CVEEN 7330 Modeling Exercise 2c
|
|
- Mitchell Barton
- 1 years ago
- Views:
Transcription
1 CVEEN 7330 Modeling Exercise 2c Table of Contents Table of Contents... 1 Objectives:... 2 FLAC Input:... 2 DEEPSOIL INPUTS:... 5 Required Outputs from FLAC:... 6 Required Output from DEEPSOIL:... 6 Additional Calculations and Discussion:... 6 FLAC Helps... 7 Seismosignal Helps... 9 FLAC Solution: DEEPSOIL Solution: Required Calculations and Discussion: FLAC Source Code DEEPSOIL Input File Printout
2 Objectives: This modeling exercise compares the nonlinear dynamic results for a 1D homogeneous soil column form FLAC with hysteretic damping to those of DEEPSOIL using modified hyperbolic model. FLAC is a 2D nonlinear dynamic code. DEEPSOIL is a 1D nonlinear code. Thus, we will develop a 1D FLAC model and compare the results with DEEPSOIL output for a simple ground response analysis using a homogenous sand profile. FLAC Input: To develop the FLAC 1D model, we will use an example file and modify it. The example project file is found in: C:\Program Files\Itasca\flac500\Options\3-Dynamic\ op_03_12.prj Geometry: 20 m high model by 1 m width. Boundary Conditions: Fix all elements in the y direction Model Type: 2
3 Elastic with hysteretic damping Hysteretic damping model (use default model (2 parameter model) with following properties (default ) (see pink lines in Figures 3.27 and 3.28 below, which represent the default model parameters of and 0.823) Elastic Material Properties: density = 2000 kg/m 3 shear modulus = 0.97e8 N/m 2 = 97 MPa bulk modulus = 2e8 N/m 2 = 200 Mpa Input Acceleration Time History: Taft Record (unscaled) (obtained from course website) 3
4 4
5 DEEPSOIL INPUTS: Type of Analysis Nonlinear Total Stress Metric Pressure-Dependent Hyperbolic Model: Masing Criteria Input Properties by Modulus Geometry: 20 m deep soil model with 20 1-m thick sand layers. Material Properties: density = kn/m 3 (2000 kg/m 3 ) shear modulus = 0.97e8 N/m 2 = 97 Mpa = kpa Shear modulus reduction curves from table below User-Defined 11 points Use the points that corresponds to the pink lines in Figure 3.27 and Figure 3.28 (see below) Shear strain (%) G/Gmax Damping (%) Bedrock Properties Rigid 5
6 Input Acceleration Time History: Taft Record (unscaled from course website) Required Outputs from FLAC: 1. Acceleration time history at base of model (node i = 1) 2. Acceleration time history at middle of model (node i=11) 3. Acceleration time history at top of model (node i=21) 4. Shear stress versus shear strain time history for middle of model (between nodes j=11 and j=10) 5. Surface acceleration response spectrum (5 percent damped) as a function of period. (Use Seismosignal and the results from no. 3 above). 6. Printout of source code for FLAC model. Required Output from DEEPSOIL: 1. Acceleration time history at base of model (layer 20) 2. Acceleration time history at middle of model (layer 10) 3. Acceleration time history at top of model (layer 1) 4. Shear stress/effective vertical stress versus shear strain time history for middle of model (in layer 10) 5. Surface acceleration response spectrum (5 percent damped) as a function of period. (Use Seismosignal and the results from no. 3 above). 6. Printout of DEEPSOIL input profile (*.dp) file Additional Calculations and Discussion: 1. Calculate the fundamental period of the 20 m thick soil column using Eq. (7.16) in Kramer. 2. Compare the maximum shear strain that develops in the middle of the layers for the FLAC and DEEPSOIL results. Discuss how well the maximum shear strains compare for both layers for both models. 3. Make a composite plot of the surface response spectra for both FLAC and DEEPSOIL. Discuss how well the response spectra compare. 6
7 FLAC Helps 1. Since you are using the dynamic option of FLAC, you must configure the dynamic extension with the following command: conf dyn ext 5 2. You need to generate a 1D soil column that is 1 m wide by 20 m high: grid Use will be using an elastic model with hysteretic damping in FLAC to compare with DEEPSOIL. The elastic model with hysteretic damping is involved with: model elastic ini dy_damp hyst default (The default hysteretic damping model in FLAC produces shear modulus and damping curves that are given Figures 3.27 and 3.28 (see pink lines). 4. You must fix the nodes in the y direction to not allow vertical movement. We only want horizontal movement so that an SH wave can propagate. fix y 5. To read in the Taft acceleration time history and apply it to the base of the model, your FLAC code should have his read 100 taft_flac.acc apply xacc 9.81 his 100 j = 1 apply yvel 0.0 j = 1 The taft_flac.acc file must be present in the same directory as the flac model. It has already been formatted to be read into flac and is found on the course website. (Note that the 9.81 multiplier in the second line is applied to the Taft record to convert the record from acceleration (g) to acceleration (m/s). You must use units that are consistent with the FLAC analysis (m, s, N, Pa, etc.) (Note also that the command apply yvel 0.0 j = 1 prevents rocking of the model along the grid point j = 1.) 6. Shear strain is not directly calculated by FLAC, so you have to create code to do so. The following subroutine needs to be in your code: 7
8 def strain1 deltay = 1; one m vertical spacing between nodes strain1 = (xdisp(1,11) - xdisp(1,10))/deltay end 7. Time history plots of acceleration, shear stress and shear strain can be created using the following commands: his 1 dytime his 2 sxy i 1 j 10 his 3 strain1 his 4 xacc i 1 j 1 his 5 xacc i 1 j 11 his 6 xacc i 1 j We want the FLAC output to be at an even timestep for plotting in Seismosignal. This can be done by the following command: set dydt = This sets the time increment to eight ten- thousandths of a second. This small timestep is also required for numerical stability. 9. We are now ready to add the command to start solving. Most of the strong motion ends after about 74 seconds, so we will solve for only the first 74 seconds of the acceleration time history. This is done with the following command: solve dytime After solving, we want to output the surface acceleration time history from FLAC so that we can create a response spectrum in Seismosignal: set hisfile surface.his his write 6 vs 1 save model.sav This creates a file called surface.his for the output and stores the results of history 6 (acceleration at surface) versus history 1 (dynamic time). The last line in the code saves the FLAC model and all output as a file called model.sav 8
9 Seismosignal Helps Note that the time increment for acceleration time history in surface.his is 8 x10-3 seconds. When you read surface.his into Seismosignal, use should use the following parameters (see below). Remember also that acceleration time history from surface.his is in units of m/s 2 and not g. To convert this FLAC file to units of g, you can use the scaling factor. In the above screen shot the scaling factor has been set to , which is equal to 1 / Once you have successfully read the time history into Seismosignal, you should create a 5 percent damped, elastic, pseudo-acceleration response spectrum in Seismosignal for the time history for comparison with DEEPSOIL. 9
1D Nonlinear Numerical Methods
1D Nonlinear Numerical Methods Page 1 1D Nonlinear Numerical Methods Reading Assignment Lecture Notes Pp. 275-280 Kramer DEEPSOIL.pdf 2001 Darendeli, Ch. 10 Other Materials DeepSoil User's Manual 2001
2D Embankment and Slope Analysis (Numerical)
2D Embankment and Slope Analysis (Numerical) Page 1 2D Embankment and Slope Analysis (Numerical) Sunday, August 14, 2011 Reading Assignment Lecture Notes Other Materials FLAC Manual 1. 2. Homework Assignment
1D Analysis - Simplified Methods
1D Equivalent Linear Method Page 1 1D Analysis - Simplified Methods Monday, February 13, 2017 2:32 PM Reading Assignment Lecture Notes Pp. 255-275 Kramer (EQL method) p. 562 Kramer (Trigonometric Notation
1D Ground Response Analysis
Lecture 8 - Ground Response Analyses Page 1 1D Ground Response Analysis 1. 2. 3. Dynamic behavior of soils is quite complex and requires models which characterize the important aspects of cyclic behavior,
Design Spectra. Reading Assignment Course Information Lecture Notes Pp Kramer Appendix B7 Kramer
Design Spectra Page 1 Design Spectra Reading Assignment Course Information Lecture Notes Pp. 73-75 Kramer Appendix B7 Kramer Other Materials Responsespectra.pdf (Chopra) ASCE 7-05.pdf Sakaria time history
USER S MANUAL. 1D Seismic Site Response Analysis Example. University of California: San Diego.
USER S MANUAL 1D Seismic Site Response Analysis Example http://www.soilquake.net/ucsdsoilmodels/ University of California: San Diego August 2, 2017 Table of Contents USER'S MANUAL TABLE OF CONTENTS Page
Liquefaction Remediation
Liquefaction Remediation Page 1 Liquefaction Remediation Step 1 - Determine the required area replacement ratio, Ra, based on the pre-improvement factor of safety against liquefaction, FSpre, and the ratio
DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION
October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,
Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada
Recent Research on EPS Geofoam Seismic Buffers Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada What is a wall (SEISMIC) buffer? A compressible inclusion placed between
Earth Pressure Theory
Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition
QUAKE/W ProShake Comparison
1 Introduction QUAKE/W Comparison is a commercially available software product for doing one-dimensional ground response analyses. It was developed and is being maintained under the guidance of Professor
A study on nonlinear dynamic properties of soils
A study on nonlinear dynamic properties of soils * Chih-Hao Hsu ), Shuh-Gi Chern 2) and Howard Hwang 3) ), 2) Department of Harbor and River Engineering, NTOU, Taiwan ) willie2567@hotmail.com 3) Graduate
AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS
AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS S. Kontoe, L. Pelecanos & D.M. Potts ABSTRACT: Finite Element (FE) pseudo-static analysis can provide a good compromise between simplified
Evaluation of 1-D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled Constitutive Model
6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Evaluation of -D Non-linear Site Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled
SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS
4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 97 SEISMIC ANALYSIS OF AN EMBEDDED RETAINING STRUCTURE IN COARSE-GRAINED SOILS Luigi CALLISTO, Fabio M. SOCCODATO
CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE
CHAPTER 6: ASSESSMENT OF A COMPREHENSIVE METHOD FOR PREDICTING PERFORMANCE 6.1 Overview The analytical results presented in Chapter 5 demonstrate the difficulty of predicting the performance of an improved
Dynamics Manual. Version 7
Dynamics Manual Version 7 DYNAMICS MANUAL TABLE OF CONTENTS 1 Introduction...1-1 1.1 About this manual...1-1 2 Tutorial...2-1 2.1 Dynamic analysis of a generator on an elastic foundation...2-1 2.1.1 Input...2-1
SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL
International Conference on Earthquake Engineering and Disaster Mitigation, Jakarta, April 1-15, SOIL-BASEMENT STRUCTURE INTERACTION ANALYSIS ON DYNAMIC LATERAL EARTH PRESSURE ON BASEMENT WALL Nurrachmad
A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils. Zhiliang Wang 1 and Fenggang Ma 2.
A Visco-Elastic Model with Loading History Dependent Modulus and Damping for Seismic Response Analyses of Soils Zhiliang Wang 1 and Fenggang Ma 2. 1 Senior Associate, AMEC Environment & Infrastructure,
Nonlinear effects in Earthquake Soil Structure Interaction of Nuclear Power Plants
Nonlinear effects in Earthquake Soil Structure Interaction of Nuclear Power Plants Feng, Sinha, Abell, Yang, Behbehani, Orbović, McCallen, Jeremić UCD, LBNL, CNSC SMiRT24 Busan, Republic of Korea Outline
Assignment 4: VBA Programming
CEE 3804: Computer Applications in Civil Engineering Spring 2015 Date Due: February 24, 2015 Assignment 4: VBA Programming Instructor: Trani Problem 1 This problem deals with a beam supported at both ends
June 22, 2016 Youssef M. A. Hashash
Nonlinear and Equivalent Linear Seismic Site Response of One-Dimensional Soil Columns Version 6.1 www.illinois.edu/~deepsoil New Soil Model: Specify strength with a Generalized Hyperbolic Formulation June
Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC
Figure A7 22: Micrograph of PX (a) before and (b) after heat treatment to 50ºC 293 Figure A7 23: Micrograph of PX after heat treatment to 100ºC and 140ºC 294 Figure A7 24: Micrograph of VTA (a) before
Chapter 3 LAMINATED MODEL DERIVATION
17 Chapter 3 LAMINATED MODEL DERIVATION 3.1 Fundamental Poisson Equation The simplest version of the frictionless laminated model was originally introduced in 1961 by Salamon, and more recently explored
5 Spherical Cavity in an Infinite Elastic Medium
Spherical Cavity in an Infinite Elastic Medium 5-1 5 Spherical Cavity in an Infinite Elastic Medium 5.1 Problem Statement Stresses and displacements are determined for the case of a spherical cavity in
10 Steady-State Fluid Flow with a Free Surface
Steady-State Fluid Flow with a Free Surface 10-1 10 Steady-State Fluid Flow with a Free Surface 10.1 roblem Statement This numerical simulation analyzes the steady-state seepage flow through a homogeneous
QUASI-3D DYNAMIC FINITE ELEMENT ANALYSIS OF SINGLE PILES AND PILE GROUPS
VERSAT P3D Version 006 QUASI-3D DYNAMIC FINITE ELEMENT ANALYSIS OF SINGLE PILES AND PILE GROUPS 000-006 Dr. G. WU 000-006 Wutec Geotechnical International, B.C., Canada Website: www.wutecgeo.com LIMITATION
Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening
Keynote Lecture: Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening W.D. Liam Finn University of British Columbia, BC, Canada Guoxi Wu BC Hydro, Burnaby, BC, Canada
Use of Mononobe-Okabe equations in seismic design of retaining walls in shallow soils
Chin, C.Y. & Kayser, C. (213) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown Use of Mononobe-Okabe equations in seismic design of retaining walls in shallow soils C Y Chin URS New Zealand
Lab Practical - Discontinuum Analysis & Distinct Element Method
Lab Practical - Discontinuum Analysis & Distinct Element Method Part A The Basics The Universal Distinct Element Code (UDEC) is a two-dimensional numerical program based on the distinct element method
The Frictional Regime
The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation
MATERIAL MECHANICS, SE2126 COMPUTER LAB 4 MICRO MECHANICS. E E v E E E E E v E E + + = m f f. f f
MATRIAL MCHANICS, S226 COMPUTR LAB 4 MICRO MCHANICS 2 2 2 f m f f m T m f m f f m v v + + = + PART A SPHRICAL PARTICL INCLUSION Consider a solid granular material, a so called particle composite, shown
INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 638 INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS Jiachen WANG 1, Athol CARR 1, Nigel
Chapter 12. Static Equilibrium and Elasticity
Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial
3. Overview of MSC/NASTRAN
3. Overview of MSC/NASTRAN MSC/NASTRAN is a general purpose finite element analysis program used in the field of static, dynamic, nonlinear, thermal, and optimization and is a FORTRAN program containing
Unloading-Reloading Rule for Nonlinear Site Response Analysis
6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 015 Christchurch, New Zealand Unloading-Reloading Rule for Nonlinear Site Response Analysis S. Yniesta 1, S. J. Brandenberg
Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments
"Pile-Group Response to Large Soil Displacements and Liquefaction: Centrifuge Experiments Versus A Physically Simplified Analysis", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.
Effects of Multi-directional Shaking in Nonlinear Site Response Analysis: Case Study of 2007 Niigata-ken Chuetsu-oki Earthquake
6 th International Conference on Earthquake Geotechnical Engineering -4 November 205 Christchurch, New Zealand Effects of Multi-directional Shaking in Nonlinear Site Response Analysis: Case Study of 2007
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
Module 2: Thermal Stresses in a 1D Beam Fixed at Both Ends
Module 2: Thermal Stresses in a 1D Beam Fixed at Both Ends Table of Contents Problem Description 2 Theory 2 Preprocessor 3 Scalar Parameters 3 Real Constants and Material Properties 4 Geometry 6 Meshing
Tutorial for the heated pipe with constant fluid properties in STAR-CCM+
Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities
NUMERICAL ANALYSIS OF PASSIVE EARTH PRESSURES WITH INTERFACES
III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering C.A. Mota Soares et.al. (eds.) Lisbon, Portugal, 5-8 June 2006 NUMERICAL ANALYSIS OF PASSIVE EARTH
Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium
Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic
Model tests and FE-modelling of dynamic soil-structure interaction
Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV-2012-0712 IOS Press Model tests and FE-modelling of dynamic soil-structure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for
4 Cylindrical Hole in an Infinite Hoek-Brown Medium
Cylindrical Hole in an Infinite Hoek-Brown Medium 4-1 4 Cylindrical Hole in an Infinite Hoek-Brown Medium 4.1 Problem Statement Stresses and displacements are calculated for the case of a cylindrical hole
THE ROLE OF THE AMPLITUDE AND FREQUENCY CONTENT OF THE INPUT GROUND MOTION ON THE ESTIMATION OF DYNAMIC IMPEDANCE FUNCTIONS
4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1445 THE ROLE OF THE AMPLITUDE AND FREQUENCY CONTENT OF THE INPUT GROUND MOTION ON THE ESTIMATION OF DYNAMIC
EA (kn/m) EI (knm 2 /m) W (knm 3 /m) v Elastic Plate Sheet Pile
1. Introduction Nowadays, the seismic verification of structures has dramatically evolved. Italy is surrounded many great earthquakes; hence it would be unwise to totally ignore the effects of earthquakes
FLAC3D analysis on soil moving through piles
University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 211 FLAC3D analysis on soil moving through piles E H. Ghee Griffith University
Mining. Slope stability analysis at highway BR-153 using numerical models. Mineração. Abstract. 1. Introduction
Mining Mineração http://dx.doi.org/10.1590/0370-44672015690040 Ricardo Hundelshaussen Rubio Engenheiro Industrial / Doutorando Universidade Federal do Rio Grande do Sul - UFRS Departamento de Engenharia
Stresses and Strains in flexible Pavements
Stresses and Strains in flexible Pavements Multi Layered Elastic System Assumptions in Multi Layered Elastic Systems The material properties of each layer are homogeneous property at point A i is the same
Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation
Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation by Øystein Pettersen Centre for Integrated Petroleum Research, Bergen, Norway ECMOR
Instabilities and Dynamic Rupture in a Frictional Interface
Instabilities and Dynamic Rupture in a Frictional Interface Laurent BAILLET LGIT (Laboratoire de Géophysique Interne et Tectonophysique) Grenoble France laurent.baillet@ujf-grenoble.fr http://www-lgit.obs.ujf-grenoble.fr/users/lbaillet/
Frequency response analysis of soil-structure interaction for concrete gravity dams
Frequency response analysis of soil-structure interaction for concrete gravity dams Anna De Falco 1, Matteo Mori 2 and Giacomo Sevieri 3 1 Dept. of Energy, Systems, Territory and Construction Engineering,
Analysis of Planar Truss
Analysis of Planar Truss Although the APES computer program is not a specific matrix structural code, it can none the less be used to analyze simple structures. In this example, the following statically
Complex geology slope stability analysis by shear strength reduction
Complex geology slope stability analysis by shear strength reduction Marek Cala, Jerzy Flisiak AGH University of Science & Technology (former Univ. Of Mining & Metallurgy) Slope stability Shear strength
IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT
Istanbul Bridge Conference August 11-13, 2014 Istanbul, Turkey IZMIT BAY BRIDGE SOUTH APPROACH VIADUCT: SEISMIC DESIGN NEXT TO THE NORTH ANATOLIAN FAULT A. Giannakou 1, J. Chacko 2 and W. Chen 3 ABSTRACT
PILE-SUPPORTED RAFT FOUNDATION SYSTEM
PILE-SUPPORTED RAFT FOUNDATION SYSTEM Emre Biringen, Bechtel Power Corporation, Frederick, Maryland, USA Mohab Sabry, Bechtel Power Corporation, Frederick, Maryland, USA Over the past decades, there has
Using the Stock Hydrology Tools in ArcGIS
Using the Stock Hydrology Tools in ArcGIS This lab exercise contains a homework assignment, detailed at the bottom, which is due Wednesday, October 6th. Several hydrology tools are part of the basic ArcGIS
Numerical modelling of induced tensile stresses in rock in response to impact loading
Numerical modelling of induced tensile stresses in rock in response to impact loading M.T. Mnisi, D.P. Roberts and J.S. Kuijpers Council for Scientific and Industrial Research (CSIR): Natural Resources
Modelling Progressive Failure with MPM
Modelling Progressive Failure with MPM A. Yerro, E. Alonso & N. Pinyol Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain ABSTRACT: In this work, the progressive failure phenomenon
3 Cylindrical Hole in an Infinite Mohr-Coulomb Medium
Cylindrical Hole in an Infinite Mohr-Coulomb Medium 3-1 3 Cylindrical Hole in an Infinite Mohr-Coulomb Medium 3.1 Problem Statement The problem concerns the determination of stresses and displacements
Estimation of Non-linear Seismic Site Effects for Deep Deposits of the Mississippi Embayment
Estimation of Non-linear Seismic Site Effects for Deep Deposits of the Mississippi Embayment Duhee Park, Ph.D. Post Doctoral Researcher Department of Civil & Environmental Engineering University of Illinois
VALIDATION BY CENTRIFUGE TESTING OF NUMERICAL SIMULATIONS FOR SOIL-FOUNDATION-STRUCTURE SYSTEMS
th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -, Paper No. 77 VALIDATION BY CENTRIFUGE TESTING OF NUMERICAL SIMULATIONS FOR SOIL-FOUNDATION-STRUCTURE SYSTEMS Kyriazis PITILAKIS,
SEISMIC COEFFICIENTS FOR PSEUDOSTATIC SLOPE ANALYSIS
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 369 SEISMIC COEFFICIENTS FOR PSEUDOSTATIC SLOPE ANALYSIS Cristiano MELO 1 and Sunil SHARMA 2 SUMMARY
1 FLUID-MECHANICAL INTERACTION SINGLE FLUID PHASE
FLUID-MECHANICAL INTERACTION SINGLE FLUID PHASE 1-1 1 FLUID-MECHANICAL INTERACTION SINGLE FLUID PHASE 1.1 Introduction FLAC models the flow of fluid (e.g., groundwater) through a permeable solid, such
INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011
INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 1, 2011 Copyright 2011 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Dynamic nonlinear behavior
Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
50 Module 4: Lecture 1 on Stress-strain relationship and Shear strength of soils Contents Stress state, Mohr s circle analysis and Pole, Principal stressspace, Stress pathsin p-q space; Mohr-Coulomb failure
Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model
4 th IASPEI / IAEE International Symposium Santa Barbara, California, Aug 23-26, 2011 Numerical modeling of liquefaction effects: Development & initial applications of a sand plasticity model Ross W. Boulanger
Seismic stability safety evaluation of gravity dam with shear strength reduction method
Water Science and Engineering, 2009, 2(2): 52-60 doi:10.3882/j.issn.1674-2370.2009.02.006 http://kkb.hhu.edu.cn e-mail: wse@hhu.edu.cn Seismic stability safety evaluation of gravity dam with shear strength
42. POROSITY AND VELOCITY VS. DEPTH AND EFFECTIVE STRESS IN CARBONATE SEDIMENTS 1
Duncan, R. A., Backman, J., Peterson, L. C, et al., 1990 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 115 42. POROSITY AND VELOCITY VS. DEPTH AND EFFECTIVE STRESS IN ONATE SEDIMENTS
COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1127 COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS
COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM
COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM Sujan MALLA 1 ABSTRACT The seismic safety of the 147 m high Gigerwald arch dam in Switzerland was assessed for
APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests
APPENDIX F 1 APPENDIX F CORRELATION EQUATIONS F 1 In-Situ Tests 1. SPT (1) Sand (Hatanaka and Uchida, 1996), = effective vertical stress = effective friction angle = atmosphere pressure (Shmertmann, 1975)
Centrifuge Shaking Table Tests and FEM Analyses of RC Pile Foundation and Underground Structure
Centrifuge Shaking Table s and FEM Analyses of RC Pile Foundation and Underground Structure Kenji Yonezawa Obayashi Corporation, Tokyo, Japan. Takuya Anabuki Obayashi Corporation, Tokyo, Japan. Shunichi
Stability analysis of a borehole wall during horizontal directional drilling
Tunnelling and Underground Space Technology 22 (2007) 620 632 Tunnelling and Underground Space Technology incorporating Trenchless Technology Research www.elsevier.com/locate/tust Stability analysis of
ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear)
ME 515 Midterm Exam Due Monday Nov. 2, 2009 (You have time, so please be neat and clear) A thermal burn occurs as a result of an elevation in tissue temperature above a threshold value for a finite period
Horizontal bulk material pressure in silo subjected to impulsive load
Shock and Vibration 5 (28) 543 55 543 IOS Press Horizontal bulk material pressure in silo subjected to impulsive load Radosław Tatko a, and Sylwester Kobielak b a The Faculty of Environmental Engineering
Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost
Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit
Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities
Journal of Earth Sciences and Geotechnical Engineering, vol. 6, no.1, 2016, 99-111 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2016 Determination of Incompressibility, Elasticity and the
Saturation Effects of Soils on Ground Motion at Free Surface Due to Incident SV Waves
Saturation Effects of Soils on Ground Motion at Free Surface Due to Incident SV Waves Jun Yang, M.ASCE 1 Abstract: A study is presented of saturation effects of subsoil on seismic motions at the free surface
SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND
Indian Geotechnical Journal, 41(), 11, 64-75 SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND Mohammed Y. Fattah 1, Kais T. Shlash and Nahla M. Salim 3 Key words Tunnel, clay, finite elements, settlement,
Amplification of Seismic Motion at Deep Soil Sites
20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20) Espoo, Finland, August 9-14, 2009 SMiRT 20-Division 5, Paper 1740 Amplification of Seismic Motion at Deep Soil Sites
Elements of Rock Mechanics
Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider
Nonlinear analysis in ADINA Structures
Nonlinear analysis in ADINA Structures Theodore Sussman, Ph.D. ADINA R&D, Inc, 2016 1 Topics presented Types of nonlinearities Materially nonlinear only Geometrically nonlinear analysis Deformation-dependent
Harmonized European standards for construction in Egypt
Harmonized European standards for construction in Egypt EN 1998 - Design of structures for earthquake resistance Jean-Armand Calgaro Chairman of CEN/TC250 Organised with the support of the Egyptian Organization
IGJ PROOFS SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND. Surface Settlement. Introduction. Indian Geotechnical Journal, 41(2), 2011, 64-75
Indian Geotechnical Journal, 41(), 11, 64-75 SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND Key words Tunnel, clay, finite elements, settlement, complex variable Introduction The construction of
Analysis of borehole data
Analysis of borehole data Luis Fabian Bonilla Universite Paris-Est, IFSTTAR, France Outline Advantages of borehole data Difficulties of working with se data Understanding linear and nonlinear modeling
Working with Digital Elevation Models in ArcGIS 8.3
Working with Digital Elevation Models in ArcGIS 8.3 The homework that you need to turn in is found at the end of this document. This lab continues your introduction to using the Spatial Analyst Extension
Yield Energy of Asphalt Binders Using the Dynamic Shear Rheometer
Standard Method of Test for Yield Energy of Asphalt Binders Using the Dynamic Shear Rheometer AASHTO Designation: T XXX-09 1. SCOPE 1.1. This test method covers the indication of asphalt binders resistance
GROUND MOTIONS AND SEISMIC STABILITY OF EMBANKMENT DAMS FAIZ I. MAKDISI AMEC, E&I, INC. OAKLAND, CA
GROUND MOTIONS AND SEISMIC STABILITY OF EMBANKMENT DAMS FAIZ I. MAKDISI AMEC, E&I, INC. OAKLAND, CA BRIEF COMMENTS AND QUESTIONS Number of time histories (matched and or scaled) Use of Uniform hazard spectra
Three-Dimensional Analysis of Lateral Pile Response using Two-Dimensional Explicit Numerical Scheme
Three-Dimensional Analysis of Lateral Pile Response using Two-Dimensional Explicit Numerical Scheme Assaf Klar 1 and Sam Frydman 2 Abstract: A procedure for exploiting a two-dimensional 2D explicit, numerical
Strength of Material. Shear Strain. Dr. Attaullah Shah
Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume
Numerical Modeling of Direct Shear Tests on Sandy Clay
Numerical Modeling of Direct Shear Tests on Sandy Clay R. Ziaie Moayed, S. Tamassoki, and E. Izadi Abstract Investigation of sandy clay behavior is important since urban development demands mean that sandy
Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.
Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear
SEISMIC BASE ISOLATION
SEISMIC BASE ISOLATION DESIGN OF BASE ISOLATION SYSTEMS IN BUILDINGS FILIPE RIBEIRO DE FIGUEIREDO SUMMARY The current paper aims to present the results of a study for the comparison of different base isolation
MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY. k a. N t
MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY N t i Gt () G0 1 i ( 1 e τ = α ) i= 1 k a k b τ PART A RELAXING PLASTIC PAPERCLIP Consider an ordinary paperclip made of plastic, as they more
The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake
Copyright 2013 Tech Science Press SL, vol.9, no.1, pp.23-36, 2013 The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake Yang Lu 1, Li Shi-Min 1, Cao Peng 2 and Shen Xin-Pu 1 Abstract:
PDLAMMPS - made easy
PDLAMMPS - made easy R. Rahman 1, J. T. Foster 1, and S. J. Plimpton 2 1 The University of Texas at San Antonio 2 Sandia National Laboratory February 12, 2014 1 Peridynamic theory of solids The peridynamic
Elasticity: Term Paper. Danielle Harper. University of Central Florida
Elasticity: Term Paper Danielle Harper University of Central Florida I. Abstract This research was conducted in order to experimentally test certain components of the theory of elasticity. The theory was
Seismic Velocity Measurements at Expanded Seismic Network Sites
UK/KRCEE Doc #: P8.3 2005 Seismic Velocity Measurements at Expanded Seismic Network Sites Prepared by Kentucky Research Consortium for Energy and Environment 233 Mining and Minerals Building University