problem encountered in engineering soil mechanics is the stability

More information

7 Uniaxial Compressive Strength of a Jointed Rock Sample

7 Uniaxial Compressive Strength of a Jointed Rock Sample Uniaxial Compressive Strength of a Jointed Rock Sample 7-1 7 Uniaxial Compressive Strength of a Jointed Rock Sample 7.1 Problem Statement The uniaxial compressive strength of a jointed rock sample is a

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

Role of hysteretic damping in the earthquake response of ground

Role of hysteretic damping in the earthquake response of ground Earthquake Resistant Engineering Structures VIII 123 Role of hysteretic damping in the earthquake response of ground N. Yoshida Tohoku Gakuin University, Japan Abstract Parametric studies are carried out

More information

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4-1 4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4.1 Problem Statement The stress and pore pressure changes due to the expansion

More information

1-160 Dynamic Analysis

1-160 Dynamic Analysis 1-160 Dynamic Analysis 1.6 Example Application of a Seismic Analysis An example application of a nonlinear seismic analysis is presented in this section. The example illustrates several of the topics discussed

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

Lecture 4 Implementing material models: using usermat.f. Implementing User-Programmable Features (UPFs) in ANSYS ANSYS, Inc.

Lecture 4 Implementing material models: using usermat.f. Implementing User-Programmable Features (UPFs) in ANSYS ANSYS, Inc. Lecture 4 Implementing material models: using usermat.f Implementing User-Programmable Features (UPFs) in ANSYS 1 Lecture overview What is usermat.f used for? Stress, strain and material Jacobian matrix

More information

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS

SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS 43 SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS E John MARSH And Tam J LARKIN SUMMARY This paper presents a study of surface wave characteristics using a two dimensional nonlinear seismic

More information

Evaluation of 1-D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled Constitutive Model

Evaluation of 1-D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled Constitutive Model 6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Evaluation of -D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled

More information

10 Slope Stability Analysis of a Rock Slope

10 Slope Stability Analysis of a Rock Slope Slope Stability Analysis of a Rock Slope 10-1 10 Slope Stability Analysis of a Rock Slope 10.1 Problem Statement Limit equilibrium methods are commonly used to evaluate the stability of slopes in rock

More information

SITE ANALYSIS USING RANDOM VIBRATION THEORY

SITE ANALYSIS USING RANDOM VIBRATION THEORY Transactions, SMiRT-23, Paper ID 050 SITE ANALYSIS USING RANDOM VIBRATION THEORY 1 President APA Consulting, USA Alejandro P. Asfura 1 ABSTRACT This paper compares two methods for the seismic analysis

More information

QUAKE/W ProShake Comparison

QUAKE/W ProShake Comparison 1 Introduction QUAKE/W Comparison is a commercially available software product for doing one-dimensional ground response analyses. It was developed and is being maintained under the guidance of Professor

More information

Numerical Modeling in Geotechnical Engineering October 17,

Numerical Modeling in Geotechnical Engineering October 17, 1 Numerical Modeling in Geotechnical Engineering October 17, 18 2014 PRESENTED BY: Siavash Zamiran Ph.D. Student, Research and Teaching Assistant, Department of Civil Engineering, Southern Illinois University

More information

both an analytical approach and the pole method, determine: (a) the direction of the

both an analytical approach and the pole method, determine: (a) the direction of the Quantitative Problems Problem 4-3 Figure 4-45 shows the state of stress at a point within a soil deposit. Using both an analytical approach and the pole method, determine: (a) the direction of the principal

More information

A study on nonlinear dynamic properties of soils

A study on nonlinear dynamic properties of soils A study on nonlinear dynamic properties of soils * Chih-Hao Hsu ), Shuh-Gi Chern 2) and Howard Hwang 3) ), 2) Department of Harbor and River Engineering, NTOU, Taiwan ) willie2567@hotmail.com 3) Graduate

More information

15 Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample

15 Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample 15-1 15 Drained and Undrained Triaxial Compression Test on a Cam-Clay Sample 15.1 Problem Statement Conventional drained and undrained

More information

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS

14- Hardening Soil Model with Small Strain Stiffness - PLAXIS 14- Hardening Soil Model with Small Strain Stiffness - PLAXIS This model is the Hardening Soil Model with Small Strain Stiffness as presented in PLAXIS. The model is developed using the user-defined material

More information

USER S MANUAL 1D Seismic Site Response Analysis Example University of California: San Diego August 30, 2017

USER S MANUAL 1D Seismic Site Response Analysis Example   University of California: San Diego August 30, 2017 USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 30, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page

More information

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified

More information

Example Application 12. Embankment Loading on a Cam-Clay Foundation

Example Application 12. Embankment Loading on a Cam-Clay Foundation Example Application 12 Embankment Loading on a Cam-Clay Foundation 1 Foundation Soil Properties 2 Modeling Procedure Step 1 Create the foundation model grid, set boundary conditions, assign material model

More information

1 DYNAMIC ANALYSIS DYNAMIC ANALYSIS Overview

1 DYNAMIC ANALYSIS DYNAMIC ANALYSIS Overview DYNAMIC ANALYSIS 1-1 1 DYNAMIC ANALYSIS 1.1 Overview The dynamic analysis option permits two-dimensional, plane-strain, plane-stress or axisymmetric, fully dynamic analysis with FLAC. The calculation is

More information

13 Dewatered Construction of a Braced Excavation

13 Dewatered Construction of a Braced Excavation Dewatered Construction of a Braced Excavation 13-1 13 Dewatered Construction of a Braced Excavation 13.1 Problem Statement A braced excavation is constructed in saturated ground. The excavation is dewatered

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Site Response Using Effective Stress Analysis

Site Response Using Effective Stress Analysis Site Response Using Effective Stress Analysis Faiz Makdisi, Zhi-Liang Wang, C.Y. Chang and J. Egan Geomatrix Consultants, Inc. Oakland, California 1 TRB 85 th Annual Meeting, January 22-26, 26, 2006, Washington,

More information

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations 1 Introduction Verification of the Hyperbolic Soil Model by Triaxial Test Simulations This example simulates a series of triaxial tests that can be used to verify that the Hyperbolic constitutive model

More information

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams V. Lotfi Department of Civil and Environmental Engineering, Amirkabir University, Iran Abstract A new approach is

More information

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study: I) The response

More information

EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS

EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1651 EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS Konstantinos TREVLOPOULOS 1, Nikolaos KLIMIS 2

More information

CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE

CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE 6.1 Overview The analytical results presented in Chapter 5 demonstrate the difficulty of predicting the performance of an improved

More information

SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS

SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 97 SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS Luigi CALLISTO, Fabio M. SOCCODATO

More information

Dynamics Manual. Version 7

Dynamics Manual. Version 7 Dynamics Manual Version 7 DYNAMICS MANUAL TABLE OF CONTENTS 1 Introduction...1-1 1.1 About this manual...1-1 2 Tutorial...2-1 2.1 Dynamic analysis of a generator on an elastic foundation...2-1 2.1.1 Input...2-1

More information

5 Spherical Cavity in an Infinite Elastic Medium

5 Spherical Cavity in an Infinite Elastic Medium Spherical Cavity in an Infinite Elastic Medium 5-1 5 Spherical Cavity in an Infinite Elastic Medium 5.1 Problem Statement Stresses and displacements are determined for the case of a spherical cavity in

More information

Static Pile Head Impedance using 3D Nonlinear FEM Analysis

Static Pile Head Impedance using 3D Nonlinear FEM Analysis Static Pile Head Impedance using 3D Nonlinear FEM Analysis Ichiro NAGASHIMA Technology Center, Taisei Corporation, 344-1 Nasecho, Totsuka-ku, Yokohama 245-51, Japan, ichiro.nagashima@sakura.taisei.co.jp

More information

SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL

SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL International Conference on Earthquake Engineering and Disaster Mitigation, Jakarta, April 1-15, SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL Nurrachmad

More information

Advanced Lateral Spread Modeling

Advanced Lateral Spread Modeling Adv. Liquefaction Modeling Page 1 Advanced Lateral Spread Modeling Reading Assignment Lecture Notes Other Materials Homework Assignment 1. Complete FLAC model 10a.pdf 2. Modify the example in FLAC model

More information

A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils. Zhiliang Wang 1 and Fenggang Ma 2.

A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils. Zhiliang Wang 1 and Fenggang Ma 2. A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils Zhiliang Wang 1 and Fenggang Ma 2. 1 Senior Associate, AMEC Environment & Infrastructure,

More information

Hyperbolic Soil Bearing Capacity

Hyperbolic Soil Bearing Capacity 1 Introduction Hyperbolic Soil Bearing Capacity This example involves analyzing the bearing capacity of a round footing. The example is useful for illustrating several SIGMA/W features and procedures,

More information

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment Proc. of Second China-Japan Joint Symposium on Recent Development of Theory and Practice in Geotechnology, Hong Kong, China Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment J. C. Chai 1

More information

Nonlinear effects in Earthquake Soil Structure Interaction of Nuclear Power Plants

Nonlinear effects in Earthquake Soil Structure Interaction of Nuclear Power Plants Nonlinear effects in Earthquake Soil Structure Interaction of Nuclear Power Plants Feng, Sinha, Abell, Yang, Behbehani, Orbović, McCallen, Jeremić UCD, LBNL, CNSC SMiRT24 Busan, Republic of Korea Outline

More information

Assignment 4: VBA Programming

Assignment 4: VBA Programming CEE 3804: Computer Applications in Civil Engineering Spring 2015 Date Due: February 24, 2015 Assignment 4: VBA Programming Instructor: Trani Problem 1 This problem deals with a beam supported at both ends

More information

8 Lined Circular Tunnel in an Elastic Medium with Anisotropic Stresses

8 Lined Circular Tunnel in an Elastic Medium with Anisotropic Stresses Lined Circular Tunnel in an Elastic Medium with Anisotropic Stresses 8-1 8 Lined Circular Tunnel in an Elastic Medium with Anisotropic Stresses 8.1 Problem Statement This problem concerns the analysis

More information

APPLICATION OF 1D HYDROMECHANICAL COUPLING IN TOUGH2 TO A DEEP GEOLOGICAL REPOSITORY GLACIATION SCENARIO

APPLICATION OF 1D HYDROMECHANICAL COUPLING IN TOUGH2 TO A DEEP GEOLOGICAL REPOSITORY GLACIATION SCENARIO PROCEEDINGS, TOUGH Symposium 2015 Lawrence Berkeley National Laboratory, Berkeley, California, September 28-30, 2015 APPLICATION OF 1D HYDROMECHANICAL COUPLING IN TOUGH2 TO A DEEP GEOLOGICAL REPOSITORY

More information

13 Step-Path Failure of Rock Slopes

13 Step-Path Failure of Rock Slopes Step-Path Failure of Rock Slopes 13-1 13 Step-Path Failure of Rock Slopes 13.1 Problem Statement While UDEC represents a jointed rock structure as a system of discrete blocks by default, it is also a straightforward

More information

Chapter 3 LAMINATED MODEL DERIVATION

Chapter 3 LAMINATED MODEL DERIVATION 17 Chapter 3 LAMINATED MODEL DERIVATION 3.1 Fundamental Poisson Equation The simplest version of the frictionless laminated model was originally introduced in 1961 by Salamon, and more recently explored

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC

Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC 293 Figure A7 23: Micrograph of PX after heat treatment to 100ºC and 140ºC 294 Figure A7 24: Micrograph of VTA (a) before

More information

On the Estimation of Earthquake Induced Ground Strains from Velocity Recordings: Application to Centrifuge Dynamic Tests

On the Estimation of Earthquake Induced Ground Strains from Velocity Recordings: Application to Centrifuge Dynamic Tests 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 015 Christchurch, New Zealand On the Estimation of Earthquake Induced Ground Strains from Velocity Recordings: Application

More information

Software Verification

Software Verification PROGRAM NAME: SAFE 014 EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, 1 State 1, and, State,

More information

June 22, 2016 Youssef M. A. Hashash

June 22, 2016 Youssef M. A. Hashash Nonlinear and Equivalent Linear Seismic Site Response of One-Dimensional Soil Columns Version 6.1 www.illinois.edu/~deepsoil New Soil Model: Specify strength with a Generalized Hyperbolic Formulation June

More information

Version default Titre : Opérateur DEFI_SOL_EQUI Date : 07/07/2015 Page : 1/9 Responsable : DEVESA Georges Clé : U Révision : ae6111c5654c

Version default Titre : Opérateur DEFI_SOL_EQUI Date : 07/07/2015 Page : 1/9 Responsable : DEVESA Georges Clé : U Révision : ae6111c5654c Titre : Opérateur DEFI_SOL_EQUI Date : 07/07/2015 Page : 1/9 Order DEFI_SOL_EQUI 1 Goal To characterize the variation of the mechanical characteristics of horizons soil laminated during an earthquake starting

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

RESPONSE SPECTRUM METHOD FOR EVALUATING NONLINEAR AMPLIFICATION OF SURFACE STRATA

RESPONSE SPECTRUM METHOD FOR EVALUATING NONLINEAR AMPLIFICATION OF SURFACE STRATA RESPONSE SPECTRUM METHOD FOR EVALUATING NONLINEAR AMPLIFICATION OF SURFACE STRATA Kenji MIURA, Kohji KOYAMADA 2 and Masanori IIBA 3 Structuring Engineering, Hiroshima University, Higashi-hiroshima, Japan

More information

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON)

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study, we conduct a finite element simulation

More information

Dynamics: Domain Reduction Method. Case study

Dynamics: Domain Reduction Method. Case study Dynamics: Domain Reduction Method. Case study Andrzej Truty c ZACE Services Ltd August 2016 1 / 87 Scope of the lecture Example of a building subject to the earthquake (using Domain Reduction Method (DRM))

More information

Lab 1: Dynamic Simulation Using Simulink and Matlab

Lab 1: Dynamic Simulation Using Simulink and Matlab Lab 1: Dynamic Simulation Using Simulink and Matlab Objectives In this lab you will learn how to use a program called Simulink to simulate dynamic systems. Simulink runs under Matlab and uses block diagrams

More information

DYNAMIC RESPONSE APPROACH AND METHODOLOGY

DYNAMIC RESPONSE APPROACH AND METHODOLOGY DYNAMIC RESPONSE APPROACH AND METHODOLOGY Traditional seismic stability procedures vs coupled effective-stress approach. Traditional seismic stability procedures: Empirical and laboratory corrections and

More information

Hand Calculations of Rubber Bearing Seismic Izolation System for Irregular Buildings in Plane

Hand Calculations of Rubber Bearing Seismic Izolation System for Irregular Buildings in Plane Hand Calculations of Rubber Bearing Seismic Izolation System for Irregular Buildings in Plane Luan MURTAJ 1, Enkelejda MURTAJ 1 Pedagogue, Department of Structural Mechanics Faculty of Civil Engineering

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

3-D FINITE ELEMENT NONLINEAR DYNAMIC ANALYSIS FOR SOIL-PILE-STRUCTURE INTERACTION

3-D FINITE ELEMENT NONLINEAR DYNAMIC ANALYSIS FOR SOIL-PILE-STRUCTURE INTERACTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-, 4 Paper No. 157 3-D FINITE ELEMENT NONLINEAR DYNAMIC ANALYSIS FOR SOIL-PILE-STRUCTURE INTERACTION B.K. MAHESHWARI 1,

More information

Effect of structural design on fundamental frequency of reinforced-soil retaining walls

Effect of structural design on fundamental frequency of reinforced-soil retaining walls Soil Dynamics and Earthquake Engineering 19 (2000) 137 157 www.elsevier.com/locate/soildyn Effect of structural design on fundamental frequency of reinforced-soil retaining walls K. Hatami*, R.J. Bathurst

More information

Dynamic Analysis of Pile Foundations: Effects of Material Nonlinearity of Soil

Dynamic Analysis of Pile Foundations: Effects of Material Nonlinearity of Soil Dynamic Analysis of Pile Foundations: Effects of Material Nonlinearity of Soil Bal Krishna Maheshwari Asst. Professor, Department of Earthquake Engineering, IIT Roorkee, Roorkee, U.A. 247 667, India (Formerly

More information

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses Settlement and Bearing Capacity of a Strip Footing Nonlinear Analyses Outline 1 Description 2 Nonlinear Drained Analysis 2.1 Overview 2.2 Properties 2.3 Loads 2.4 Analysis Commands 2.5 Results 3 Nonlinear

More information

Two-Dimensional Site Effects for Dry Granular Soils

Two-Dimensional Site Effects for Dry Granular Soils 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Two-Dimensional Site Effects for Dry Granular Soils D. Asimaki 1 and S. Jeong 2 ABSTRACT

More information

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS Yingcai Han 1 and Shin-Tower Wang 2 1 Fluor Canada Ltd., Calgary AB, Canada Email: yingcai.han@fluor.com 2 Ensoft, Inc. Austin,

More information

Spread footing settlement and rotation analysis

Spread footing settlement and rotation analysis Engineering manual No. 10 Updated: 05/2018 Spread footing settlement and rotation analysis Program: File: Spread footing Demo_manual_10.gpa This engineering manual describes how the analysis of settlement

More information

Complex geology slope stability analysis by shear strength reduction

Complex geology slope stability analysis by shear strength reduction Complex geology slope stability analysis by shear strength reduction Marek Cala, Jerzy Flisiak AGH University of Science & Technology Slope stability Shear strength reduction technique (SSR) The stability

More information

Lecture 7. Pile Analysis

Lecture 7. Pile Analysis Lecture 7 14.5 Release Pile Analysis 2012 ANSYS, Inc. February 9, 2013 1 Release 14.5 Pile definition in Mechanical - There are a number of methods that can be used to analyze piled foundations in ANSYS

More information

Soil Properties - II

Soil Properties - II Soil Properties - II Amit Prashant Indian Institute of Technology andhinagar Short Course on eotechnical Aspects of Earthquake Engineering 04 08 March, 2013 Seismic Waves Earthquake Rock Near the ground

More information

Numerical Approach to Predict the Strength of St. Peter Sandstone Pillars acted upon by Vertical Loads A case study at Clayton, IA, USA.

Numerical Approach to Predict the Strength of St. Peter Sandstone Pillars acted upon by Vertical Loads A case study at Clayton, IA, USA. IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 01 (January. 2015), V2 PP 36-41 www.iosrjen.org Numerical Approach to Predict the Strength of St. Peter Sandstone

More information

Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments

Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments "Pile-Group Response to Large Soil Displacements and Liquefaction: Centrifuge Experiments Versus A Physically Simplified Analysis", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 3 6, University of California Santa Barbara ENHANCING SITE RESPONSE MODELING THROUGH DOWNHOLE ARRAY RECORDINGS

More information

Geometric Nonlinear Analysis of a Cantilever Beam

Geometric Nonlinear Analysis of a Cantilever Beam WORKSHOP PROBLEM 2b Geometric Nonlinear Analysis of a Cantilever Beam Objectives: Demonstrate the use of geometric nonlinear analysis. Observe the behavior of the cantilever beam under four increasing

More information

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures ENRU LIU, SERAFEIM VLASTOS, and XIANG-YANG LI, Edinburgh

More information

10 Steady-State Fluid Flow with a Free Surface

10 Steady-State Fluid Flow with a Free Surface Steady-State Fluid Flow with a Free Surface 10-1 10 Steady-State Fluid Flow with a Free Surface 10.1 roblem Statement This numerical simulation analyzes the steady-state seepage flow through a homogeneous

More information

Using the Timoshenko Beam Bond Model: Example Problem

Using the Timoshenko Beam Bond Model: Example Problem Using the Timoshenko Beam Bond Model: Example Problem Authors: Nick J. BROWN John P. MORRISSEY Jin Y. OOI School of Engineering, University of Edinburgh Jian-Fei CHEN School of Planning, Architecture and

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

Software Verification

Software Verification EXAMPLE 16 racked Slab Analysis RAKED ANALYSIS METHOD The moment curvature diagram shown in Figure 16-1 depicts a plot of the uncracked and cracked conditions, Ψ 1 State 1, and, Ψ State, for a reinforced

More information

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening Keynote Lecture: Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening W.D. Liam Finn University of British Columbia, BC, Canada Guoxi Wu BC Hydro, Burnaby, BC, Canada

More information

DETERMINATION OF PERFORMANCE POINT IN CAPACITY SPECTRUM METHOD

DETERMINATION OF PERFORMANCE POINT IN CAPACITY SPECTRUM METHOD ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

QUASI-3D DYNAMIC FINITE ELEMENT ANALYSIS OF SINGLE PILES AND PILE GROUPS

QUASI-3D DYNAMIC FINITE ELEMENT ANALYSIS OF SINGLE PILES AND PILE GROUPS VERSAT P3D Version 006 QUASI-3D DYNAMIC FINITE ELEMENT ANALYSIS OF SINGLE PILES AND PILE GROUPS 000-006 Dr. G. WU 000-006 Wutec Geotechnical International, B.C., Canada Website: www.wutecgeo.com LIMITATION

More information

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS IGC 009, Guntur, INDIA NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS Mohammed Younus Ahmed Graduate Student, Earthquake Engineering Research Center, IIIT Hyderabad, Gachibowli, Hyderabad 3, India.

More information